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Background
Increasingly, RNA sequencing (RNA-Seq) studies utilize complex designs that induce 
correlation between observations. Examples include repeatedly measuring subjects 
over time, sampling related family members, or examining multiple tissue types from 
the same subject [1–4]. As the models used in the most popular R packages, edgeR [5] 
and DESeq2 [6], are not appropriate in these scenarios [7], several new approaches have 
been proposed. In general, these methods either (1) model the RNA-Seq counts directly 
using generalized linear mixed models (GLMMs) [8–10], or  (2) transform the counts 
into continuous measures that can then be analyzed using linear mixed models (LMMs) 
assuming a normal distribution [11, 12]. The former approach has the benefit of mode-
ling the RNA-Seq data directly, but model convergence and type 1 error rate control can 
be problematic at the smaller samples sizes common in RNA-Seq studies, depending on 
the GLMM estimation approach [8, 13]. The alternative of using transformed counts is 
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appealing since LMMs have been extensively studied and are generally faster to fit. How-
ever, there are some drawbacks to this strategy as theoretical results show that it is not 
possible to stabilize variance via any transformation when the counts are too small [14], 
and thus the prospect that a mean-variance relationship persists in the transformed data 
can violate modeling assumptions in the downstream analyses. Moreover, the additional 
step of transforming the digital counts into a continuous measure has the potential to 
obscure relationships present in the original count data (e.g. higher power for MCMSeq 
compared to using linear mixed models on transformed data in [8] and more accurate 
estimates of heritability using GLMMs than with transformed data in [15]).

In Vestal et al. [8], we proposed the MCMSeq methodology to model correlated RNA-
Seq data using a Bayesian hierarchical GLMM. Of the methods compared, MCMSeq 
best maintained nominal false discovery rates (FDRs) while providing strong sensitiv-
ity or statistical power. In addition, LMMs fit to variance stabilizing transformed (VST) 
data were the only other approach that controlled FDRs at their nominal level. While the 
sensitivity of this alternative was lower than MCMSeq, LMMs are substantially faster to 
fit and offer increased modeling flexibility compared to the current version of the mcm-
seq R package through the use of multiple random effects and correlation structures for 
residual errors. Consequently, we have developed the lmerSeq R package to fit gene-
specific LMMs to transformed RNA-Seq data and easily generate results tables for either 
single regression coefficients or linear combinations of regression coefficients (con-
trasts). As an example that illustrates how the choices of transformation, model struc-
ture, and testing procedure can drastically alter inference, we compare the results from 
the VST-lmerSeq pipeline to two similar methods that rely on the VOOM transform: 
DREAM from the VariancePartion package and rmRNAseq from the eponymous 
package [11, 12, 16].

Implementation
Model

Like other transformation based approaches, lmerSeq uses a linear mixed model frame-
work to analyze normalized counts. Let Y gi = {Ygi1, . . . ,Ygini} be a vector of transformed 
expression values for gene g from subject i at observations 1 to ni . Transformed expres-
sion is modeled using a LMM framework, so that Y gi = X iβg + Zibgi + ǫgi . Here, βg is 
a p× 1 vector of fixed effect regression coefficients for gene g, X i is a ni × p matrix of 
fixed effects covariates for subject i, bgi is a q × 1 vector of random effects for gene g 
and subject i, Zi is a ni × q matrix of random effect covariates for subject i, and ǫgi is a a 
ni × 1 vector of normally distributed residual error terms with mean 0 and covariance �g

.
This model can account for correlation between samples in two ways, through the use 

of random effects (i.e. using Zi and bgi ) or through the covariance structure for the error 
terms, �g . DREAM utilizes random effects, while rmRNAseq models the residual correla-
tion directly by assuming a continuous autoregressive framework (CAR) for �g without the 
inclusion of random effects. Both of rmRNAseq and DREAM use the VOOM transforma-
tion, which estimates a mean-variance relationship for log-transformed counts in conjunc-
tion with a precision weight for each observation. lmerSeq allows either random effects or 
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modeling of �g directly using a variety of covariance structures. While the lmerSeq functions 
are general enough to handle any data transformation (and weights), in the results presented 
below we utilized the VST available from the DESeq2 package to remove the relationship 
between the mean and variance, producing data that are approximately log2 scaled [6].

