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Abstract

Background: RNA-seq has become a standard technology to quantify mRNA. The
measured values usually vary by several orders of magnitude, and while the detection
of differences at high values is statistically well grounded, the significance of the dif-
ferences for rare mRNAs can be weakened by the presence of biological and technical
noise.

Results: We have developed a method for cleaning RNA-seq data, which improves the
detection of differentially expressed genes and specifically genes with low to moder-
ate transcription. Using a data modeling approach, parameters of randomly distributed
mMRNA counts are identified and reads, most probably originating from technical noise,
are removed. We demonstrate that the removal of this random component leads to
the significant increase in the number of detected differentially expressed genes, more
significant pvalues and no bias towards low-count genes.

Conclusion: Application of RNAdeNoise to our RNA-seq data on polysome profiling
and several published RNA-seq datasets reveals its suitability for different organisms
and sequencing technologies such as lllumina and BGI, shows improved detection of
differentially expressed genes, and excludes the subjective setting of thresholds for
minimal RNA counts. The program, RNA-seq data, resulted gene lists and examples of
use are in the supplementary data and at https://github.com/Deyneko/RNAdeNoise.

Keywords: RNA-seq, Data cleaning, Data filtering, De-noise, Differential expression,

Statistical modeling

Introduction

Investigation of the mechanisms underlying differential gene expression is one of the
fundamental tasks towards understanding the functional organization of genomes.
Experimental quantification of gene expression is typically realized using RNA-seq
technology [1]. Analysis of RNA-seq data is organized in pipelines covering many steps
from trimming the sequence reads to the final detection of differentially expressed genes
(DEGs) (Fig. 1). A number of programs exist for detection of DEGs, utilizing different
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Fig. 1 Typical workflow of a RNA-seq data analysis. Data cleaning step, although optional, is frequently
included either by setting a threshold for minimal RNA counts or by more complex measures

fixed thresholds - 3, 5, 10
RPKM > 0.3
HTSFilter, RNADeNoise

statistical approaches focused primarily on estimating data variance [2-7]. But still other
factors exist affecting statistical calculations such as noise, either technical or biological,
and steps to eliminate it are also included into pipelines.

Usually noise, or in other words mRNAs with very low counts, are removed by set-
ting some minimal threshold. Its choice is very controversial, and may vary from zero
in anota2seq [5] to ten (Corset [8]) or even 32 [9] RNA reads per gene. If reads are nor-
malized to values like FPKM/RPKM (Frequency/Reads Per Kilobase per Million reads),
a threshold is similarly set to FPKM >0.3 [10, 11]. Other ad hoc ideas include filtering
genes with a total count across all experiments below a given threshold [12] or if half of
the samples have counts below some threshold (this rule can be extended on multiple
sample designs, DESeq2 [3] manual), filtering genes with at least one zero count in any
experiment [13], or filtering according to an internal logic of a DEGs detection program
[14].

Application of independent filtering of RNA-seq data, also called pre-filtering or
cleaning, were shown to increase the detection power [15], and parameters of a such
pre-filtering at best should be estimated using the data itself. For example, application
of Jaccard index (HTSfilter), was shown to improve detection power for moderately to
highly expressed genes [16]. Here we should define for clarity, the difference between fil-
tering and normalization—filtering is a removal of values which fall under some criteria;
normalization is a rescaling of values (read counts) based on some statistics.

In this work it is suggested to set up filtering, based on the statistical modeling of the
read count distributions independently for each sample. Observed counts are assumed
to come from two origins — real and random, and the distribution parameters of the both
are fitted to the observed data. This allows the contribution of the random component
to be estimated and subsequently removed from the measured expression values. We
demonstrate that this approach is more effective, compared to the pre-defined thresh-
olds, especially when searching genes with low to moderate transcription. The method
is robust against sample multiplexing, does not introduce bias towards low count genes,
and excludes subjectivity when setting a threshold for minimal counts. Performance was
shown on our ribosome profiling data and on the other three RNA-seq datasets covering
different organisms and sequencing technologies.

