Skip to main content
. 2022 Nov 2;7(45):40701–40723. doi: 10.1021/acsomega.2c05930

Table 1. Compilation of References of Shape Memory Composites Activated with an Electric or Magnetic Field.

SMP filler ς ρe (Ω m) activation activation magnitude T reached (°C) tR (s) comments ref
PCL MWCNT 3 wt % 0.15–0.6 electrical controlled resistive heating (0.6–15.7 mA) 60 130 1W-SM and 2W-SM effects; RF > 96.7% and RR > 88.9%; variable electric current to achieve constant temperature and constant heating and cooling rates; nonlinear evolution of ρe within shape memory cycle (101)
PU MWCNT + Fe3O4 30 wt % Fe3O4 +0.25–1 wt % MWCNT   magnetic 29.7 kA/m at 45 kHz >45 60 RR >95% (178)
PU/SM-PU CB 1–5 wt % 5 × 10–2 Ω m for 5 wt %; 10–3 Ω m for 3 wt % electrical 100 V   25 2W-SM; RR 99.8% (179)
PU MWCNT 5 wt % ∼1 Ω m electrical 60 V 100 10   (180)
EP MWCNT 0.2 wt % 1–10 Ω m electrical 126–265 V 200–250 <300 sequential recovery (102)
EP MWCNT 30 wt % 47 Ω m electrical 12 V >55 22   (98)
EP rGO 0.5 wt % 0.025 Ω m electrical 10 V >100 10 RF = 95% and RR = 98%; electrical recovery (181)
PLA/PU MWCNT and CF 6 wt %   electrical 10 V >70 25 RR = 94%; negative Poisson ratio (182)
PVAl MWCNT 5–30 wt % 0.52 Ω m for 30 wt % electrical 45–120 V >74 35   (183)
PCL MWCNT coated Fe3O4     magnetic 6.8 kA/m at 20 kHz T increase of 17.2 120 alignment of Fe3O4-coated MWCNT due to magnetic field 0.2 T; increase of elastic modulus by almost 100% but reduction of max elongation (184)
PCL MWCNT 3 wt % 0.05 Ω m electrical 0.1 W ∼50   analytical, numerical, and experimental investigation (100)
BR MWCNT and CB 0–15 phr MWCNT or 0–30 phr CB 10–2 Ω m for 15 phr CNT or 30 phr CB electrical 50 V 110 after 15 min at 50 V 900 lower ρe and higher RF and RR for CNT than CB (87)
PU Fe3O4 0–9 wt %   magnetic 250 A/m at 20 kHz >52 35 RR decrease with ς, slight RF increase with ς (185)
PBS–PEG CNT 0.2–1 wt % 7.05 Ω m for 1 wt % electrical 20–120 V 85 at 70 V for 1 wt % 55 CNT reduced ductility (186)
PU CNF 1–7 wt % 560 Ω m for 7 wt % electrical 100–300 V 25–55   χcRF decrease with ς of CNF; elastic modulus increase with CNF ς (187)
PU CNT 3 wt % 0.037 Ω m electrical 50 V >40 40 different preparation techniques and effect of dispersion and electrical properties (93)
PU G sheet 1–8 wt % 1.17 Ω m for 8 wt % electrical 65–80 V >70 8 2W-SM; study mechanical properties; RF = 95%; RR = 93% (111)
PU CNT 4 wt %   electrical 40 V 100 cross-linked CNT 50 CNT covalently bonded to PU; increase RR and RF for cross-linked CNT (>10%) (92)
PU rGO 0–2.5 phr 0.4 Ω m for 2.5 phr electrical 50 V 64 for 2.5 phr 120 Tg and mechanical properties increase with ς; ductility increase with cycles; RR decreases with ς (114)
EOC CB 0–38 wt % 0.08 Ω m for 17 wt % electrical 5–15 V for 17 wt % 40–160 60 two different CB fillers; lower RR for higher ς (85)
PU rGO + Fe3O4 and γ-Fe2O3 3 wt % GO + 7 wt % Fe3O4   magnetic 287 kHz with 300A in coil 70 for mixture, 60 for hybrid 60 Young modulus doubled from hybrid to only Fe3O4 (188)
PU Ni powder chains 0–20 vol% 0.005–0.01 Ω m for 20%, 104 for 4% electrical 6 V 55 90 alignment magnetic field; decrease Tg with ς (142)
PU CB with and without 0.5 vol% Ni 4–10% CB 0.1 Ω m for 10% CB + chained 0.5% Ni electrical 30 V 80 120 ρe increases with number of cycles (189)
PVAl CNT and G 20 phr GO and 4–16 phr CNT 0.1 Ω m for 20 GO + 16 CNT electrical 60 V 100 max (normally 60) 120 ρe decreases with bending angle (190)
PS CNT 1.47–7.02 wt % 0.01 Ω m for 7.02 wt % electrical 35 V >85 80 RR ≈ 100% (96)
