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GPER1 links estrogens to centrosome amplification and
chromosomal instability in human colon cells
Miriam Bühler, Jeanine Fahrländer, Alexander Sauter , Markus Becker , Elisa Wistorf , Matthias Steinfath,
Ailine Stolz

The role of the alternate G protein–coupled estrogen receptor 1
(GPER1) in colorectal cancer (CRC) development and progression
is unclear, not least because of conflicting clinical and experi-
mental evidence for pro- and anti-tumorigenic activities. Here, we
show that low concentrations of the estrogenic GPER1 ligands,
17β-estradiol, bisphenol A, and diethylstilbestrol cause the
generation of lagging chromosomes in normal colon and CRC cell
lines, which manifest in whole chromosomal instability and an-
euploidy. Mechanistically, (xeno)estrogens triggered centrosome
amplification by inducing centriole overduplication that leads to
transient multipolar mitotic spindles, chromosome alignment
defects, andmitotic laggards. Remarkably, we could demonstrate
a significant role of estrogen-activated GPER1 in centrosome
amplification and increased karyotype variability. Indeed, both
gene-specific knockdown and inhibition of GPER1 effectively
restored normal centrosome numbers and karyotype stability in
cells exposed to 17β-estradiol, bisphenol A, or diethylstilbestrol.
Thus, our results reveal a novel link between estrogen-activated
GPER1 and the induction of key CRC-prone lesions, supporting a
pivotal role of the alternate estrogen receptor in colon neoplastic
transformation and tumor progression.
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Introduction

Colorectal cancer (CRC) is the thirdmost common cancer worldwide
and the second deadliest malignancy in both men and women. Key
features of CRC are structural and numerical centrosome defects,
which are an early and stable event in colon carcinogenicity and
associated with poor prognosis (1, 2). Cells with amplified centro-
somes transiently generate multipolar mitoses, which are prone to
induce erroneous microtubule–kinetochore attachments that favor
the formation of lagging anaphase chromosomes (3). It is widely
accepted that lagging chromosomes represent an important
mechanism for whole chromosomal instability (w-CIN) and

aneuploidy (4, 5, 6). W-CIN is referred to as the perpetual gain or loss
of whole chromosomes during mitosis and may contribute to tu-
morigenesis, tumor progression, and therapy resistance (7, 8).
Importantly, CRC represents a prime example of a tumor entity
exhibiting w-CIN (9, 10) with centrosome amplification (CA) as a
major underlying mechanism (1, 2).

Although several pathways underlie the etiology of CA in colo-
rectal carcinomas (2), their upstream regulators are poorly un-
derstood. Dietary intake and environmental factors play a major
role in CRC pathogenesis and may promote poor outcomes (11).
Remarkably, the environmental estrogenic chemical bisphenol A
(BPA) was shown to enhance the development and progression of
colon cancer by modulating protein profiles related to tumori-
genesis andmetastasis, thereby triggering epithelial–mesenchymal
transition, migration, and invasion (12, 13). Studies in rodents and
cell lines derived from hormonally regulated tissues demonstrate
that not only the steroidal estrogen 17β-estradiol (E2) but also
synthetic endocrine active substances with estrogenic activities
(i.e., xenoestrogens), including the non-steroidal estrogen diethy-
lstilbestrol (DES) and BPA, disturb bipolarmitotic spindle formation,
centrosome duplication, spindle microtubule attachment to ki-
netochores, and karyotype stability (14, 15, 16, 17, 18, 19, 20, 21).
However, a potential link between estrogen actions and the evo-
lution of numerical centrosome defects and w-CIN driving the
pathophysiology of a non-classical hormone-regulated tissue, that
is, the colon, is still missing.

Effects of (xeno)estrogens are complicated by at least threemain
estrogen receptors, the nuclear estrogen receptors, ERα and ERβ,
and the alternate G protein–coupled seven-transmembrane es-
trogen receptor GPER1/GPR30 (22). ERα has either low or no ex-
pression in both normal colon and CRC cells, although splice
variants do exist (23, 24, 25). ERβ seems to be the predominant
nuclear estrogen receptor in the differentiated colonic epithelium,
which is lost during cancer progression (26, 27). GPER1 is expressed
in the gastrointestinal tract, and its activity is stimulated not only by
endogenous estrogens but also by numerous xenoestrogens (e.g.,
bisphenols), anti-estrogens such as tamoxifen and fulvestrant
(ICI182,780), pesticides (e.g., atrazine), and synthetic GPER1-selective
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ligands (e.g., G-1), whereas it is blocked by specific antagonists such
as G15 and G36 (28). Apart from being involved in physiological
processes in the colon, GPER1 also links pathophysiological aspects
by regulating colonic motility, immune regulation, and inflamma-
tion in CRC-associated diseases (28). In fact, the binding of E2, BPA,
and DES to GPER1 activates cancer-related pathways, which are
associated with increased cell proliferation and migration, de-
pendent on the CRC tumor microenvironment (29).

In this study, we uncover a novel (xeno)estrogen/GPER1/
centrosome axis, which has an important impact on genomic
stability, proposing a potential role in colon carcinogenicity. We
show for the first time that the estrogenic GPER1 activators, E2, BPA,
and DES, cause numerical CA triggered by centriole overduplication,
leading to karyotype instability in normal colon and CRC cell lines in
a GPER1-dependent manner. Given that the sex hormone E2, the
well-accepted endocrine-disrupting chemical BPA (ECHA.eu, (30)),
and the known carcinogen DES (31, 32, 33) trigger the evolution of
key CRC-prone lesions, our results may provide important clues for
a possible role of estrogens in colon pathogenesis and shed light
on the underlying mechanism that involves GPER1 function.

Results

Estrogenic substances cause CA in colon cells

Supernumerary centrosomes represent a hallmark of CRC and are
significantly involved in tumor initiation, progression, and therapy
resistance (1, 2, 7, 8). However, upstream triggers are hardly known.
To investigate whether (xeno)estrogens induce CA in a colon cell
system, we treated CRC-derived HCT116 and CCD 841 CoN normal
colon epithelial cell lines with increasing concentrations of E2, BPA,
and DES. Subsequently, we determined the amount of cells with
more than two centrosomal γ-tubulin signals (34) by immunofluo-
rescence microscopy (Fig S1A and B). Because the centrosome
duplication cycle follows the cell division cycle (35), cells were
treated for a period of 48 h to ensure the establishment of the
phenotype, which is consistent with other studies (14, 18, 21). We
found a significant concentration-dependent increase in CA in both
transformed and non-transformed colon cells to a saturated level
at ~10 nM of E2, BPA, and DES (Fig S1A and B). Interestingly, the
overall frequency of CA did not exceed ~6–7% in HCT116 and ~3–4%
in CCD 841 CoN cells within a treatment period of up to 6 d (Fig S1C
and D). The comparatively mild effects on CA observed in normal
colon epithelial cells are consistent with a tightly regulated ma-
chinery of centrosome duplication that prevents CA in normal cells
(36). The extent of CA in HCT116 cells was comparable to that of low-
dose–treated prostate cancer cells (14, 21) and similar to an ectopic
expression of PLK4, the master regulatory kinase of centrosome
duplication ((37), Fig S1E), suggesting that basically all cells respond
to the treatment. The estrogen-induced CA observed in HCT116 and
CCD 841 CoN cells at low nanomolar concentrations (Fig 1A and B)
was verified in additional CRC cell lines, that is, RKO and HCT-15 (Fig
1C and D), indicating a cell transformation–independent effect of
(xeno)estrogens. To examine the specificity of CA because of E2,
BPA, and DES, we included substances being structurally related to
steroid hormones (e.g., cholesterol and dexamethasone) and the

estrogenic herbicide atrazine in our studies. Of note, none of these
substances led to a significant increase in CA (Fig S1F and G). These
results not only demonstrate the specificity of (xeno)estrogens to
induce CA in our colon cell systems but also suggest various
molecular mechanisms that might trigger CA in colon (cancer) cells
upon treatment with distinct estrogenic substances.