Algorithm and implementation

The construction and testing of the method will be done using our data on poly-
some profiling, which consists of three datasets representing polysome, monosome
and total mRNA fractions (NCBI SRA BioProject ID PRJNA731322). Distributions
of mRNA counts (Fig. 2) reveal two local maxima — at the minimum and around 780
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Fig. 2 Distribution of mRNAs counts in polysomal and monosomal mRNA fractions. Figures show the
number of genes with respective mRNA count for raw mRNA data (red line), cleaned data (blue) and
exponentially distributed counts (black). Subtraction values x are calculated independently for each sample
(repetition and fraction), and are defined as a 0.99 quantile of the respective exponential distribution.
Distribution of cleaned data (blue line) is now very close to negative binomial

counts. The latter can be interpreted as representing real mRNAs, while near-zero
counts are assumed to originate from a random noise (either biological or technical).
It is common to remove such mRNAs by setting a minimal threshold [3, 8, 9], but
here we have exploited a data modelling approach to find exactly how many counts
could have arisen from a random process.

To model the raw data, one can assume that the distribution curves (red curves in
Fig. 2) represent a sum of two independent processes, one is exponentially distrib-
uted and the other distributed negative binomially. The former can be interpreted as a
background noise, which usually decays exponentially [17], and in our case may origi-
nate from DNA debris, reverse transcription or other sequencing artifacts. The latter
is a real signal that has a negative binomial distribution [7, 18, 19]. Formally, this may
be represented as a sum of two independent random variables, one following a nega-
tive binomial distribution and the other an exponential:

NegBinom Exponential
Ny =N ;% + NP , (1)

P

where Ny, is a raw number of mRNA reads for gene i in mRNA fraction f (polysome,
Exponential .

monosome) and repetition r (1, 2, 3). Of note, the exponential part Nf X is assumed
to vary only between mRNA fractions and repetitions.

In other words, each measured mRNA count value is assumed to consist of real and
random parts. It is not possible to decompose each value into two components, but
it is possible to estimate the maximum contribution of the random part and subse-
quently subtract it.



Deyneko et al. BMC Bioinformatics (2022) 23:488 Page 4 of 14

The probability density function of an exponential distribution can be found by
fitting the exponential model into the raw data. The binomially distributed counts
have a peak around 780 reads and its influence is negligible at values close to zero
and therefore, points near zero are of pure random nature to which the exponent
y=Ae ™ can be fitted.

This can be done using Im() function in R: Im(log(y) ~x,z), where z is a vec-
tor of the first m points of the distribution. Looking at the distributions in Fig. 2
(and Additional file 1: Figs. S2, S4, S6), one may conclude that the first four to five
points are indeed decaying exponentially. Accordingly, the first four points are used
to fit the model, which already provides sufficient accuracy (black curves in Fig. 2).
Finally, solving the inequation

X 0 x+1
/ Ae~*dt < (1 —0.01) / Ae~*dt < / Ae~*dt,
1 1 1

for x, gives the point where the “tail” of the distribution is below some value, here 0.01.

Therefore, according to the above formula (1), subtracting x from each mRNA
count will remove all random reads with 0.99 probability (CleanStrength parameter
in RNAdeNoise). If for some mRNAs the resulting count value is negative, a zero
value is assigned. Of note, x can also be defined as a point at which the absolute
value of the exponent drops below a certain threshold, for example three counts.
Thus, simple equation Ae**< 3 defines the required value of x. This simplified
approach was implemented during the initial development of RNAdeNoise and can
be used as an option.

In application to our data, modeling each dataset gives x values ranging from 12
to 21 (Fig. 2). So for example, to clean the repetition one of monosomal fraction the
value of 19 should be subtracted from the counts for each gene. The distribution of
the cleaned data is now very close to the negative binomial (blue curves in Fig. 2).
The mode (most frequent value) is around 780 counts with a very small variation
between datasets. In contrast, the exponential part reveals significant differences — in
most samples it decreases sharply, but in two samples its contribution is more pro-
nounced — the subtraction values reach 19 and 21. This shows that even with stand-
ardized sample preparation and sequencing routines, variation in noise levels could
be significant.