PU GNP 1–3% 4 Ω m for 3% GNP electrical 75 V 100 for 3% 60 χc, elastic modulus, RF and RR increase with ς; strength, Tg, and Tm decrease with ς (191)
EP Ag decorated rGO and CF mat 2–4 wt % rGO and 11.6% CF 2.3 × 103 Ω m electrical 8.6 V 100 36 RR = 99% (192)
PS MWCNT nanopaper 1.47–7.02 wt % 0.008 Ω m for 7.02 wt % electrical 0.6 A >62 300 RR = 98% (95)
EP CNF 9.18 wt %? 0.03 Ω m electrical 10–20 V >50 2.1 increase elastic modulus above Tg, increase κ (193)
PU MWCNT 3–7 wt % 12 Ω m for 3 wt % electrical 40 V >70 in 10 s 9 Young modulus increase by 50%; RR > 98%; Tc increase with ς (194)
PU Fe3O4 0–10 wt %   magnetic 30 kA/m at 258 kHz 70 at 150 s 12.5 kA/m 258 kHz 22 magnetic heating depends on geometry; for high ς, RF and RR higher for magnetic actuation (135)
PK BMI MWCNT 8 wt % ∼ 0.06 Ω m electrical 20–50 V 40–140   RR = 90% by 40 V; self-healing (195)
PU MWCNT 3–10% 0.9 Ω m electrical 9.5 mA 32     (164)
PU GO 0–20 phr >7 × 102 Ω m electrical 100–200 V <60     (196)
EP Fe3O4 coated with oelic acid 1.5–8 wt %   magnetic 30 mT at 293 kHz T increase of +25 60   (133)
PPC/PLA MWCNT 1–3 phr 0.1 Ω m for 3 phr electrical 20–30 V 130 max for PPC/PLA (50/50) 3 phr at 30 V 30 max tensile strength and strain at break increased with ς at room temperature; At 50 °C strength decrease with concentration; RR = 97% (197)
PLA/PU (70/30) CB 0–8 phr ∼0.4 Ω m for 8 phr electrical 30 V 98 for 8 phr 80 RF = 90%; RR increase from 59% to 85.9% for 8 phr CB; conductivity ∼1 order of magnitude higher for PLA/PU(70/30) than for PLA (198)
PU CF/PU yarn fabric 10.9% CF 1 × 10–3 Ω m electrical 6 V 87 80 RR = 99.3%; applications of deployable structure (82)
PEVA CNF 0–15 wt % 0.204 Ω m for 15 wt %; 5 × 109 Ω m for 3 wt % electrical 60 V 100 after 25 s   2W-SM; RR decreases with ς (199)
PU/PCL modified MWCNT 2–10 wt % 1 Ω m for 10 wt %; 102 Ω m for 4 wt % electrical 40 V >50 15 Tg of PLA increase with ς; Tgof PU decrease with ς; Tcdecrease with ς (200)
PU/PVDF (90/10) modified MWCNT 0–10 wt % 50 Ω m for 10 wt % pristine CNT; 4 Ω m for 10 wt % modified CNT electrical 40 V T rise of +40 15 κ × 4 by adding 10 wt % MWCNT; increase 10% tensile strength and decrease 100% elongation at break for surface-modified MWCNT than pristine; RR decrease with cycles faster for modified than pristine CNT (94)
PU Fe3O4 0–40 vol% 106 Ω m for 40 vol% magnetic 4.4 kA/m at 50 Hz 50 1200 electric percolation at 30 wt %; Cp decrease with ς; κ increased by 0.4 for 40 vol % (201)
PEVA and PU FE2O3 0–13.6 wt %   magnetic 15–23 kA/m 100 for PEVA; 108 for PU     (202)
PDL Fe3O4 5–11 wt %   magnetic 7–30 kA/m at 258 kHz 100 180 decreased RF (95% to 90%) and increased RR (95% to 97%) for increased ς (203)
EP CB 0–10 wt % 200 Ω m for 10 wt % electrical 3.5 W constant power 65 <200 ρe vs ε during elongation and recovery (204)
PVA GNP 1.5–4.5 wt % 0.04 Ω m for 4.5 wt % electrical 50–70 V   2.5 elastic modulus increases by 1 order of magnitude from 0 to 4.5 wt %; Tg decrease with ς (115)
PU PPy 8–21% 0.105 Ω m electrical 40 V 70 <30 Tm decrease with ς (205)
PCL DMA Fe3O4 2–12 wt %   magnetic 300 kHz, 5 W 43 20   (206)
PLA/PU (50/50) CNT 1–5 wt % 0.33 Ω m for 5 wt % electrical 50 V 50–70 <150 decrease RR (13% smaller) in 5 wt %; faster shape recovery with electrical heating than conventional; higher RR with electrical heating than conventional (207)
EP MWCNT nanopaper 40 wt % 3 × 10–3 Ω m electrical 0–6 W 20–170 20 curing with resistive heating 105 °C after 40 s at 4.6 V; recovery at 76 °C (97)