lmerSeq R package

The lmerSeq package is written entirely in R and interfaces with the lme4, lmerT-
est, and nlme packages to fit the gene-specific LMMs [17–19]. lmerSeq users can fit 
models including multiple random effects, implement several of the correlation struc-
tures available in the nlme R package, perform a variety of tests, including constructing 
contrasts and simultaneous tests of multiple regression coefficients, and utilize multiple 
methods for calculating denominator degrees of freedom for F- and t-tests. Specifically, 
there are two model fitting functions, one that interfaces with lmerTest R package to 
fit linear mixed models with random effects and another that interfaces with the nlme R 
package to fit models with non-independent error covariance structures. In the former, 
any combination of random effects that are supported by lme4 can be used (e.g. random 
intercept, random slope, nested and/or crossed random effects, etc.), while in the lat-
ter support for compound symmetric and unstructured residual covariance structures is 
available. Parallel computing is supported on Mac and Linux operating systems via fork-
ing through the mclapply function from the Parallel R package. For both versions of 
the model fitting functions we have implemented summary functions that return results 
in a similar format to other RNA-Seq analysis packages like edgeR and DESeq2. These 
summaries can be made for individual regression coefficients, simple linear contrasts 
(i.e. one dimensional contrasts with t-tests), or simultaneous tests of multiple regression 
coefficients or linear contrasts with F-tests. The lmerTest package offers both Satter-
thwaite and Kenward-Rogers methods for calculating degrees of freedom for test sta-
tistics, both of which are supported in lmerSeq models with random effects. We have 
also implemented the Satterthwaite method for use with the two correlation structures 
supported from the nlme package. In combination, the fit and summary functions also 
allow the users to run various model diagnostics. The summary function identifies genes 
that had singular fits (e.g. the random intercept variance was estimated to be 0), and an 
option allows the user to exclude these genes from the results tables. The list returned 
by the fitting function stores the complete fit objects for each individual gene, and this 
allows the user access to a myriad of diagnostic options available from various other R 
packages, including testing the residuals for heteroskedasticity and/or normality. Finally, 
the package contains a detailed vignette with several examples using simulated data.

Simulation study

To compare error rate control and sensitivity, we conducted a comprehensive simulation 
study considering 2 basic study designs: (1) a 2 group (e.g. treatment and control) design 
with paired observations (baseline and follow up) for each subject; and (2) a 2 group 
design with repeated measurements at 4 time points for each subject. In both cases, we 
simulated RNA-Seq counts from a negative binomial GLMM as follows:
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where Cgij is the observed counts of gene g for subject i at observation j, ITi is a treatment 
group indicator for subject i that equals 1 if the subject is in the treatment group and 0 
else, tij is the observation time (0 for baseline and 1 for the single follow up in simulation 
scenario 1 and 1–3 for the 3 follow up time points in scenario 2). For each of the sample 
sizes evaluated (N = 3, 5, 10, or 20 per group), 10 datasets with approximately 15k genes 
each were simulated using triplets of baseline expression ( βg0 ), random intercept vari-
ance ( �gb ), and dispersion ( αg ) estimated from multiple human RNA-Seq datasets with 
repeated measures [2, 3, 20].

In Simulation Scenario 1, a random intercept was used to create correlation between 
the repeated measures, while Scenario 2 utilized both a random intercept and slope, with 
the standard deviation of the random slope set to 30% of the random intercept standard 
deviation, resulting in a more complex correlation structure. βg1 and βg2 were set to 0. In 
each dataset, we simulated differential expression for 20% of the genes by setting βg3  = 0 
as follows: for Scenario 1, we drew βg3 values from a gamma distribution with a mode of 
log(2) and a standard deviation of 0.5 that were then randomly assigned to be positive or 
negative; in Simulation Scenario 2, we randomly assigned βg3 to either 0.375 or − 0.375. 
This created a change in expression over time for subjects in the treatment group for 
20% of genes.

Simulated data for both scenarios were modeled using DREAM, lmerSeq using ran-
dom effects, lmerSeq using covariance structures, and rmRNAseq. In Scenario 1, all 
models were fit with the same fixed effects (group, time and a group-by-time interac-
tion). Both DREAM and lmerSeq (RI) were fit using a random intercept, while lmerSeq 
(CS) utilized a compound symmetric residual correlation structure instead of random 
effects. Even though rmRNAseq only allows a CAR structure, with only two observa-
tions separated by a single unit of time this is equivalent to a compound symmetric 
structure. Therefore, all of the methods were fit with with a correctly specified model in 
Scenario 1.