The described method was implemented as a function in R [20], which is de facto
a standard environment for scientific calculations, and can be found in the supple-
mentary material (Additional file 2) and at GitHub. The function RNAdeNoise has
two input parameters—a table of RNA counts organized in columns with a format
identical to those used in STAR, EdgeR or DESeq2, and the filtering strength. As an
output, the function returns cleaned data and subtracted values for each sample. In
the following sections, the benefits of the suggested data cleaning will be exemplified
using our data and three other datasets. The effect of filtering on detecting genes with
different levels of expression will be investigated using a total mRNA fraction. Genes
will be classified according to overall transcription into low transcribed genes (lowest
1/3 quantile of all genes, <268 counts), moderate (middle 1/3 quantile, 269...1305
counts) and highly transcribed (top 1/3 quantile, > 1306 counts).
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Results
To evaluate the performance of RNAdeNoise, it has been applied to our data and other
published datasets and results compared to other cleaning methods — fixed thresholds
[3, 5], FPKM [21], HTSFilter [16] and samples-based filtering. Particularly, raw data were
cleaned as follows: Fixed thresholds > 3,5,10 — if a raw read count is <3 (5, 10), then it
is zeroed; FPKM >0.3 - if frequency per kilobase per million <0.3, then it is zeroed.
HTSFilter as described in the original publication [16]. Samples-based filtering — half
of the samples should have counts each above a threshold — 3,5 and 10 counts (Yssam-
ples>3,5,10). RNAdeNoise with a default stringency parameter 0.9 (R function in the
Additional file 2). DEGS were identified using two programs —EdgeR [2] (default nor-
malization TMM) and DESeq2 (built-in normalization) [3]. Criteria for DEGs if not
indicated otherwise: |log2(FoldChange)|>1.5, p-value <0.0001, where log2(FoldChange)
and p-value are the output values of the respective program. In the analysis of published
data criteria for DEGs was adjusted to correspond to the number of genes reported.
Functional classification of genes was performed using DAVID [22].

The effects of the cleaning can first be seen by the changes in the distribution of
p-values before and after filtering [16]. All filters are capable of reducing genes contribut-
ing to a peak of p-values close to one (Fig. 3A; extended data in Additional file 1: Fig. S1),
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Fig. 3 Comparison of different data cleaning procedures. A Histograms of p-values of DEGs after application
of different filters. Histograms in the background (grey) represent the p-values of raw data, in foreground of
filtered data (more filters are in Additional file 1: Fig. S1). B Histogram of ratios of p-values before and after
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and effectively minimize p-value discretization due to low counts. Per-gene changes in
p-values, shows that filtering with RNAdeNoise on average increases the significance
of the results (Fig. 3B). The asymmetry of the distribution against negative values
shows that the cleaning generally leads to lower p-values of detected DEGs. For exam-
ple, DESeq2 reports on average 3.16 times lower p-values for a gene, after the data was
cleaned with RNAdeNoise. As a consequence, this translates not only to a higher num-
ber of detected DEGs, but also to the DEGs repertoire (Fig. 3C). There are core DEGs
recognized by all methods, DEGs recognized by certain methods and also unique DEGs,
identified solely by RNAdeNoise, and missed by all other methods. The results of RNA-
deNoise are the most inclusive — they include most of the DEGs found by other meth-
ods, plus it has 24 (34 by DESeq2) unique DEGs. Out of these 24 uniquely discovered
genes there are genes like nuclear RNA polymerase D1B, growth-regulating factor 1 or
methyltransferase MT-A70 protein, that are directly involved in regulating transcription
(all genes are in Table S1 (Additional file 1).

We found that after filtering, a per-gene dispersion calculated by EdgeR program is
reduced (Fig. 3D), which directly influences the calculation of statistical significance.
This explains, why DEGs found using RNAdeNoise get more significant p -values and
why the presented genes are missed by other methods.