Numerical centrosome defects are most commonly described in
cancers and involve a number of mechanisms, including frag-
mentation of the pericentriolar material (PCM), centriole over-
duplication, de novo assembly of centrioles, and premature
centriole disengagement, among others (35). A precise categori-
zation of colon (cancer) cells displaying CA to three, four, or more
than four centrosomes revealed mainly three PCM-containing
centrosomes upon treatment with (xeno)estrogens (Fig 1A–D,
representative images; and Fig 2A). To exclude PCM fragmentation
after the generation of acentriolar centrosomes, which are not
representative of bona fide CA (35, 38), we requantified centrosome
numbers of treated cells by counting exclusively centriole-positive
centrosome foci. To this end, we labeled cells with the well-
characterized centrosome marker, γ-tubulin (34) as before, and
included the centriole-specific Cep135 and CP110 markers (39, 40) in
co-immunostainings. Importantly, we revealed that amplified
centrosomes are centriole-positive upon (xeno)estrogen treatment
(Figs 1E–H and S1H–K). An expected baseline of cells lacking cen-
triole signals could be observed in HCT116 and RKO cells (41). The
frequency distribution of centriole numbers based on counts with
CP110 (Fig 2B) was almost identical to that with γ-tubulin (Fig 2A).
The distribution of Cep135 differed from that of γ-tubulin in HCT116
and even more in CCD 841 CoN cells with respect to individual
treatments (Fig 2C). These results (i) verify γ-tubulin as a suitable
marker sufficient to detect supernumerary centrosomes in all
further experiments, (ii) confirm bona fide CA in a non-classical
hormone-regulated tissue, that is the colon, after treatment with
distinct estrogenic substances, and, importantly, (iii) suggest that
(xeno)estrogens might perturb the centriole duplication cycle in a
colon cell system.

(Xeno)estrogen-triggered CA involves centriole overduplication

Given that (xeno)estrogens induce centriole-positive CA excluding
PCM fragmentation (Figs 1E–H and S1H–K), we sought to investigate
whether E2, BPA, and DES cause centriole overduplication in the
colon cell system, as recently shown in BPA-treated HeLa cells (15).
First, we partially repressed a key marker for centriole duplication,
that is, PLK4 (37), in (xeno)estrogen-treated HCT116 cells and ex-
amined for CA. Indeed, the partial repression of PLK4 suppressed CA
in E2-, BPA-, and DES-treated cells (Fig 2D). We conclude that
centriole overduplication seems to represent a promising under-
lying molecular mechanism for (xeno)estrogen-induced CA. How-
ever, because of its superordinate role in regulating centrosome
numbers, we cannot exclude that Plk4 overlays other (xeno)estrogen-
triggered mechanisms.

Centriole overduplication usually involves defects in the copy-
number control leading to parental centrioles templating the as-
sembly of more than one new centriole each (Fig 2E, (42)). At the end
of mitosis, the parental centriole and its overduplicated procen-
trioles split apart (i.e., disengage), resulting in daughter cells with
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more than two centrioles. This pathway may lead to cells with
amplified centrosomes after passage through the next cell cycle. To
investigate whether (xeno)estrogens trigger this pathway in our
colon cell system, we examined centrosomal levels of Sas-6, which
is involved in the initiation of centriole duplication (43), in S
phase–synchronized HCT116 and HCT-15 cells (Figs 2E and S2A).
Indeed, Sas-6 fluorescence intensities markedly increased in both
colon cancer cell lines in response to 10 nM E2, BPA, and DES (Fig 2F
and G). Of note, we did not observe an obvious increase in centriole
overduplication in the presence of 1 μM of estrogens (Fig S2E and F).
The different outcomes are in line with non-monotonic
concentration–effect relationships observed for hormones, in
which increasing doses do not result in increased effects across the
entire concentration range (44, 45).

Because (xeno)estrogens predominantly induced the formation
of an odd number of centriole-positive centrosomes (Fig 2A–C),

premature centriole disengagement during early mitosis could be
an alternative or parallel route to CA under (xeno)estrogen
treatment. If so, we would expect the disengaged centrioles to
segregate unevenly during mitosis, with one daughter cell inher-
iting three centrioles and the other a single centriole (Fig S2B).
These split centrosomes may promote the formation of extra
spindle poles in the next cell cycle. To test this hypothesis, we
released G1/S-synchronized HCT116 and HCT-15 cells in G2 phase,
after treatment with (xeno)estrogens until metaphase (Fig S2B).
Because the levels of parental centrioles are low in metaphase and
signals are not structured (46), we exclusively labeled mitotic
centrioles with the more stable procentriole marker Sas-6 (47).
Analysis of metaphase cells surprisingly revealed that both op-
posing centrosomes had a Sas-6 signal that coincides with γ-tu-
bulin in all cases (Fig S2C and D). These results suggest that
centrioles segregate evenly between daughter cells and that

Figure 1. 17β-Estradiol, bisphenol A, and
diethylstilbestrol induce centrosome
amplification in human colon cells.
(A, B, C, D) Detection and quantification of interphase
cells with (xeno)estrogen-triggered centrosome
amplification. HCT116 (A), CCD 841 CoN (B), RKO (C),
and HCT-15 cells (D) were cultured in a stripped FCS
medium and treated with DMSO, or 10 nM 17β-
estradiol, bisphenol A, or diethylstilbestrol for 48 h.
Centrosome amplification was detected by
immunofluorescence microscopy. Representative
images of cells with or without amplified centrosomes
are shown (centrosomes, γ-tubulin, red; microtubules,
α-tubulin, green; nuclei, Hoechst 33342, blue; scale
bar, 10 μm). Insets show enlarged γ-tubulin signals.
The graphs show the quantification of the amount of
cells with more than two γ-tubulin signals at
centrosomes (mean ± s.d., n = 5 with a total of 1,000
cells (A, B) and n = 3 with a total of 600 cells (C, D)).
Wald’s z-statistics computed by the R function
glmmTMBwas used to calculate the P-value. *P < 0.05;
**P < 0.01; ***P < 0.001; and ****P < 0.0001. (E, F, G, H)
Detection and quantification of interphase cells
with centriole-positive centrosome amplification.
(HCT116 (E), CCD 841 CoN (F), RKO (G), and HCT-15 cells
(H) were cultured and treated as in (A, B, C, D), and
centriole-positive centrosome amplification was
detected by immunofluorescence microscopy.
Representative images of cells with or without
amplified centrosomes are shown (centrioles, Cep135,
red; centrosomes, γ-tubulin, green; nuclei, Hoechst
33342, blue; scale bar, 10 μm). Insets show enlarged
γ-tubulin, Cep135, or merged signals. The graphs show
the quantification of the amount of cells with more
than two centrosomes with co-localized γ-tubulin
and Cep135 signals (mean ± s.d., n = 3 with a total of
600 cells (E), n = 3 with a total of 1,200 cells (F), and n = 4
with a total of 800 cells (G, H)). Wald’s z-statistics
computed by the R function glmmTMB was used to
calculate the P-value. *P < 0.05; **P < 0.01; ***P < 0.001;
and ****P < 0.0001. A detailed description of
statistics is provided in the Materials and Methods
section.
P-values are available for this figure.
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Figure 2. (Xeno)estrogens trigger centriole overduplication.
(A, B, C) Frequency distribution of centrosome or centriole numbers of (xeno)estrogen-treated HCT116, CCD 841 CoN, HCT-15, and RKO cells. Cells were cultured in a
stripped FCS medium and treated with DMSO, or 10 nM 17β-estradiol (E2), bisphenol A (BPA), or diethylstilbestrol (DES) for 48 h. The tables show the quantification of the
amount of cells with 3, 4, or more than 4 γ-tubulin (A), CP110 (B), or Cep135 signals (C) at interphase centrosomes derived from Figs 1 and S1H–K. (mean ± s.d., n = 5 with a
total of 1,000 cells [(A), HCT116 and CCD 841 CoN] and n = 3 with a total of 600 cells [(A), HCT-15 and RKO]; n = 3 with a total of 600 cells (B); and n = 3 with a total of 600 cells
[(C), HCT116] or 1,200 cells [(C), CCD 841 CoN] and n = 4 with a total of 800 cells [(C), HCT-15 and RKO]. (D) Quantification of the amount of cells with more than two γ-tubulin
signals at interphase centrosomes upon the repression of PLK4 in HCT116 cells and concomitant treatment with E2, BPA, or DES (mean ± s.d., n = 3 with a total of 600 cells).
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premature centriole disengagement is quite unlikely. Our data
rather support a “templating model” for the extra centrosomes that
arise in the presence of (xeno)estrogens. Whether this model ex-
plains the generation of predominantly three centrosomes needs
to be investigated in future studies.