In Scenario 2, we fit a variety of models using different combinations of fixed and 
random effects to compare the methods’ performance under the correct model speci-
fication, misspecified random effects or covariance structures, and different fixed 
effects modeling strategies. We considered two fixed effects modeling strategies: one 
using a continuous time predictor and its interaction with the binary group variable, 
and another using categorical time and its interaction with group. While both models 
are correctly specified, the first model assumes linear changes in expression over time. 
The second approach does not make assumptions about the pattern of change over 
time, but uses additional degrees of freedom due to the inclusion of multiple time 
point indicator variables and their associated group interaction terms in the regres-
sion model. For rmRNAseq, only the CAR correlation structure is available, though 
this model is supposed to be robust to misspecification since an unstructured covari-
ance matrix is used for some portions of the model fitting and testing algorithm [11]. 
With DREAM and lmerSeq, we considered models including only a random intercept 

Cgij ∼NB(µgij ,αg )

log(µgij) =βg0 + βg1ITi + βg2tij + βg3ITi tij + Zijbgi

bgi ∼N (0,�gb)
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and models including both a random intercept and random slope. For lmerSeq, we 
also fit models using categorical time fixed effects and an unstructured covariance 
matrix as a flexible alternative to including random effects.

We evaluated type 1 error rates, power (sensitivity) and False Discovery Rates 
(FDRs) for three statistical tests: a between-subject contrast (difference between 
groups at the last follow-up visit), a within-subject contrast (change over time in the 
treatment group), and an interaction test (difference in change over time between 
the two groups). Inference for DREAM and lmerSeq was based on t-tests using 
Satterthwaite degrees of freedom. Adjusted p values were obtained using the Ben-
jamini–Hochberg method, and these were used for calculating observed FDRs and 
sensitivities at various thresholds [21]. rmRNAseq calculates p values based on a 
bootstrap approach (we used 100 iterations as suggested in the package vignette) after 
calculating moderated F-statistics, and then q-values for FDR control based on the 
methods of [22, 23]. However, we applied the Benjamini–Hochberg method to the 
raw p values returned by rmRNAseq to ensure that any differences observed between 
this method and the others could not be attributed to using an alternative strategy for 
multiple comparisons adjustments.

Case study

To assess the performance of these analysis methods in a realistic setting, we analyzed a 
publicly available dataset (GEO Dataset: GSE131411) including RNA-Seq of whole blood 
from 11 cardiogenic shock patients at three time points: (1) within 16 h of intensive care 
unit admission, (2) 48 h after admission, and (3) 7 days after admission or at discharge. 
This study has been fully described in Braga et al. [4]. We used lmerSeq, DREAM, and 
rmRNAseq to compare gene expression between the three time points. We limited 
our analysis to 13,123 genes with at least 1 count per million reads in 11 of the 33 sam-
ples. For lmerSeq and DREAM, a random intercept was used to account for correlation 
between repeated measures, and categorical time was the only fixed effect included in 
the models. All other aspects of the analysis were performed as described for Simulation 
Scenario 1 using the default settings for each method. Raw p values were adjusted using 
the Benjamini–Hochberg method to control the FDR.

To further understand the statistical testing properties of these methods in a more 
realistic setting, we also utilized this data to perform simulations using a permutation 
method. This allowed for simulated datasets that could be generated with characteris-
tics of real RNA-Seq data without relying on distributional assumptions for the underly-
ing count data. In addition, these data have an unknown correlation structure between 
repeated measurements on the same subject. To create a simulated dataset, ten subjects 
were randomly selected for inclusion. For five of the subjects, the labels were switched 
for the baseline and 1 week follow up time points, so there would be no expected dif-
ferential expression between these two time points. Then, for 2600 randomly selected 
genes, differential expression was created by multiplying the counts at the 1 week follow 
up by either 2 (50%) or 0.5 (other 50%). Ten simulated datasets were created and ana-
lyzed as described above for the formal analysis of the original data, and FDR and power 
were calculated across the 10 simulations and averaged for each method.
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Results
Run times