The cleaning method proposed here has a single variable parameter — the filter-
ing strength, which is a removed quantile of the exponentially distributed counts. We
computed the dependency between this parameter and the number of detected DEGs
(Fig. 3E). Overall, the maximum is reached at 0.9 when the program EdgeR is used,
and between 0.95 and 0.97 for DESeq2. As was mentioned earlier, the filtering strength
is a probability, that all random reads are removed, which implies, that some of the
“real counts” may also be removed. This can be seen for the higher values of filter-
ing strength, which leads to the removal of too much “real counts’;, and hence to the
sharply reduced number of DEGs. Users are supposed to set this parameter according
to the program used and a desired filtering strength, but a default value of 0.9 can be
recommended.

RNAdeNoise performs best, giving 47 more genes compared to the raw data and 91
more compared to HT SFilter (29 and 21 genes by DESeq2 respectively). It is interest-
ing to note that common approaches based on thresholds for minimal mRNA counts
result in significantly fewer DEGs compared to the raw data. Classification of DEGs
using DAVID [22] functional classification system shows an increase in genes with func-
tional annotation after cleaning with RNAdeNoise, which exceeds the respective num-
bers by other filters (Table 1). We selected most populated functional classes “regulation
of biological process” (GO:0050789), keyword “transcription regulation” (KW-0805)
and “molecular function regulator” (GO:0098772) as examples. In most categories our
method outperforms other methods in terms of number of identified functional genes.
An interesting behavior shows a group-based filter “% samples>3" — the number of
genes with function “regulation of biological process” is surprisingly high compared to
other filters, but only in combination with the EdgeR program. In all other cases the per-
formance of the filter is usual, even though it is better than that of the per-sample filters.
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Table 1 Data cleaning increases the number of genes with functional annotation

Cleaning #genes #DEGs total* #DEGs with
method after
cleaning Any Regulation Transcription  Molecular

annotated  of biological regulation function
function process regulator

RNAdeNoise 25,356 2439 2144 338 92 40

Raw data 37,336 2392 2086 326 87 38

HTSFilter 22,907 2348 2056 319 83 38

counts >3 26,089 2309 2025 320 84 38

counts>5 25,215 2287 2005 318 85 36

counts>10 23,973 2128 1898 310 85 38

FPKM>0.3 23,237 1930 1770 304 87 34

Yasamples>3 24,173 2363 2063 360 84 38

Differentially translated genes were identified using EdgeR and annotated using DAVID classification system. Presented are
the three most populated categories related to regulation. Results using DESeq_2 are similar and can be found in (Additional
file 1: Table S3)

The distribution of DEGs according to the level of total mRNA shows the differential
impact of pre-filtering on detected DEGs (Additional file 1: Table S2). Our method leads
to more identified genes with a moderate level of transcription (447 genes out of 844)
compared to the raw data. The application of other filters strongly reduces the number
of low-transcription genes, and has a minor effect on moderately expressed genes, with
the FPKM filter showing the strongest reduction. The detection of highly transcribed
DEGs is indifferent to any type of filtering.

Application of data cleaning to other datasets
To show a wide applicability of our methodology, three recently published RNA-seq
datasets have been chosen, covering two organisms — Arabidopsis thaliana and mouse,
and two most common sequencing technologies — Illumina and BGL

The first dataset is the result of work on the comparison of gene expression between
Alport mice and wild mice [23]. Data (SRR11206238 and SRR11206239) were converted
into mRNA counts using STAR and FeatureCounts on Galaxy [24]. The distributions
of the counts reveal a regular shape (Additional file 1: Fig. S2), and can be character-
ized by the mode at around 1750 counts for the sample SRR11206239 and 2600 for
SRR11206238, which indicates a very high sequencing depth. Another distinguishing
feature is a strong fluctuation of the near-zero counts and a generally high level of low
reads. Nevertheless, data modeling and cleaning make the distributions close to negative
binomial, as would be expected (Fig. S2). DEGs were detected using EdgeR after applica-
tion of different filters and annotated by DAVID as above. The criterion for DEGs was
relaxed to |log2(FoldChange)|>1 to match the number of genes reported by the authors
in Tables 1, 2, 3 and 4 [23] when using raw data (Table 2, gene lists are at the project
home page on GitHub).
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Table 2 Cleaning data with high sequencing depth [23]