Collectively, these results support a model in which nanomolar
concentrations of E2, BPA, and DES provoke centriole over-
duplication in colon cancer cells by pushing the parental centrioles
to assemble more than one centriole each.

Estrogen-induced CA depends on GPER1 functionality

The classical estrogen receptors ERα/β are not at all or only little
expressed in CRC (23, 24, 25, 26, 27). However, several studies
demonstrate the alternate estrogen receptor GPER1 being activated
in CRC cells upon binding of E2 or BPA (22, 29, 48, 49). In line with
these studies, we could detect GPER1 but not classical estrogen
receptor expression on protein levels in all colon (cancer) cell lines
studied (Fig S3A). Similarly, the expression of known ER target genes
(50) was not affected in the presence of E2, BPA, or DES (Fig S3B), and
only HCT116 cells, which ectopically express the classical estrogen
receptors, seem to be at least in part responsive for E2-induced
CTSD expression (Fig S3C). Hence, we suggested a role of GPER1 in
estrogen-triggered CA. In line with this reasoning, we partially re-
pressed GPER1 via gene-specific RNAi (Fig S3D and E) or blocked its
activity in response to estrogens, using selective GPER1 antagonists
(i.e., G15 and G36 (51, 52)). Subsequently, we checked for CA after
additional treatment with estrogens. Indeed, we found a reduced
amount of supernumerary centrosomes in estrogen-treated CRC
and normal colon epithelial cells upon partial GPER1 knockdown
(Figs 3A and B and S3I). The dependency on GPER1 and the
specificity of the GPER1 knockdown were further emphasized by the
result that the co-transfection of a siRNA-resistant version of GPER1
(RES) restored the (xeno)estrogen response (Fig S3F–H). Similarly,
the inhibition of GPER1 suppressed estrogen-induced CA in normal
colon and CRC cell lines (Figs 3C and D and S3K). Vice versa, the
activation of GPER1 using the specific agonist G-1 (53) or using the
anti-estrogens and well-accepted GPER1 activators, tamoxifen and
ICI182,780 (22), was sufficient to induce CA (Figs 3E and F and S3J–L).
Of note, neither stimulation of GPER1 with E2, BPA, DES, or G1, nor
concomitant inhibition with G15 had any apparent effect on colon
and CRC cell proliferation within 7 d of treatment (Fig 3G and H).
Thus, the supportive role of GPER1 in CRC cell proliferation shown by

others (29, 48, 54) does not appear to be causative for the induction
or suppression of centrosome number abnormalities after GPER1
activation or inhibition. Vice versa, the induction of low levels of CA
(max 10%; Figs 1 and S1) does not seem to be sufficient to induce a
growth disadvantage. This can be observed in p53-proficient cells
with high CA (>85–100%, (55)). Together, our results strongly suggest
an essential role of GPER1 in the regulation of centrosome numbers
in normal colon and CRC cells after treatment with distinct es-
trogenic GPER1 activators that seem to be independent of GPER’s
role in CRC proliferation.

GPER1-activating estrogens induce transient multipolar mitoses
and lagging chromosomes

Supernumerary centrosomes are associated with the formation of
transient multipolar spindles leading to the formation of lagging
chromosomes during anaphase (3). This is in turn an important and
well-acceptedmechanism for w-CIN and aneuploidy, at least in CRC
(6). Because CRC represents a prime example of a tumor entity
exhibiting w-CIN (9, 10) with CA as a major underlying molecular
mechanism (1, 2), we next tested a potential link between exposure
to estrogenic substances, lagging chromosomes, and w-CIN in
colon and CRC cell lines. First, we followed up on studies showing
that doubling the centrosome number in normal human cells or
treating cervical cells with BPA perturbs mitotic progression (15, 56).
To this end, we analyzed E2-, BPA-, and DES-treated HCT116 CRC
cells expressing GFP-tagged histone H2B in time-lapse microscopy
experiments (Figs 4A and S4A and C and Video 1, Video 2, Video 3,
Video 4, Video 5, Video 6, Video 7, and Video 8). We found that (xeno)
estrogen-treated cells formed multipolar mitoses (Figs 4A, stars;
and S4D) but still progressed through mitosis and segregated their
chromosomes, although alignment defects, reminiscent of a
“pseudo-metaphase” (57), were detected (Figs 4A and S4C, arrow-
heads; and S4E). We next examined whether cells that exhibit
multipolar mitotic figures and chromosome alignment defects are
those with supernumerary centrosomes (3). To this end, we
requantified these phenotypes in mitotically synchronized cells
using adequate markers for centrosomes, mitotic spindles, and
chromosomes (Fig 4C and D). The results verified the data derived
from H2B-imaged movies (Fig S4D and E). Note that low concen-
trations of the Vinca alkaloid nocodazole did not induce multi-
polarity as expected but did induce defects in chromosome
alignment (58). Surprisingly, the overall duration of prometaphase