Table 1 has the average run times for the correctly specified version of each method at 
each sample size in Simulation Scenario 2. These times include all of the steps needed 
to go from the raw RNA-Seq counts to the transformed values used for analysis, and 
all the way through generating the final summary tables. Where possible, parallelization 
was utilized for each method with 4 cores being allocated for computations. In all sce-
narios, lmerSeq was the fastest method. The increased computation time for DREAM 
was largely due to the time needed to calculate the precision weights for their modi-
fied VOOM transformation which also requires the fitting of LMMs for each gene; the 
VST used for lmerSeq generally only took a few seconds. The rmRNAseq runtimes were 
orders of magnitude longer than either lmerSeq or DREAM due to the reliance on re-
sampling for calculating p values with the smallest datasets taking over 7 h to analyze 
compared to about 6 and 10 min for lmerSeq and DREAM respectively.

Error rates and sensitivity

For Simulation Scenario 1 with two repeated measures per subject, the relationship 
between FDR control and sensitivity at the 0.05 FDR level is presented in Fig.  1 (see 
Additional file 1: Figs. S1–S2 for the 0.01 and 0.10 FDR levels). In this scenario, DREAM, 
lmerSeq and rmRNAseq models are all correctly specified. DREAM has slightly inflated 
FDRs at N = 3 , with FDR inflation becoming substantially worse with increasing sam-
ple size. In contrast, rmRNAseq is highly conservative at almost all sample sizes and is 

Table 1  Runtimes in minutes at all sample sizes for the correctly specified version of each method 
in Simulation 2

N per group lmerSeq DREAM rmRNAseq

3 5.58 10.72 426.14

5 5.60 11.03 455.76

10 5.68 11.30 602.53

20 6.08 11.50 751.97
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Fig. 1  Scatter plot of sensitivity by log2 of the relative false discovery rate (FDR) for each type of test at each 
sample size at the 0.05 level in Simulation 1. The dashed vertical line represents the nominal rate, while the 
dotted vertical line represents the expected FDR. RI random intercept, CS compound symmetric covariance 
matrix
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typically the least sensitive method. lmerSeq is always slightly below the nominal FDR 
with values converging to the expected FDR as sample size increases. Moreover, lmerSeq 
is almost uniformly more powerful than rmRNAseq and often achieves higher power 
than DREAM, despite the fact that DREAM has inflated FDRs. The two versions of 
lmerSeq, which are modeling the same covariance structure in slightly different ways, 
offer nearly identical results with minor inconsistencies likely due to differences in 
numerical estimation methods in the nlme and lme4 R packages.

The distribution of the p values from all of the “null” genes for each of the three tests 
are displayed for the N = 5 simulations in Fig. 2 (other sample size are shown in Addi-
tional file 1: Figs. S3–S5). Under the null hypothesis, well calibrated p values for these 
features should follow a uniform distribution; however, DREAM exhibits an overabun-
dance of p values close to zero, corresponding to the inflated error rates. Again, this 
problem becomes worse with increasing sample size. For rmRNAseq, we see the oppo-
site behavior, with fewer small p values than expected, corresponding to the overly con-
servative observed error rates and lower sensitivity than the other methods. Conversely, 
the distributions for both versions of lmerSeq are nearly uniform by N = 5.

In the second simulation scenario with four repeated measures per subject and both 
a random intercept and slope, we are able to consider the impact of misspecification 
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Fig. 2  Histograms of the p values for the null features across all datasets in Simulation 1 with N = 5 subjects 
per group. RI random intercept, CS compound symmetric covariance matrix
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of the random effect or correlation structure, as well as different fixed effects modeling 
strategies. First we consider models where time is modeled as a continuous variable. In 
models with correctly specified random effects structure (Fig.  3 and Additional file  1: 
Figs. S6–S8), including both a random intercept and slope, performance was similar to 
Simulation Scenario 1: lmerSeq approached the expected FDR with increasing sample 
size, while DREAM showed greater FDR inflation with increasing sample size. In models 
with a misspecified random effects structure (including a random intercept only), FDR is 
increased relative to the models with correctly specified random effects for both lmerSeq 
and DREAM, consistent with previous findings that random effects misspecification can 
result in increased numbers of false positives (Fig. 4 and Additional file 1: Figs. S6–S8) 
[24–26]. rmRNAseq, which uses a CAR covariance structure, remains overly conserva-
tive with noticeably lower sensitivity in most scenarios, although FDR inflation is seen 
for between-subject and interaction tests at the smallest sample size ( N = 3 per group).