Cleaning #DEGs*(DEGs30%) #DEGs/p-value

method

Single- Biological Regulation Multicellular Response to

organism regulation  of organism stimulus

process biological  process

process

Author's® 130 (29) 27/9.3e-3 24/2.3e-2 21/1.6e-1 21/1.9e-3 21/82e-3
Raw data 135 (96) 65/3.9e-2 52/34e-1 47/6.0e-1 7/9.4e-1 40/3.3e-1
RNAdeNoise 336 (328) 193/1.7e-4 164/54e-3 155/1.6e-2 33/3.7e-1 134/6.3e-4
HTSFilter 27 (27) 20/1.2e-1 14/7 4e-1 10/9.8e-1 13/1.8e-1 10/7.9e-1
counts >3 184 (96) 65/3.9e-2 52/34e-1 47/6.0e-1 38/2.1e-1 40/3.3e-1
counts>5 250 (98) 67/3.1e-2 54/2.8e-1 49/5.3e-1 40/1.5e-1 42/2.5e-1
counts>10  572(128) 76/5.1e-2 63/2.2e-1 58/4.0e-1 11/7 4e-1 52/6.8e-2
FPKM>03 550 (166) 108/2.7e-2  91/1.1e-1 85/2.2e-1 15/8.0e-1 69/1.8e-1

This dataset illustrates a “step” phenomenon appearing after application of threshold-based filters, when one of the values
under the threshold is zeroed. As a result, a program for DEGs detection preferentially finds genes with very low counts

(in brackets genes with counts > 30). RNAdeNoise does not introduce such a bias and shows an increase in number and
statistical significance of functional DEGs (distributions of counts in DEGs is shown in Additional file 1: Fig. S3)

$ Genes from Tables 1, 2, 3 and 4 [23]
*Criteria for DEGs: |log2(FoldChange)|>1.0, p-value <0.0001
&DEGs with counts > 30 at least in one sample

As follows from the table, the application of has a significant impact on the num-
ber of detected differential genes. Most filters significantly increase the number of
DEGs, and only two — “HTSFilter” and “X >20” decrease. A detailed view revealed
many examples of DEGs with raw counts slightly above/below the threshold. This may
indicate that these genes had been recognized as DEGs only when one of the counts
was zeroed after cleaning, and the increased difference was recognized as significant.
Therefore, we have complemented the DEGs criteria by requiring that raw counts
exceed 30 (twice the noise level) in at least one sample. This drastically reduced the
number of detected DEGs, for example, down to 128 DEGs (to 22.4%) by “counts > 10”
and to 166 (33.2%) by “FPKM > 0.3” filters (Table 2). In contrast, RNAdeNoise shows a
very small portion of low-count DEGs within a strongly increased number of detected
DEGs. The distribution of genes in the five most populated functional classes shows,
that RNAdeNoise not only increases the number of detected genes, but also the sig-
nificance of GO overrepresentation.

The demonstrated effect of the preferred detection of low-count DEGs is so pro-
nounced in this dataset, due to the large number of low-count genes, which is in turn
a result of the high sequencing depth (Additional file 1: Fig. S2). Interestingly, the
method used by the authors reveals an even greater bias towards low-count genes.
101 out of 130 DEGs have counts in both samples under 30, and 89 genes have both
counts under 16 — the limit defined here to separate random reads (gene list in Addi-
tional file 1: Table S4). Such DEGs are obvious statistical artifacts, which usually occur
when near-zero ratios are computed. Assuming the high sequencing depth (mode
above 1700 reads) such genes can be classified as not expressed at all, rather than dif-
ferentially expressed. The distributions of the raw counts in detected DEGs show that
RNAdeNoise does not shift the peak of the distribution relative to that of raw data
(Additional file 1: Fig. S3). In contrast, threshold—based filters and the method used
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Table 3 Results of the cleaning of expression data from BGISEQ-500 platform [25]

Cleaning method #DEGs* (p-value®) DEGs functional classification

Cellular Metabolic Responseto Regulation
process process stimulus of biological
process