ANOVA was used to calculate the P-value of DMSO + PLK4 siRNA. Wald’s z-statistics computed by the R function glmmTMB was used to calculate the P-value of the
remaining treatments. ns, not significant; **P < 0.01. (E) Graphical scheme for “templated centriole overduplication” (experimental design and hypothesized outcome).
Cells were synchronized at G1/S after release in DMSO, or 10 nM E2, BPA, or DES for 135 min. S-phase cells were fixed and stained with markers for γ-tubulin and Sas-6 to
visualize centrosomes and daughter centrioles, respectively. Fluorescence intensities of Sas-6 at S-phase centrosomes were measured using the CellProfiler software
(F). Centriole overduplication originates from parental centrioles (1) templating the assembly of more than 1 daughter centriole during S phase (upper centrioles panel,
[2]), which elongates in G2 (3) and segregates to the mitotic spindle pole (left centrioles panel at metaphase, [4]). After disengagement of centrioles during late mitosis,
centrioles split apart, thereby generating daughter cells with more than two centrioles (cell 1). See a detailed description in the Materials and Methods section.
(F) Shown are maximum projections from z-stacks of representative HCT116 cells treated with DMSO or 10 nM BPA as described in (E). Sas-6 fluorescence intensities (inner
circles) were normalized to γ-tubulin and background-corrected (outer circle) using the CellProfiler software. Insets show Sas-6 signals at higher magnification with the
corresponding values (highlighted in blue) on the right side. Scale bar, 10 µm. (G) Fluorescence intensity of SAS-6 was quantified and plotted from (F). Geometric mean ±
95% CI, n = 3 with a total of 681 cells (HCT116) or 676 cells (HCT-15) from three independent experiments. Mann–Whitney’s test was used to calculate the P-value. ns, not
significant; *P < 0.05; ***P < 0.001; and ****P < 0.0001. A detailed description of statistics is provided in the Materials and Methods section.
P-values are available for this figure.
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(from nuclear envelope breakdown [NEB] to the onset of anaphase)
was not prolonged in the presence of (xeno)estrogens. Thus, the
median values of NEB to anaphase onset were not significantly
different from those of control-treated cells (Fig 4B). However,
treated cells exhibitedmuch greater temporal variability than control
cells, with cells spending up to 140 min in a pseudo-metaphase
condition (Fig 4B). Therefore, the amount of cells with temporal
variability greater than 1.5-fold that of control cells (≥33 min) in-
creased threefold upon (xeno)estrogen treatment and was equiva-
lent to the level of cells exposed to low concentrations of nocodazole
(Fig S4B). Of note, nocodazole has previously been shown to increase
the mitotic duration in response to unaligned chromosomes (58).

Collectively, our results strengthen the correlation between
(xeno)estrogens and supernumerary centrosomes that form
transient multipolar mitotic spindles, which resolve during further
mitotic progression and initially cause a strong mitotic delay.

Strikingly, chromosome alignment defects frequently accompanied
the formation of chromosome bridges (Fig S4C, hash and S4F) and
chromosome laggards during anaphase (Fig S4C, arrows). This
prompted us to examine whether transient multipolarity after
(xeno)estrogen treatment and chromosome alignment defects
drive the formation of lagging chromosomes, as expected (3, 59). We
therefore synchronized HCT116, HCT-15, and RKO in the anaphase of
mitosis using a double thymidine block (Fig S4G) and determined
the amount of cells with lagging chromosomes. In fact, we observed
an increase in the generation of anaphase lagging chromosomes in
all CRC cell lines treated with 10 nM E2, BPA, and DES (Figs 4E and
S4H and I). Because we observed CA also in normal colon cells (Fig
1B), we expected that CCD 841 CoN cells also form lagging chro-
mosomes in the presence of (xeno)estrogens. Normal colon cells
were more difficult to synchronize in mitosis, so we left them to
grow asynchronously in a stripped FCS medium containing the

Figure 3. Centrosome amplification depends on
activated GPER1 without effects on cell
proliferation.
(A, B)Quantification of centrosome amplification upon
GPER1 knockdown. (A, B)HCT116 (A) and CCD 841 CoN
cells (B) were transiently transfected with SCRAMBLED
(Scr) or GPER1-specific siRNA (GPER) following
treatment with DMSO, or 10 nM 17β-estradiol (E2),
bisphenol A (BPA), or diethylstilbestrol (DES) for 48 h.
The amount of interphase cells with more than two
γ-tubulin signals at centrosomes was quantified
(mean ± s.d., n = 3 with a total of 600 cells (A) and n = 4
with a total of 800 cells (B)). ANOVA was used to
calculate the P-value of DMSO + GPER1 siRNA.
Wald’s z-statistics computed by the R function
glmmTMB was used to calculate the P-value of the
remaining treatments. (C, D) Quantification of
centrosome amplification upon GPER inhibition.
HCT116 (C) and CCD 841 CoN cells (D) were pretreated
with 100 nM G15 or G36 for 30 min before additional
exposure to DMSO, or 10 nM E2, BPA, or DES for 48 h.
The amount of interphase cells with more than two
γ-tubulin signals at centrosomes was quantified
(mean ± s.d., n = 3 with a total of 600 cells). ANOVA was
used to calculate the P-value of E2 + G15 and G36.
Wald’s z-statistics computed by the R function
glmmTMB was used to calculate the P-value of the
remaining treatments. (E, F) Quantification of
centrosome amplification upon GPER activation.
HCT116 (E) and CCD 841 CoN cells (F) were treated with
100 nM G-1 for 48 h, and the amount of interphase cells
with more than two γ-tubulin signals at
centrosomes was quantified (mean ± s.d., n = 3 with a
total of 600 cells. Values for the DMSO control in (F) are
the same as for DMSO treatment in Fig S2I). Wald’s z-
statistics computed by the R function glmmTMB was
used to calculate the P-value. (A, B, C, D, E, F) ns, not
significant; *P < 0.05; **P < 0.01; ***P < 0.001; and
****P < 0.0001. (G, H) Proliferation assay in the
presence of DMSO, or 10 nM E2, BPA, or DES for 7 d, with
or without 30-min pretreatment with 100 nM G15. 5 ×
104 HCT116 (G) and 1 × 105 CCD 841 CoN cells (H) were
seeded per six-well plates and manually quantified
every day using a hemacytometer and by trypan
blue exclusion of dead cells (mean and error ± SEM,
n = 4 for E2, BPA, and DES panels, n = 3 for G1 panel (G),
and n = 5 for all treatments (H)). A detailed
description of statistics is provided in the Materials
and Methods section.
P-values are available for this figure.
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Figure 4. GPER1-activating estrogens induce multipolar mitoses and lagging chromosomes without altering cell cycle distribution.
(A, B) Disturbance of mitotic progression by treatment with (xeno)estrogens. (A) HCT116 cells expressing GFP-tagged histone H2B were treated with DMSO, or 10 nM 17β-
estradiol, bisphenol A, or diethylstilbestrol, or 5 nM nocodazole (Noc) for 40 h after live-cell imaging for 8 h under continuous treatment. Still frames were shown from
time-lapse movies of representative cells treated with DMSO, bisphenol A (#1), or diethylstilbestrol (#2). Images were captured every 2 min to monitor mitotic progression.
Stars point to cells withmultipolar chromosome arrangement, and arrowheads, to unaligned chromosomes (t = time inminutes). Scale bars, 5 μm. (B) Time from nuclear
envelope breakdown to anaphase onset was determined from (xeno)estrogen-treated (10 nM each) and Noc-treated (5 nM) cells (median, box and whiskers, 5–95
percentile, n = 4 with a total of 400 cells). (C, D) Detection and quantification of HCT116 cells with multipolar spindles (C) and pseudo-metaphases (D). Cells treated as in (A)
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GPER1 ligands for 48 h and checked for the formation of mitotic
laggards in anaphase (Fig 4F). Consistent with CRC cells, non-
transformed CCD 841 CoN also showed an increase in the forma-
tion of lagging chromosomes after exposure to E2, BPA, and DES (Fig
4F). As expected, non-transformed cells had an overall lower
number of cells with mitotic laggards, but with much higher fold
induction values after (xeno)estrogen treatment. Of note, the
overall level of (xeno)estrogen-induced lagging chromosomes was
comparable to treatment with the w-CIN inducer nocodazole in
both HCT116 and CCD 841 CoN. Importantly, neither (xeno)estrogen-
induced CA nor mitotic laggard formation appeared to affect cell
cycle distribution, as the percentages of colon and CRC cell lines
treatedwith DMSO, E2, BPA, and DES remained almost the samewith
respect to G1, S, G2, and M phases (Fig 4G). These results suggest
that the low nanomolar concentrations of E2, BPA, and DES used in
this study are sufficient to induce mild mitotic defects that do not
disrupt mitotic progression to a large extent, that is, which would be
associated with cytotoxicity, but are sufficient to cause defects in
chromosome segregation that couldmanifest in w-CIN and genome
instability.

