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Abstract

Background: In face of an American opioid/psychostimulant crisis with overdose fatalities, due, 

in part, to the COVOD 19 pandemic, we are proposing a paradigm shift in response. Currently, 

The FDA has approved pharmaceuticals for the treatment of opioids, alcohol, and nicotine but not 

for psychostimulants or even cannabis.

Proposition: To respond to the deadly overdose issue globally, we are proposing that the FDA 

embrace, for the treatment and prophylaxis of opioid and psychostimulant abuse, induction of 

DNA-guided, dopamine homeostasis. We refer to this novel therapeutic target as the Anti-Reward 

Deficiency Restoration Solution (ARDS).

Expert opinion: This futuristic proposal regarding the FDA will provide important information 

that may ultimately lead to significant improvement in the recovery of individuals with opioid/

psychostimulant and polydrug abuse issues, especially, those with genetically-induced dopamine 

deficiency.

Conclusion: With large populations supporting these initial results, and possibly even additional 

candidate genes and single nucleotide polymorphisms, the neuroscience and neurological 

community may eventually have the clinical ability to classify addiction severity, according 

to genotype and possession of risk alleles. A promising goal is the identification of 
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high risk vulnerability, along with the provision of a safe, non-addicting ARDS natural 

nutrigenomic, involving a therapeutic model that potentially up-regulates instead of down-

regulates dopaminergic receptors, preferably, the D2 subtype, is one laudable goal.
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Introduction

The now, well-characterized opioid epidemic is a primary public global health concern 

[1]. In the United States alone, at least 100 people are dying from opiate/opioid overdose 

every day. According to recent polls taken in America, this epidemic exceeds the concerns 

of even terroristic threats, and its prevention is tantamount to any successful vaccination 

program targeted against COVID 19 [2]. Moreover, there is also an increase abuse of 

other psychoactive substances, such as, alcohol and psychostimulants during the COVID 19 

pandemic [3].

From this perspective, we encourage the neuroscience and neurological community to focus 

on both genetic polymorphisms of many reward genes and their epigenetic modifications 

leading to vulnerability and or resistance to use and misuse of opiates/opioid to treat pain 

[4]. We point out that a universal goal in combating the unwanted opioid crisis, especially, in 

America, is to trace the neurochemical mechanisms of acute opiate withdrawal and use alpha 

2 antagonists, like clonidine, as well as specific target loci, followed by the understanding of 

opiate/opioid reward mechanisms [5].

We point out here and in many previous publications from our group as well as others, the 

alteration of brain functional connectivity based on neurobiological mechanisms seems to be 

an important therapeutic target [6,7]. It is well known that, for example, animal models of 

heroin dependence depict the important role of disrupted fronto-striatal circuitry supporting 

cognitive control processes and even heroin-seeking [8]. Along these lines, Qui et al. [9], 

investigated the corpus callosum (CC), known to connect homologous regions of the cortex, 

and, as such, is the major gateway for information transfer between the cerebral hemispheres 

and represents a structural connectivity index between hemispheres. Qui’s results reveal 

that there exists a substantial deficit of interhemispheric coordination in patients with 

heroin dependence. Moreover, interhemispheric connectivity was shown to be correlated 

with the duration of heroin abuse and higher impulsivity behavior. In agreement with this 

work, Li et al. [10] also showed structural and functional connectivity within the default 

mode network (DMN) are both disturbed in heroin dependent people. This disturbance 

progresses as duration of heroin use escalates and is associated with deficits in decision 

making in heroin addiction. It is noteworthy that Xu et al. [11] in healthy individuals, 

found a significant non-additive COMT × DRD2 interaction in the right dorsal anterior 

cingulate cortex (dACC), exhibiting an inverted U-shape modulation by dopamine signaling. 

In agreement, Lachowicz et al. [12], recently reported a haplotype association consisting of 

five polymorphisms in the DRD2/ANKK1 region: rs1076560, rs1800498, rs1079597, rs6276 
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in the DRD2 gene, and rs1800497 in the ANKK1 gene that favored relapse, compared 

to non -risk allelic controls. These data suggest a hypodopaminergic trait impacted by 

epigenetics. While there is a paucity of information related to a direct epigenetic impact on 

opioids (e. g. morphine and heroin) work from DiNieri et al. [13], revealed that maternal 

cannabis abuse alters developmental regulation of mesolimbic DRD2 in offspring through 

epigenetic mechanisms that regulate histone lysine methylation, and the ensuing reduction 

of DRD2 could contribute to addiction to opioid vulnerability later in life. Earlier work 

from Dalterio et al. [14], agrees with this later study, showing that perinatal exposure to 

delta 9-THC in mice altered enkephalin and norepinephrine sensitivity in vas deferens, with 

possible future life vulnerability to opioid type drugs. This has been further confirmed by 

additional work by Blum et al. [15], showing that rodent genotype dictates sensitivity to 

normorphine on the vas deferens.