Author's® 1045 466 448 297 219
Raw data 1047 (6.77e-17) 501 458 314 211
RNAdeNoise 1215 (3.86e-18) 559 502 347 235
HTSFilter 860 (8.37e-17) 416 372 278 179
counts>3 995 (5.58e-17) 477 434 301 201
counts>5 988 (3.52e-17) 477 432 302 199
counts>10 940 (4.97e-17) 450 409 293 183
FPKM>0.3 790 (6.77e-17) 384 348 258 165

DEGs were detected by EdgeR and classified using DAVID. Filtering with RNAdeNoise increases the significance and adds
16% more DEGs and up to 20% DEGs in several functional classes compared to the original results

*Criteria for DEGs: |log2(FoldChange)|>1.0, p-value < 0.002
# Average p-value of top 100 genes

$ First four functional classes from Fig. 3 [25] were taken for comparison

by the authors introduce a significant bias towards low—count DEGs. This is another
fundamental difference between threshold—based filters and RNAdeNoise, which
suppresses noise equally from all genes.

A second example comes from an investigation of gene response to Cycloastragenol,
the molecule that stimulates telomerase activity, cell proliferation and is supposed to
help plants overcome different environmental stresses [25]. Using BGISEQ-500 plat-
form, two samples were sequenced — treated with cycloastragenol and control (NCBI
SRA PRJNA665188). The distributions of counts reveal a typical curve with a very
high portion of reads close to zero and the mode at about 1200 (Additional file 1: Fig.
S4). Modeling this data using RNAdeNoise gives values 15 and 19, which should be
subtracted from reads from samples 1A and 1B, respectively (samples names accord-
ing to the original publication). This completely removes the exponential part and fits
the distribution to the one expected theoretically, i.e., to the negative binomial.

In identifying DEGs the authors refer to the theoretical approach published in 1997
[26] for which no software implementation exists. So we used EdgeR with the same cri-
terion as the authors — |log,(FoldChange)|> 1 and slightly increased statistical signifi-
cance (p-value <0.002) to match the number of DEGs published. Annotation was done
by DAVID and the results compared to the published results (Table 3, gene lists are at
the project home page on GitHub).

The results in the table show, that after filtering with RNAdeNoise the DEGs become
more significant p-values compared to the raw data and other filters, which trans-
lates into an 16% increase in the number of DEGs (1215 vs. 1047), with a correspond-
ing increase in all functional groups. None of the other filters were able to increase the
number of detected genes. Generally, the improvement is comparable to that shown in
Table 1, except that HTSFilter performed poorly on this data. Of note, the use of EdgeR
compared to the author’s method [26] has itself increased the number of genes in three
functional classes. Distribution according to the expression level demonstrates that the
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genes most affected by cleaning, have expression levels below approx. 1.5 log,CPMs (
Additional file 1: Fig. S5), which corresponds to 195 raw counts or 1/6 of the mode.

The third dataset used here as an example originates from the study of a circadian clock
in Arabidopsis thaliana [27]. The dataset represents a special interest, because of extensive
use of sample multiplexing in sequencing, which may or may not influence the shape of the
exponential part, and therefore, the applicability of the method. The experiment consisted
in measuring total mRNA and mRNA isolated using Translating Ribosome Affinity Puri-
fication (TRAPed mRNA) using Illumina sequencing technology and includes altogether
148 samples (NCBI GEO id GSE158444). We selected four datasets covering all types of
mRNA source, i.e., total and TRAPed mRNAs from control and treated plants, to show the
applicability of our technology (samples TOT.T0.C1, TOT.T0.H1, TR.T0.C1, TR.T0.H1),
and six datasets (control vs. treated) to show the added value of cleaning (samples TOT.
T0.C1, TOT.T0.C2, TOT.T0.C3 vs. TOT.T0.H1, TOT.T0.H2, TOT.T0.H3).

The distribution of counts reveals a typical shape, with a mode at about 100 counts for
three samples and about 300 counts for one sample (Additional file 1: Fig. S6). Applica-
tion of RNAdeNoise yields in bell-shaped distributions, which proves the applicability of
the suggested approach.