GPER1-activating estrogens induce w-CIN

Because lagging chromosomes represent a direct precursor of
w-CIN (3, 6), estrogen exposure was expected to similarly increase
levels of w-CIN and aneuploidy. To address this hypothesis and to
avoid clonal effects, we generated different single-cell clones
derived from parental HCT116 cells and analyzed the evolution of
karyotypes in the presence of 10 nM E2, BPA, DES, or nocodazole
within a defined time span of 30 generations. Indeed, estrogen-
treated cell clones became aneuploid (Fig 5A) and evolved an
increase in karyotype variability to a level that was similar to
nocodazole, while maintaining the same modal number of chro-
mosomes (Figs 5B and S5A). Similar effects were observed for HCT-
15 CRC cells permanently treated with the estrogens (Fig S6F,
colored, non-patterned bars; and S6G). Importantly, chromosome
counting from metaphase spreads and interphase FISH analyses
revealed w-CIN and aneuploidy even in normal colon epithelial
cells with an overall induction that was comparable to nocodazole
(Figs 5C and D and S5B and C). Thus, our data suggest that exposure
to GPER1-activating estrogens, such as E2, BPA, and DES, may
promote genomic instability in intestinal cells that could persist

during CRC progression. Of note, chromosomally instable cells used
for karyotype analysis after long-term treatment with (xeno)es-
trogens (Figs 5A–D, S5A–C, and S6F, DMSO) exhibited supernumerary
centrosomes (Figs 5E and F and S5F). Strikingly, similar to the short-
term exposure (Figs 1 and S1D and E), the total CA content was below
10% and cells had mainly three PCM-containing centrosomes (Fig
S5D, E, and G). These results not only demonstrate a direct link
between (xeno)estrogen-induced CA and w-CIN (3), which has not
yet been demonstrated in a colon (cancer) system. Our data also
imply that the generation of just one extra centrosome per cell and
overall low frequencies of CA are sufficient for w-CIN development.
In contrast, large numbers of supernumerary centrosomes per cell
with high frequencies are likely to adversely affect cell viability
because extra centrosomes cluster inefficiently during mitosis and
increase the frequency of lethal multipolar divisions (3).

Estrogen-induced genomic instability depends on GPER1
functionality

Given that our data demonstrate an essential role of GPER1 in
estrogen-triggered CA (Fig 3), we reasoned that the formation of
lagging chromosomes (Fig 4) and w-CIN (Fig 5) is also dependent on
the alternate estrogen receptor. Our hypothesis of GPER1 depen-
dence of (xeno)estrogen-triggered mitotic laggards proved to be
correct, because the partial repression of GPER1 with gene-specific
siRNAs resulted in a significant reduction in lagging chromosomes
in HCT116 upon E2 or BPA treatment (Fig 6A). At least the same
tendency was observed upon DES treatment. The dependency on
GPER1 and the specificity of the GPER1 knockdown were confirmed
by the co-transfection of an siRNA-resistant version of GPER1 (RES),
which restored the (xeno)estrogen-triggered response (Fig S6A).
GPER1 dependency was also observed in normal colon cells after
gene-specific knockdown followed by estrogen treatment (Fig S6B).
Obviously, this cell system was pushed to its limit by this experi-
mental setup, indicated by the small number of anaphase cells that
could be evaluated per condition. Therefore, we decided to repeat
the evaluation of lagging chromosomes using the GPER1-selective
antagonist G15. Consistently, the inhibition of GPER1 by pretreat-
ment of normal colon (Fig 6B) and CRC cell lines (Fig S6C and D) with
G15 before (xeno)estrogen exposure restored the amount of ana-
phase cells with laggards to control levels. As expected, the for-
mation of lagging chromosomes induced by nocodazole did not

were synchronized in mitosis with a double thymidine block as described in (9). Representative immunofluorescence images show cells with or without multipolar
mitotic spindles (C) or chromosome alignment defects (D) (chromosomes, Hoechst 33342, blue; centrosomes, γ-tubulin, red; spindles, α-tubulin, green; scale bar, 10 μm).
Arrowheads mark extra centrosomes (C) and unaligned chromosomes of pseudo-metaphases (D). The graphs show the quantification of the proportion of cells exhibiting
the respective mitotic defect as indicated (mean ± s.d., n = 4 with a total of 400 cells). Wald’s z-statistics computed by the R function glmmTMB was used to calculate the
P-value. ns, not significant; (*P < 0.05; **P < 0.01; ***P < 0.001; and ****P < 0.0001). (E, F) Detection and quantification of anaphase cells with lagging chromosomes. Colon
(cancer) cells were treated as in (A) and synchronized in the anaphase of mitosis with a double thymidine block as described in (9) (HCT116, (E)) or left grown
asynchronously for 48 h (CCD 841 CoN, (F)). Representative immunofluorescence images with or without lagging chromosomes are shown (chromosomes, Hoechst
33342, blue; kinetochores, CREST, red; scale bar, 10 μm). Insets show lagging chromosomes at higher magnification. Only kinetochore-positive chromosomes were counted
as lagging chromosomes (arrows). Graphs show the quantification of the proportion of cells exhibiting lagging chromosomes (mean ± s.d., (D) n = 6 with a total of 600 cells,
Wald’s z-statistics computed by the R function glmmTMB was used to calculate the P-value, and (E) n = 3 with a total of 300 cells). The bootstrap procedure was used to
calculate the P-value. (*P < 0.05 and **P < 0.01). (G) Representative FACS histograms (left) of HCT116, CCD 841 CoN (CCD), HCT-15, and RKO cells treated as in (A) for 48 h
showing cell cycle distribution and mitotic indices (MI) of propidium iodide and MPM2–co-immunostained cells. Blue, G1 phase; green, S phase; and red, G2 phase. The
graphs (right) show the quantification of the amount of cells in the subG1 area, and G1, S, or G2 phase based on their DNA content (N). >4N = polyploid cells (mean ± SEM,
n = 3 with a total of 30,000 cells, ordinary one-way ANOVA). A detailed description of statistics is provided in the Materials and Methods section.
P-values are available for this figure.
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depend on GPER1 expression or activity (Fig 6A and B). These results
reinforce the role of estrogen-activated GPER1 in lagging chro-
mosome formation, while simultaneously suggesting an involve-
ment of the receptor in w-CIN and aneuploidy. To investigate a
possible link between GPER1 and w-CIN, we generated single-cell
clones derived fromHCT116 parental cells stably expressing shRNAs
targeting GPER1 and exposed them to estrogens for 30 generations
(Fig S6E). We showed that these single-cell clones failed to evolve
w-CIN and aneuploidy upon estrogen exposure (Fig 6C and E). In

contrast, the karyotype stability of nocodazole-treated cell
clones was not restored to control levels, indicating a specific
role of GPER1 in w-CIN in the presence of distinct estrogens.
Importantly, we could validate these results obtained from
HCT116 in another CRC cell line, that is, HCT-15, and also in non-
transformed CCD 841 CoN colon epithelial cells after the inhi-
bition of GPER1 by the selective GPER1 antagonist G15 (Figs 6D
and F and S6F and G). Overall, our results describe a molecular
mechanism linking distinct estrogenic substances and GPER1