Next we considered models coding time as a categorical factor, represented by three 
indicator variables, which allows gene expression to change flexibly over time (Fig.  4 
and Additional file 1: Figs. S6–S8). This approach is likely to be used in practice as the 
assumption of linear changes in gene expression over time often may not be reasonable. 
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rmRNAseq’s FDRs remain very conservative for all tests, resulting in reduced power to 
detect associations. For DREAM and lmerSeq using just a random intercept, FDRs are 
inflated relative to a model with correctly specified random effects structure for between 
and interaction tests for DREAM and for all three tests for lmerSeq. For DREAM, FDRs 
were similar to continuous time models with a random intercept only for interaction 
tests, higher for between subject tests, and lower for within subject tests. For lmerSeq, 
FDRs were similar or smaller compared to the continuous time models with a random 
intercept only. For lmerSeq, we also considered a completely flexible model using cat-
egorical time and an unstructured covariance matrix. This model has several more 
parameters to estimate compared to a model using continuous time and a random inter-
cept and slope (4 additional regression coefficients + 8 additional covariance parame-
ters). For small sample sizes ( N = 3 ), FDRs are above their nominal levels, likely due to 
over-fitting of the data; however, as sample size increases, FDR converges towards the 
nominal rate. This suggests that if there are sufficient numbers of subjects, this flexible 
approach may help safeguard against false positives due to model misspecification.

The p value histograms for the truly “null” features in Simulation Scenario 2 are pre-
sented for N = 10 in Fig. 5 and Additional file 1: Fig. S9 with other sample sizes pre-
sented in Additional file  1: Figs. S10–S12. As in Simulation Scenario 1, lmerSeq with 
the proper specification of fixed and random effects has nearly uniform distributions 
for each contrast. DREAM and rmRNAseq have significant right and left skew to their 
respective distributions, corresponding to the observed error rate control with DREAM 
having inflated FDRs and rmRNAseq being conservative. Since there was no correlation 
between the counts for any two genes in the simulated data, all of the tests within a given 
contrast are independent. Consequently, the divergences from uniformity in the p value 
histograms for both DREAM and rmRNAseq suggest that the assumed distributions for 
the test statistics are incorrect, and thus the resulting p values are not reliable [27].

Case study

Table 2 shows a comparison the results of the analyses from each method. An advan-
tage of lmerSeq is that it automatically reports and excludes singularities from tables of 
results and full model fits are returned, so a variety of existing R packages can be used 
to assess model fit. In this analysis, a small percentage of the lmerSeq model fits were 
singular (1.5%) and were excluded from the results. Since DREAM does not do any 
such reporting and exclusion of genes with singular fits, we refit all of the models using 
lmerSeq with weights to analyze the VOOM transformed data and found that almost 
100 singular fits were also included in the DREAM results. To evaluate whether mod-
eling assumptions were met, we used Levene’s method to test for equality of variance 
between time points and a Kolmogorov-Smirnov test for normality of scaled residuals. 
For lmerSeq, 1.6% of genes had unadjusted Levine test p values less than 0.05, compared 
to 1.1% for DREAM; after taking a multiple comparisons adjustment, none of the genes 
showed significant heteroskedasticity in the residuals for either method. Less than 0.2% 
of models had Kolmogorov–Smirnov test p values less than 0.05; after adjusting for mul-
tiple comparisons none of the models showed significant deviations from normality. 
None of the preceding diagnostics are possible with rmRNAseq.
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Fig. 5  Histograms of the p values for the null features across all datasets in Simulation 2 for the models with 
the most correct specification of fixed and random effects at N = 10 subjects per group. For both DREAM 
and lmerSeq the fixed and random effects structures were able to exactly match the simulated data, while 
rmRNAseq could only match the correct fixed effects since it only offers CAR for modeling correlation 
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Table 2  Summary of model diagnostics and differential expression for each method when applied 
to the real RNA-Seq data from the case study