One of the distinctive characteristics of this dataset is the mode of about 100 counts,
which is seven times less compared to our work and twelve times compared to [25]. So
we can estimate that up to eight samples were multiplexed in a single sequencing run.
Data modeling gave a value of 12 for samples with a mode of 100 and 11 for the sam-
ple with a mode of 300, which was obviously less multiplexed. This can be interpreted
as the noise level remains the same, while the “real counts” are proportionally reduced
when the samples are multiplexed. In practice, this is important in determining how
many samples can be multiplexed without compromising the ability to detect differential
genes. For example, in this dataset 33% of genes with the lowest expression have mRNA
counts below 30, of which up to 12 counts may be of a random nature. In such a case, it
would be impossible to analyze the weakly expressed genes. To detect rare mRNAs, a
much higher sequencing depth is required, and data modeling can be used to estimate
the level of noise and the number of samples that can still be multiplexed.

To show the added value of RNAdeNoise on such multiplexed datasets, it was applied
together with other filters to six samples, followed by DESeq2 as in the original publica-
tion (Table 4, genes lists are at the project home page on GitHub). Filtering used by the
authors was also applied — the sum of all counts in control and treated samples (each in
three repetitions) for a gene should be above 20, otherwise the gene is removed [27]. The
comparative results show that the number of differential genes detected after cleaning
with RNAdeNoise increased significantly (+20%). The average p-value over the top 1000
genes showed higher significance after cleaning. Similarly, the expression ratios are also
increased — the average log2(FoldChange) for the top 1000 upregulated genes equals
3.402 after RNAdeNoise, 3.060 for raw data and 3.310 for count > 10 filter. Other filtering
methods including author’s filtering (column “X >20”) show weaker p-values and fewer
detected genes. In this example, we do not functionally classify genes, since the original
work aimed at finding circadian genes in a quite complex scheme with four types of sam-
ples over eight consecutive time points. The search for functional genes at a single time
point in this case would have no biological relevance to the experiment.
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Table 4 Cleaning the data from multiplexed samples [27]

Cleaning X>20* Raw RNAdeNoise HTSFilter counts>3 counts>5 counts>10 FPKM>0.3

method
#DEGS (p- 2489 2425 2909 (8.3e-22) 2491 2446 (10e- 2470 (3.1e- 2394 (6.8e- 2615 (4.7¢-
value®) (54e-  (1.1e- (5.8e-21)  20) 20) 21) 21)

21) 20)

Raw data was filtered using the respective filters, followed by DESeqz2 for detection of DEGs. RNAdeNoise adds 17% more
DEGs compared to the author’s results

*Filter used by the authors — sum of reads in all samples is above 20
$ Criteria for DEGs: |log2(FoldChange)|>1.5, p-value < 0.0001
# Average p-value of top 1000 genes

Taking together, the above examples demonstrate: i) data modeling and de-noising,
increase statistical significance of detected DEGs, which is transferred to the increase
in the overall number of genes and genes with annotated functionality; ii) the effect of
the data cleaning is more pronounced on low expression genes and in single replicate
experiments; iii) the method is applicable to common sequencing technologies like
Illumina and BGI, all organisms and robust against sample multiplexing; and finally iv)
the method automatically adjusts its parameters to the data, eliminating subjectivity in
selecting appropriate thresholds for minimal counts.

Discussion

Advances in DNA sequencing have revolutionized genetic studies with a variety of
sequencing technologies, which are used to investigate gene expression through mRNA
quantification. Bioinformatic processing of such data is actively developing in many
ways, including problem-specific tasks like data-normalization and low reads filtering
[7]. A step of data filtering (or cleaning) can be included in a typical RNA-seq pipeline,
either directly, in the form of a minimal required counts, or implicitly, when a program
for DEGs detection already incorporates the cleaning [14].