PE CNF 0–11.6 vol% 0.1 Ω m for 11.6 vol% electrical 1–40 V 100–110 100 Tc and elastic modulus increase with ς; Tm decrease with ς (208)
PCL/MA (50/50) MWCNT 0–10 phr 0.0384 Ω m electrical 40 V >70 56   (90)
PU GNP     electrical 10–30 V 60 at 10 V 20   (209)
PCO/PE MWCNT 8–15 vol% 0.0105 Ω m for 10 vol% electrical 150 V >120 after 2 min 90 triple SM effect; MWCNT dispersed in PCO; chemical cross-linking increases ρe due to agglomeration of fillers (210)
SBS/LLDPE CB 0–25 wt % 1.08 Ω m for 1 wt % CB; 7.4 × 10–2 Ω m for 25 wt % CB electrical 0–120 V   60 elongation at break decrease by 50% from 0 to 25 wt % CB; tensile strength increase by >50%; recovery at 40 V (211)
EP rGO   0.0027 Ω m electrical 1–6 V 35–240 5 bending (110)
PEVA/PCL MWCNT 5 wt % 0.0205 Ω m electrical 20 V 97 12 recovery at 30 V (212)
PU CNT 10 to 50 layers 22.96 Ω m electrical 40 V 90 30 CNT layers at different locations; RR = 100% at 40 V; localized and selective actuation (99)
EP/CE GNP 0.8–2.4% 11.3 × 10–2 Ω m for 2.4% electrical 20–120 V   98 strength increased by 25% for 1.6 wt %; recovery at 60 V (213)
EP Ag-CF 5.4 wt %, 1.8 wt % 95.1 Ω m for 5.4 wt %; 1 × 106 Ω m for 1.8 wt % electrical 60–120 V   60 RF increase with ς; RR decrease with ς (81)
EP MWCNT and CB 1.9 wt % total 2 × 105 Ω m for 0.8 wt % MWCNT electrical 225 V >80 570 RR = 99% (214)
PLA/PU (70/30) MWCNT and CB 3–5 phr CB and 0–2 phr MWCNT <0.1 Ω m for CB 5 phr and >1 phr MWCNT electrical 30 V 70 °C 100 70 °C after 100 s for 3 phr CB and 1 phr CNT; RR = 0 (215)
PPDO–PCL/PU Fe3O4 0–10 wt %   magnetic 7–30 kA/m at 256–732 kHz 65     (136)
PMMA–PEG Modified Fe3O4 1–5 wt %   magnetic 100 kHz, 8 kW 40.4 59 T rise 4 °C for-surface modified Fe3O4 than for pristine; RF = 90%; RR = 95% (216)
PCL modified MWCNT 0–9 wt % 20 Ω m for >7 wt % electrical 50 V for 5 wt % 70 120 decrease RR with ς (217)
PCL-Py SWCNT 2 wt % 3.6 Ω m electrical 50 V 65 20 increase RR with ς (104)
MA-based thermoset Fe3O4 0–2.5 wt %   magnetic 0.33 mT at 297 kHz 50 40   (218)
PS MWCNT and CB 1 wt % MWCNT and 10–15 wt % CB 0.03 Ω m for CB. 0.025 Ω m for CB+CNT randomly oriented. 0.0075 Ω m for CB+CNT chained electrical 25 V >95 75 MWCNT in chains, reduction of ρe by more than 1 order of magnitude; ρe increases with number of shape memory cycles (107)
acrylate NdFeB and Fe3O4 15 vol % of each   magnetic 40 mT at 60 kHz (to heat up Fe3O4) + 30 mT at 0.25 Hz to actuate beam 100 (and above) in 40 s   dual magnetic field activation; elastic modulus increases linearly with ς; RF = 95%; RR = 100% (141)
PLA Fe3O4 10–40 wt %   magnetic 30 kA/m at 268 kHz >60 >200 nonmonotonic evolution of RR, modulus, tensile strength, and elongation at break with ς (132)
Nafion Fe3O4 15–25%   magnetic Power 50–100% internal T 50–110, surface T < 40 16 surface modification of Fe3O4 to improve distribution (219)
PCL/PU GNP 0–10 wt % ∼1 Ω m for 10 wt % electrical 10–40 V 60 for 10 wt % at 10 V; 100 for 10 wt % at 30 V 60 5ecovery within 1 min for 7 wt % at 30 V; faster heating and recovery for higher ς; Tg, χc, viscosity increase with ς; Tmand Tc decrease with ς (220)
PLA PPy   0.028 Ω m electrical 15–40 V 120 for 40 V 2 microfiber membrane PPy coated; worse mechanical properties with Ppy ρe depends on polymerization time and temperature (221)
PCLA GO 4.86–13.29 vol %   electrical     2.5 RR = 100% (222)
PU/EP G and CNT 0.8–3 wt % CNT and 2–12 wt % graphene 0.31 Ω m for 12 wt % graphene electrical 100 V for 8% graphene and 3%CNT 60 150 compressive strain; densification at ε > 70%; 2% permanent deformation after 100 cycles (223)