BH Benjamini–Hochberg, DEGs differentially expressed genes

*Models had to be refit with lmerSeq using weights since DREAM does not report or exclude singular fits

lmerSeq DREAM rmRNAseq

Singular fits 200 (1.5%) 96 (0.7%)* Not available

Levene’s test for heteroskedsticity

 p vaule < 0.05 206 (1.6%) 149 (1.1%) Not available

 BH adjusted p value < 0.05 0 0 Not available

Kolmogorov–Smirnov test for normality

 p value < 0.05 24 (0.2%) 17 (0.1%) Not available

 BH adjusted p value < 0.05 0 0 Not available

Number of DEGs

 48 h versus baseline 1 0 0

 1 week versus baseline 1452 1828 142

 1 week versus 48 h 362 476 182
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In terms of the number of differentially expressed genes (DEGs), results were largely 
consistent with what would be expected based on our simulation studies. For brevity, we 
will focus on the differences in expression between baseline and the 1 week follow up, 
which had the largest number of DEGs. rmRNAseq found relatively few DEGs compared 
to the other two methods, aligning with the overly conservative behavior noted in our 
simulation study, while DREAM, which had inflated false discovery rates, found the larg-
est number of DEGs. We performed functional enrichment analysis on the up and down 
regulated genes from lmerSeq using enrichR and the BioPlanet 2019 database [28, 29]. 
Genes upregulated at 1 week compared to baseline were enriched for pathways related 
to cell cycle and the complement cascade, while down regulated genes were enriched for 
pathways related to innate immunity and inflammation.

Results for the permutation-based simulation study using the real RNA-Seq data are 
presented in Table 3 when using a 5% FDR threshold to identify differential expression. 
Similar to our other simulation studies, DREAM had inflated FDRs (more than dou-
ble the nominal rate), while lmerSeq maintained the nominal 5% FDR while also hav-
ing higher power than DREAM. rmRNAseq had a slightly conservative FDR and lower 
power than the other methods in this simulation.

Conclusions
Accounting for repeated measures in RNA-Seq studies by transforming the digital 
counts and then fitting normal LMMs is an appealing analysis strategy due to the well-
established theoretical work surrounding LMMs and their computational efficiency 
compared to GLMMs. However, the selection of the transformation, modeling strategy, 
and the type of statistical test used can drastically alter the results. Both DREAM and 
rmRNAseq utilize the VOOM transformation, but fit LMMs in different ways and use 
different strategies to compute test statistics and p values. This leads to divergent behav-
ior in our simulation studies, with DREAM exhibiting substantial FDR inflation and 
rmRNAseq being overly conservative. Though rmRNAseq did show improvement going 
from N = 10 to N = 20 in some scenarios, both methods tended to perform worse in 
terms of FDR control with increasing sample size, which is concerning. Since DREAM 
and lmerSeq are capable of fitting similar LMMs and we fit many of the same model 
structures with both methods, it appears that the driving force behind the differential 
behavior between lmerSeq and DREAM is the choice of transformation, with lmerSeq 
utilizing DESeq2’s VST and DREAM using their own modification of VOOM. Interest-
ingly, the VST has also shown superior performance compared to VOOM when esti-
mating heritability for sequencing data, with those methods also being based on linear 
mixed model fits [15]. Regardless of the causes for the differences in behavior between 

Table 3  Summary of the observed false discovery rates (FDR) and power from the permutation 
based simulations using the real RNA-Seq data from the case study

Values presented are the means taken across the 10 simulated datasets when using a nominal FDR of 0.05 to identify 
differential expression

Method FDR Power

lmerSeq 0.051 0.912

DREAM 0.114 0.900

rmRNAseq 0.036 0.883
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the methods, we found lmerSeq had the best control of FDRs (i.e. closest to nominal and 
expected levels), generally had the highest sensitivity, and had the shortest run times. 
This was evident over multiple simulation scenarios with some being based on common 
distributional assumptions used in RNA-Seq analysis, and others based solely on real 
RNA-Seq data from a study with repeated measures where no additional assumptions 
about distributions or covariance structures were made. Moreover, our case study results 
also align with the general behavior observed in the simulations studies. The lmerSeq 
R package offers more flexibility than either DREAM or rmRNAseq in terms of allowing 
for multiple random effects and a variety of correlation structures, which can help guard 
against false positives due to model misspecification. Additionally, lmerSeq allows for 
greater scrutiny of modeling assumptions by identifying singular fits and gives the user 
the ability to test for heteroskedasticity, normality, or any other diagnostics available for 
nlme or lme4 objects. Ultimately, the totality of our results suggest that using lmerSeq 
in conjunction with the VST is currently the most complete and reliable source of infer-
ence for analyzing transformed bulk RNA-Seq data from studies that require the analyst 
to account for correlation between observations.
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