The conceptual difference of the presented method consists in the assumption that
all reads receive some level of noise, independent from the actual level (high or low) of
mRNA. Therefore, in order to eliminate noise a certain value should be subtracted from
all mRNAs. The method has another very important point — it introduces fewer arti-
facts, compared, for example, to fixed thresholds. As seen in the mouse dataset (Table 2),
the use of fixed thresholds introduces a “step” in pairs of values slightly below/above the
threshold, which can be further recognized as a differential expression. The increase in
sequencing depth, which is intended to enhance resolution at low-level transcripts, in
practice leads to a dramatic increase in low-count DEGs, which are obvious statistical
artifacts introduced either by thresholds-based filters or by DEG detection program
itself. This problem may not be so pronounced if the number of low-count genes is small,
but still requires attention.

Cleaning of RNA-seq data has a predominant effect on recognition of DEGs with
low to moderate transcription, which does not underestimate the significance of these
genes and the method. For example, regulatory genes, encoding transcription factors
and other regulatory proteins, including so-called master regulator genes, are typically
reveal low to moderate transcription [28, 29], but have a great influence on the organism
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development and are the key elements in response to external and internal signals [30].
Taking that such genes are actively transcriptionally and translationally regulated, it
may become difficult to detect deferential expression of these genes in the presence of
(i) structural genes with high absolute expression statistically masking genes with lower
expression; (ii) sequencing noise, reducing the contrast between expression levels. The
latter can be improved through the data cleaning, based on explicit mathematical mod-
eling excluding subjectivity. As we demonstrated on our data and on three other data-
sets, the cleaning using RNAdeNoise increases statistical significance, overall number of
detected differential genes, genes with functional annotation and improves overrepre-
sentation statistics in functional classes.

The current limitations of the method include, first and foremost, the need for manual
control of the shape of the distributions. The prerequisite is a two-peak shape, which is
interpreted as consisting of real and random parts. But in practice it is not always pos-
sible to reach sufficient sequencing depth, which can be seen as a reduced or missing
second peak. For example, because of the in vivo collection of specific immune cells
of mouse thymus, only a very few number of cells can be isolated for sequencing [31].
Thus, the required sequencing depth cannot be achieved and the distribution has only
one peak (Additional file 1: Fig. S7). Another reason could be the sequencing technol-
ogy. Distribution of mRNA counts of polysomal and monosomal tomato RNA fractions,
sequenced on the MinION device (nanoporetech.com) similarly shows only an expo-
nent-shaped distribution (Fig. S7), although many genes have counts far above the com-
monly used thresholds of 3 to 10. In both above cases it would be wrong to interpret
the data to be purely random, but so that it is not possible to separate noise and real
reads using statistics. Similarly, RNAdeNoise should not be used if the exponential part
is missing, for example, if the data has already been cleaned. Iterative use may result in
incorrect exponential model fitting and data corruption. Automatic detection of correct-
ness of the input data will be the primary focus for future program development.

Conclusion

Here we have presented a program RNAdeNoise for cleaning RNA-seq data, which
improves the detection of differentially expressed genes and specifically genes with a low
to moderate absolute level of transcription. Based on a data modeling approach, param-
eters of randomly distributed mRNAs are identified and the reads, most probably origi-
nating from a technical noise, are removed. We demonstrate that the elimination of this
random component results in detection of more genes with more significant p-values
compared to the use of common filters.

Another important characteristics of the method is its adaptation to data — the noise level
is independently measured for each dataset and once no noise is detected, the data is left
unaltered. This makes integration into existing analysis pipelines trivial and requires mini-
mal user intervention. The method can also be applied to any dataset that comprises expo-
nential and bell-shaped parts, probably with minor modifications to the provided program
code. A practical advantage of RNAdeNoise is that it has only one tunable parameter — the
filtering strength, which can be left at its default value of 0.9 in most cases. Examples of
usage can be found in the supplementary files and at GitHub.
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Abbreviations

DEGs Differentially expressed genes

FPKM/RPKM Frequency/Reads Per Kilobase per Million reads

TMM Normalization procedure in EdgeR

log2(FoldChange) Logarithm with base 2 of the ratio of two count values

counts>3/5/10 Filter genes with count values below or equal 3/5/10

>>20 Filter genes with the sum of counts in all samples equal or below 20
Yhsamples>3/5/10 Filter genes if in half of the samples count values are below or equal 3/5/10
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