Figure 5. (Xeno)estrogens induce whole
chromosomal instability in human colon
and CRC cells with supernumerary
centrosomes.
(A) Chromosome number variability/
aneuploidy of single-cell clones derived from
HCT116 cells treated with DMSO, 10 nM 17β-
estradiol, bisphenol A, diethylstilbestrol, or
5 nM nocodazole (Noc) and grown in a
stripped FCS medium for 30 generations. The
graph shows the amount of cells harboring
a karyotype with chromosome numbers
deviating from the modal (mean ± s.d., n = 4
independent single-cell clones with 50 cells
per treated clone). Wald’s z-statistics
computed by the R function glmmTMB was
used to calculate the P-value. The modal
chromosome number of HCT116 is 45.
(B) Representative examples of the karyotype
derived from HCT116 metaphase
chromosome spreads showing a normal (45,X)
and an aneuploid (44,X; 46,X) karyotype are
shown. Scale bar, 10 µm. The graph shows
chromosome number variability (whole
chromosomal instability) of representative cell
clones derived from HCT116 parental cells
depicted from (A). For each cell clone, the
distribution of individual chromosome
numbers was determined from 50
metaphase spreads. (C) Chromosome number
variability/aneuploidy of CCD 841 CoN cells
treated as in (A) for 30 d. The graph shows
the amount of cells harboring a karyotype
with chromosome numbers deviating from the
modal (n = 1 biological replicate with 25 cells
per condition). The modal chromosome
number of CCD 841 CoN is 46.
(D) Representative examples of the
karyotype derived from CCD 841 CoN
metaphase chromosome spreads showing a
normal (46,XX) and aneuploid karyotype
(45,XX; 47,XX). Scale bar, 10 µm. The graph
shows chromosome number variability (whole
chromosomal instability) of CCD 841 CoN
depicted from (C). For each condition, the
distribution of individual chromosome
numbers was determined from 25
metaphase spreads. (E, F) Centrosome
number evolution in colon (cancer) cells after
long-term (xeno)estrogen treatment. The
graphs show the quantification of cells with
more than two γ-tubulin signals at
centrosomes. (E) Cells shown represent
representative clones used for karyotype
analysis depicted in (A). DMSO, clone 2; 17β-

estradiol, clone 1; bisphenol A, clone 2; and diethylstilbestrol, clone 4 (mean, n = 1 biological replicate with 200 cells per condition). (F) Cells analyzed were derived from
the cell population used for karyotype analysis depicted in (C) (mean, n = 1 biological replicate with 200 cells per condition). A detailed description of statistics is provided
in the Materials and Methods section.
P-values are available for this figure.

Estrogen/GPER1-mediated CA and w-CIN Bühler et al. https://doi.org/10.26508/lsa.202201499 vol 6 | no 1 | e202201499 9 of 19

https://doi.org/10.26508/lsa.202201499


with numerical centrosome defects and w-CIN in non-trans-
formed colon and CRC cell systems.

Discussion

Over the past years, the evidence of estrogen actions in CRC has
been accumulating, suggesting that the colon, similar to the classic
hormonally regulated tissues (i.e., breast, ovary, and prostate), is an
important estrogen-regulated tissue. Orally ingested estrogens
come into direct contact with the gastrointestinal tract, where they

might exert their specific effects (28, 60). Although a slightly lower
CRC incidence and mortality in women compared with men sug-
gests a protective role of estrogens against CRC, on the one hand
(28), the experimental evidence, on the other hand, demonstrates
pathophysiological effects of estrogenic substances on the colon.
Specifically, oral contraceptives and hormone therapy were shown
to be associated with an increased risk of inflammatory bowel
disease in (postmenopausal) women (61, 62), and colitis-associated
cancer in ovariectomized mice supplemented with estrogens (63).
Further studies demonstrated that industrial estrogens, such as
DES and BPA, increase the incidence of chemically induced colon

Figure 6. Mitotic laggards and whole
chromosomal instability depend on
estrogen-activated GPER1 function.
(A) HCT116 cells were transiently transfected
with SCRAMBLED (Scr) or GPER1-specific
siRNA (GPER) after treatment with DMSO, 10
nM 17β-estradiol (E2), bisphenol A (BPA),
diethylstilbestrol (DES), or 5 nM nocodazole
(Noc) and synchronization in the anaphase of
mitosis as described in (9). The quantification
of the amount of anaphase lagging
chromosomes is shown (mean ± s.d., n = 4 with
a total of 400 cells). ANOVA was used to
calculate the P-value of DMSO + GPER1
siRNA. Wald’s z-statistics computed by the R
function glmmTMB was used to calculate the
P-value of the remaining treatments. ns, not
significant; *P < 0.05 and **P < 0.01. (B) CCD 841
CoN cells pretreated with G15 for 30 min after
additional treatment as in (A) for 48 h
(median ± s.d., n = 3 with a total of 300 cells).
ANOVA was used to calculate the P-value of
DMSO + GPER1 siRNA and all G15 treatments.
The bootstrap procedure was used to
calculate the P-value of the remaining
treatments. ns, not significant; *P < 0.05; **P
< 0.01; and ***P < 0.001. (C) HCT116 single-cell
clones stably expressing SCRAMBLED (Scr) or
shRNAs targeting GPER1 (GPER) were grown
for 30 generations in DMSO, 10 nM E2, BPA,
DES, or 5 nM Noc. The graph shows the amount
of cells harboring an aneuploid karyotype
with chromosome numbers deviating from
the modal (modal number = 45). Data were
collected from 50 cells per clone (n = 1
biological replicate). (D) CCD 841 CoN cells
pretreated with G15 for 30 min before
additional exposure to DMSO, 10 nM E2, BPA,
DES, or 5 nM Noc for 30 generations. The graph
shows the amount of cells (N = 50) harboring
an aneuploid karyotype with chromosome
numbers deviating from the modal (modal
number = 46); (n = 1 biological replicate).
(E) Chromosome number variability/whole
chromosomal instability of HCT116 cell clones
depicted from (C). For each cell clone, the
distribution of individual chromosome
numbers was determined from 50 metaphase
spreads. (F) Chromosome number variability/
whole chromosomal instability of CCD 841
CoN cells depicted from (D). For each
condition, the distribution of individual
chromosome numbers was determined
from 50 metaphase spreads. A detailed

description of statistics is provided in the Materials and Methods section.
P-values are available for this figure.
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carcinoma (31, 32) or promote migration, invasion, and metastasis
of CRC cells through the modulation of protein profiles and the
induction of epithelial-to-mesenchymal transition (12, 64). To-
gether, experimental results strongly suggest a role of distinct
(xeno)estrogens in the development of gastrointestinal diseases.