Along similar lines, Maze et al. [16], also revealed that repression of histone 

methyltransferase (HMT) G9a by chronic cocaine administration occurs in both Drd1-

expressing (striatonigral) and Drd2-expressing (striatopallidal) medium spiny neurons. This 

work points to the role of epigenetics in regulating expression in doapminergic genes 

and suggests a critical function for cell type-specific histone methylation patterns in the 

regulation of behavioral responses to environmental stimuli.

One area that requires intensive investigation involves psychostimulant abuse, since there 

is no approved FDA therapeutic for this syndrome. Dysregulated striatal-cortical network 

interactions have been identified in cocaine addiction. Specifically, research from NIDA 

and Stein’s group [17] reported enhanced rsFC strength, predominantly in striatal-frontal 

circuits; reduced rsFC observed between the striatum and cingulate, striatal, temporal, 

hippocampal/amygdala, and insular regions in the cocaine group, compared with the non 

-drug abusing controls [7]. In addition, Hu et al. [17] found an augmented striatal-dorsal 

lateral prefrontal cortex connectivity which was positively correlated with the amount of 

recent cocaine use and as elevated trait of impulsivity. Specifically, an index reflecting 

the balance between striatal-dorsal anterior cingulate cortex and striatal-anterior prefrontal/

orbitofrontal cortex circuits was associated with loss of control over cocaine use. This 

work and other published reports [18] suggest that cocaine dependence is associated with 

disturbed rsFC in several specific striatal-cortical circuits. This understanding coupled with 

genetic reward gene antecedents like the association of the DRD2 A1 allele and cocaine 

dependence [19], strongly suggest that any FDA-approved drug for Psychostimulant Use 

Disorder (PUD) must consider induction of “dopamine homeostasis”.

One important clinical application for this approval process from the FDA is linked to the 

abuse of methylphenidate in the ADHD community. Badgaiyan et al., utilized a unique, 

dynamic molecular imaging technique [20] to access real -time dopamine release. PET 

data were analyzed to measure dynamic changes in ligand binding potential (BP) and 

other receptor kinetic parameters. Their analysis revealed that, at rest the ligand BP was 

significantly higher in the right caudate of ADHD volunteers, suggesting reduced tonic 

release. However, during task performance they observed a significantly lower ligand BP, 

indicating increased phasic release. Badgaiyan et al. pointed out that ADHD tonic release of 

dopamine reflects a hypodopaminergia but that, in contrast, the phasic release is enhanced 
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in the right caudate [21]. These data characterize a lowered dopamine trait in ADHD, 

potentially genetic in origin but which may be overcome through physiologic induction of, 

possibly, epigenetic induced hyperdopaminergia as a state response. Moreover, Konova et 
al. [22], reported that short-term, methylphenidate administration decreased an abnormally 

strong connectivity of the ventral striatum with the dorsal striatum (putamen/globus 

pallidus). Furthermore, they observed an attenuated connectivity between these regions 

during placebo administration, uniquely correlated with less severe addiction. Of interest 

and in contrast, methylphenidate strengthened several cortico-limbic and cortico-cortical 

connections. This later finding suggests that the effects of methylphenidate within striatal 

and cortical pathways constitute a potentially viable mechanism by which methylphenidate 

might facilitate control of behavior in cocaine dependence.

The take home message here is that, based on this data, FDA approval should consider the 

role of dopamine in psychostimulant abuse and the required need for stabilization or balance 

of at least dopaminergic brain activity [23].

Moreover, we provide a novel approach, whereby, instead of just blocking acute withdrawal 

symptoms as indicated in the DSM –V, we propose that at the onset of detoxification, 

clinicians should genetically diagnose each patient to not only determine risk stratification 

but determine polymorphic targets for either pharmaceutical or nutraceutical intervention 

like glutaminergic-dopaminergic optimization complex (GDOC) [24,25].

In this regard, we are proposing a novel Genetic Addiction Risk Severity (GARS) test that 

could be coupled with the nutraceutical, KB220 variant, which is precision-matched to the 

addict’s brain polymorphisms across the Brain Reward Cascade (BRC).