Our study has uncovered a novel role of E2, BPA, and DES in a
colon cell system, involving numerical centrosome defects at low
nanomolar concentrations sufficient to cause the formation of
lagging chromosomes that manifest in w-CIN and aneuploidy.
W-CIN represents a major route to CRC (10) with numerical CA being
a widespread lesion in colon carcinogenesis (1, 2). Indeed, colon
carcinoma bears significantly higher centrosome numbers per cell
than adenoma or normal colonic epithelium, and CA is associated
with higher histologic grades of dysplastic and invasive lesions (1,
65). Our results hypothesize a potential cause of amplified cen-
trosomes and w-CIN in CRC cells that may include exposure to
certain environmental estrogenic substances.

Importantly, we propose a molecular underlying mechanism for
this estrogen-triggered aneugenic effect in colon cells, which in-
cludes the formation of lagging chromosomes and involves the
alternate estrogen receptor GPER1 (Figs 6A and B and S6A–D). In-
deed, the siRNA-mediated knockdown of GPER1 and, more signif-
icantly, receptor inhibition suppressed both estrogen-induced CA
(Figs 3A–F and S3G–L) and w-CIN (Figs 6C–F and S6F and G).
However, there is conflicting evidence about anti- and protu-
morigenic effects of GPER1 in colorectal carcinogenesis, potentially
depending on oxygen levels of cancer cells and the tumor mi-
croenvironment (29). Tumor suppressor functions for GPER1 came
from studies that showed decreased GPER1 expression levels in CRC
patients and colorectal adenoma tissues, which correlated with
increased tumor progression, lymph node metastasis, and de-
creased survival rates (66). Similarly, activated GPER1 is shown to
have a detrimental effect on CRC cell proliferation (66, 67). In
contrast, accumulating evidence suggests that GPER1 might act as a
tumor promoter in CRC. High GPER1 expression levels were found to
be significantly associated with poor relapse-free survival in
women with stage 3 or 4 CRC indicating a role of GPER1 in CRC
progression and survival, potentially as a result of estrogen-
dependent signaling in CRC (29). Consistently, increased colonic
activity of estrogen-activating or estrogen-converting enzymes in
CRC patients and tissue samples leading to estrogen-mediated
GPER1 activation was associated with increased CRC cell prolifer-
ation via GPER1 (48). These results support the findings of other
studies suggesting GPER1 to mediate CRC cell proliferation upon
exposure to GPER1 activators (54), at least under hypoxic conditions
(29). We could not observe a role of estrogens or GPER1 in cell
proliferation (i.e., under normoxic conditions), but we did show an
effect on key CRC lesions, that is, CA and w-CIN that may contribute
to tumorigenesis, tumor progression, or therapy resistance (7, 8).
Estrogen actions of GPER1 were also shown in both neoplastic
transformation of the colon and tumor progression, including
colonic motility, immune regulation, and inflammation (referred to
in reference 28), further supporting a protumorigenic role of
estrogen-activated GPER1. It would be interesting to investigate in
future studies whether activated GPER1 would affect clonogenicity
or anchorage-independent growth in colon cells as a readout for
malignant transformation (68, 69).

The exact mechanism by which GPER1 responds to estrogenic
substances remains elusive and cannot be derived solely by the
binding affinities of the ligands to the receptor, that is, ranging from
(low) nanomolar (e.g., E2 and BPA) to micromolar concentrations
(e.g., DES, 4-OH-tamoxifen, and atrazine) (22). In fact, we observed
similar overall levels of CA in the presence of the GPER1 activators
E2, BPA, and DES (i.e., estrogenic substances) or ICI182,780 and
tamoxifen (i.e., anti-estrogens), but only a partial suppression of CA
in cells with low GPER1 expression that were treated with BPA (HCT-
15, Fig S3I). These results might suggest different sensitivities of
colon (cancer) cells toward distinct estrogenic substances or likely
reflect different GPER1-mediated signaling pathways potentially
activated by varied estrogenic and anti-estrogenic GPER1 binders.
In fact, both ICI182,780 and tamoxifen were shown to increase
steroid sulfatase activity in a GPER1-dependent manner, sug-
gesting that these pharmaceuticals induce the conversion of
circulating estrogens to the active forms that, in turn, might trigger
the specific effect (48). E2, BPA, and DES may promote a
centrosome-dependent pathway to CRC via GPER1. The latest hints
for a link of GPER1 to the centrosome came from studies in rodents
and ovarian cancer cells reporting G-1 facilitated the activation of
protein kinase A (70) and the phosphorylation of Aurora A kinase
(71), respectively. Both centrosome-associated kinases are in-
volved in CA, probably through the phosphorylation and the
stabilization of the centriolar protein centrin (72, 73). Further
studies will reveal whether our observations follow this axis or
whether an alternative route will trigger the estrogen/GPER1-
mediated induction of CA in colon cells.

The molecular mechanisms causing numerical centrosome al-
terations are multifaceted (referred in reference 35, 74), and es-
trogenic substances appear to play a pivotal role in this process
(35). Kim and colleagues (15) demonstrated that BPA causes mul-
tipolar mitotic spindles in HeLa cells by inducing centriole over-
duplication and premature centriole disengagement, that is, in a
classical estrogen receptor–independent manner. Although we
observed the formation of predominantly three centrosomes (Figs 1
and 2A–C), our data do not clearly support the latter mechanism
because the centrioles evenly distribute between both opposite
spindle poles in metaphase (Fig S2C and D). In contrast, we have
promising results favoring centriole overduplication. First, the
down-regulation of PLK4 restored normal centrosome numbers in
the presence of (xeno)estrogens (Fig 2D). Secondly, we found that
E2, BPA, and DES cause increased levels of Sas-6 at the centrosome
during S phase (Fig 2F and G). This result hypothesizes that parental
centrioles template the assembly of more than one daughter
centriole each that may form additional centrosomes in the fol-
lowing mitosis (Fig 2E). Whether and how (xeno)estrogen-activated
GPER1 might be involved in this pathway and whether other im-
portant regulatory proteins of centriole biogenesis such as STIL or
the Plk4-recruiting factors Cep192 and Cep152 are also involved (75,
76) remains an interesting question for future studies. Of note,
centriole overduplication can also arise from de novo centriole
assembly, which is normally driven in the absence of pre-existing
centrioles (77). Importantly, sufficiently high levels of cytoplasmic
Plk4 can trigger the de novo pathway in human cultured cells,
regardless of the presence or absence of pre-existing centrioles
(78). It would be interesting to investigate whether cytoplasmic
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levels of Plk4 increase in the presence of (xeno)estrogens, thereby
triggering the de novo pathway.

Of note, the percentage of cells with CA is low (i.e., <10%, Fig 1) but
comparable to data from previous studies detecting ~10––15% of
cells with amplified centrosomes after exposure to low estrogen
concentrations (14, 15, 21). Even the overexpression of PLK4, a key
regulator of centrosome duplication (37), causes only a slightly
higher proportion of cells with CA (Fig S1E, (3)), suggesting a
threshold above which a growth disadvantage of cells with CA
should be suspected. Consistent with this hypothesis, a study by
Holland et al illustrates a decline in cells with a rapid and highly
penetrant CA (>85–95%) to values <10% because of proliferation
deficits in the cells harboring extra centrosomes (55). We predict
that a larger proportion of cells with CA will be detrimental to long-
term survival. This fits with our data illustrating a constant low level
of CA below 10% over 30 generations of estrogen treatment (Figs S1C
and D, 5E and F, and S5D–G) that did not apparently affect cell cycle
distribution (Fig 4G) or cell proliferation (Fig 3G and H). The low
hormone concentrations used in this study are important in this
context because it has been previously reported that higher doses
in the micromolar range suppress microtubule polymerization and
dynamics or even disrupt the microtubule network and arrest cells
in mitosis, possibly by mechanisms similar to spindle poisons (79,
80, 81, 82, 83, 84). In contrast, nanomolar hormone concentrations
did not arrest cells in mitosis (Fig 4G). This is important because
mitotic arrest can be lethal in several ways (summarized in ref-
erence 85), counteracting continuous chromosome missegregation
that manifests in w-CIN and aneuploidy.