It is now well accepted that dopaminergic function at the Ventral Tegmental Area 

(VTA) and subsequent release of dopamine at the N. Accumbens (NAc), varies widely 

but is a significant protracted alteration even in abstinent, heroin addicts [26,27] and 

psychostimulant abusers. As such, we are proposing a new “anti-reward deficiency 

restoration solution” (ARDS), whereby, instead of just blocking withdrawal symptoms, 

utilizing powerful opioids to treat Opioid Use Disorder) (OUD) (harm reduction), for 

example, clonidine, in combination with methadone/buprenorphine/ naloxone. We are 

instead proposing the embracing of gentile. dopaminergic, agonistic therapy (possibly, 

though optogenetic stimulation) as a preferred modality, initiated early in recovery [28] 

(at detoxification).

In terms of OUD, there is emerging evidence related to augmented rsFC (resting state 

functional connectivity) in abstinent OUD patients. As a result, our laboratory [29], 

evaluated the effect of KB220Z on reward circuitry of 10 heroin addicts undergoing 

protracted abstinence (average =16.9 months). In a randomized, placebo-controlled, 

crossover study of KB220Z, five subjects completed a triple-blinded experiment. In addition, 

nine subjects were genotyped utilizing the GARS test. We found that KB220Z induced an 

increase in BOLD activation in caudate-accumbens-dopaminergic pathways, compared to 

placebo, following 1-hour acute administration. KB220Z also reduced a hyperdopaminergic 

state resting-state activity in the cerebellum of abstinent heroin addicts. In the second phase 
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of this pilot study, of all 10 abstinent heroin-dependent subjects, our group found that 

three brain regions of interest were significantly activated from resting state by KB220Z 

compared to placebo. Enhanced functional connectivity occurred in a putative network that 

included the dorsal anterior cingulate, medial frontal gyrus, nucleus accumbens, posterior 

cingulate, occipital cortical areas, and cerebellum. These results and other quantitative 

electroencephalogy (qEEG) study results suggest a putative, anti-craving/anti-relapse role of 

KB220Z, in addiction by direct or indirect dopaminergic interaction.

Willuhn et al. [30] reported that cocaine use and even non-substance-related addictive 

behavior increases as dopaminergic function is reduced. Chronic cocaine exposure has been 

associated with reductions in D2/D3 receptors and associated with attenuated activation of 

cues in occipital cortex and cerebellum in a recent PET study by Volkow et al. [31]. Indeed, 

treatment strategies, like dopamine agonist therapy, that might conserve dopamine function 

may be an effective therapeutic to relapse prevention in psychoactive drug and behavioral 

dependencies. In terms of Psychostimulant abuse, Blum et al. [32], have reported that 

positive outcomes, demonstrated by quantitative electroencephalographic (qEEG) imaging 

in a randomized, triple-blind, placebo-controlled, crossover study, involving oral KB220Z™ 

showed an increase of alpha waves and low beta wave activity in the parietal brain region. 

With t statistics, differences observed between placebo and KB220Z consistently occurred in 

the frontal regions after week 1 and then, again, after week 2 of analyses. This was the first 

report to demonstrate involvement of the prefrontal cortex in the qEEG response to a natural 

putative D2 agonist (KB220Z), especially, evident in dopamine D2 A1 allele subjects. It is 

noteworthy that these results are indicative of a phase change from low amplitude or low 

power in the brain to a more regulated state by increasing an average of 6.169 mV (2) across 

the prefrontal cortical region, suggesting dopamine homeostasis.

Our proposed ARDS model is based on known mechanisms, involving serotonergic, 

endorphinergic, cannabinergic, glutaminergic, cholinergic and dopaminergic pharmacology, 

leading to the long-term development of “dopamine homeostasis” in order to treat and, 

even prevent, future relapse of opiate/opioid/psychostimulant use or misuse [33]. We term 

this novel therapy “Precision Addiction Management (PAM) [34]. It should be noted as an 

important caveat in the field of Psychiatric Genetics, there is a paucity of studies linked 

to ethnic differences in terms of gene polymorphisms and potential vulnerability to reward 

deficiency behaviors [35].

Conclusion

This proposal concerning the FDA is written in the spirit of just providing important 

information that may ultimately lead to significant improvement in the recovery of 

individuals with opioid/psychostimulant and polydrug abuse issues, especially, those with 

genetically induced dopamine deficiency [36].

We are proposing that, with the use of necessary large populations to support these initial 

results, and, possibly, the use of even additional candidate genes and single nucleotide 

polymorphisms, the neuroscience and neurological community may eventually have the 

clinical ability to classify severity according to genotype and possession of risk alleles. 
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This classification may then be combined with a safe, non-addicting, ARDS natural-

targeted system and integrative nutrigenomic therapeutic model that upregulates, instead 

of downregulating dopaminergic receptors, preferably, the D2 subtype [37]. However, the 

goal is to achieve “dopamine homeostasis”.
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