Althoughmany causesmay underlie the etiology of CA in CRC, the
cellular consequences are clear and unambiguous. Supernumerary
centrosomes lead to the formation of multipolar spindles, which
cause multipolar cell divisions if not corrected otherwise. However,
multipolar mitoses are likely to be detrimental to cells because of
gross chromosome missegregation and cell death (3). Remarkably,
(xeno)estrogens trigger the generation of supernumerary centro-
somes and, as expected, the formation of multipolar mitotic
spindles (Figs 1 and 4C). However, we did not apparently observe
multipolar mitoses and cell death in live-imaged cells that were
exposed to (xeno)estrogens (Figs 4A and S4C). Importantly, (cancer)
cells can “cope” with extra centrosomes by several mechanisms to
limit the detrimental consequences of CA. These include centro-
some removal, centrosome inactivation, asymmetrical segregation
during cell division, or centrosome clustering (86). We hypothesize
that (xeno)estrogen-treated cells likely avoid lethal divisions by
coalescence of extra centrosomes to form a pseudo-bipolar
spindle. Consistent with this, (xeno)estrogen-treated cells display
an increased frequency of lagging chromosomes during anaphase
(Figs 4E and F and S4G and H), which typically arise from multipolar
spindle intermediates and merotelic kinetochore attachments (3).
As seen for amoderate increase in Plk4 (87), (xeno)estrogensmainly
induce the creation of just one extra centrosome per cell, which is
permissive for centrosome coalescence and cell survival. In con-
trast, large numbers of supernumerary centrosomes are likely to be
detrimental to cell viability because of inefficient clustering before
division. Of note, supernumerary centrosomes and lagging chro-
mosomes evolve in both normal colon epithelial and CRC cells,
suggesting that centrosome clustering is likely not only restricted to

cancer cells but also possible in non-transformed cells with extra
centrosomes, which is in line with previous studies (referred to in
reference 86). It would be interesting to follow the fate of extra
centrosomes in the absence of the causative trigger, that is, (xeno)
estrogens. A recent study by Sala et al demonstrates that centriole
numbers return to normal after initial amplification via the over-
expression of PLK4 in hTERT-RPE-1 cells (88). The authors argue
against centriole elimination or asymmetric segregation, but,
consistent with the previous work (55), conclude that cells with
extra centrioles were outcompeted by cells in the population with a
normal number, because of growth disadvantage. Given that (xeno)
estrogens induce prolongedmitosis only in a subset of cells (Figs 4B
and S4B), which are most likely those with extra centrosomes (Figs
4C and S4D), but do not apparently affect the proliferation of cells
without CA (Fig 3G and H), it seems likely that cells with normal
centrosome numbers will overgrow cells with CA over time.

Consistent with the established role of extra centrosomes and
lagging chromosomes in driving w-CIN and aneuploidy, we ob-
served supernumerary centrosomes in aneuploid cells, which
evolved from long-term treatment with (xeno)estrogens (Figs 5E
and F and S5D–G). Of note, aneuploidy varied between 30 and 40%
irrespective of cell transformation, as normal colon CCD 841 CoN
and CRC-derived HCT116 cells behave similarly (Fig 5A and C).
Furthermore, treated cells are chromosomally instable and display
ongoing gains and losses of several chromosomes, not least of
chromosomes 2 and 8 (Figs 5B and D, S5A–C, and S6G), suggesting
complex karyotypes that were triggered by (xeno)estrogens. In this
context, it would be interesting to investigate the copy-number
heterogeneity of the karyotypes from non-tumor and tumor cell
lines in the presence of (xeno)estrogens. By inducing extremely
high rates of chromosome missegregation in yeast, Madhwesh et al
demonstrate that distinct patterns of complex karyotypes are
created over time, with maximized selective advantages of distinct
chromosomal aneuploidies (89). Single-cell sequencing studies
would therefore offer a reliable method for examining the karyo-
types of (xeno)estrogen-treated single-cell clones at high resolu-
tion and will give an important impact on how distinct estrogenic
substances might influence karyotype diversity. Interestingly, an in
silico study by Elizalde et al (90) demonstrates that karyotype di-
versity is significantly more dependent on the chromosome mis-
segregation rate than on the number of cell divisions. Thus,
karyotype diversity can be reached rapidly at high missegregation
rates. In contrast, at low missegregation rates karyotype diversity is
expected to be constrained after more cell division events. These
results are important for our data demonstrating lower rates of
lagging chromosomes in CCD 841 CoN (2.5–3%) compared with
HCT116 (~5%), serving as indicators for different chromosome
missegregation rates (Fig 4E and F). This leads us to speculate that
maximal karyotype heterogeneity might not be exhausted in both
cell lines after 30 d of (xeno)estrogen treatment, but even more in
CCD 841 CoN cells. It would therefore be reasonable to investigate
karyotype diversity after further cell division events in the presence
of (xeno)estrogens.

Collectively, our results provide the first demonstration that
(xeno)estrogens might trigger key cancer-prone lesions and point
GPER1 to an important regulatory protein mediating CA, w-CIN, and
aneuploidy in a non-classical hormone-regulated colon cell
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system. Because the role of GPER1 in colon cancer development is
still under debate, future studies are needed demonstrating to
what extent centrosomal proteins are involved in the GPER1-
mediated aneugenic effect observed in this colon (cancer)-
derived study.

Materials and Methods

Cell culture, reagents, and treatments

CRC cell lines HCT116, HCT-15, and RKO, and normal colon epithelial
cells CCD 841 CoN were acquired from the American Type Culture
Collection. CRC cell lines were cultured in phenol red–free RPMI
1640 (PAN-Biotech), and CCD 841 CoN, in DMEM (PAN-Biotech), each
supplemented with 10% charcoal-stripped fetal calf serum (Th.
Geyer GmbH) and 1% penicillin/streptomycin (Merck Millipore) at
37°C and 95% humidity and 5% CO2. Culture medium conditions
were used for all experiments. All chemicals were purchased from
Sigma-Aldrich unless otherwise stated, dissolved in DMSO, and
stored at −20°C. The cells were treated with 10 nM E2, 10 nM BPA, 10
nM DES, 5 nM nocodazole (Noc), 10 nM tamoxifen (Tam), 100 nM G15
(Tocris Bioscience), 100 nM G36 (Biomol), 100 nM ICI182,780 (ICI), and
100 nM G-1 (Tocris Bioscience) for 48 h in a stripped medium unless
otherwise stated.

siRNAs and shRNA plasmids

The following siRNA sequences (Qiagen) were used:

SCRAMBLED (control): 59-CAUAAGCUGAGAUACUUCA-39
GPER1 no. #1: 59-GCUGUACAUUGAGCAGAAA(TT)-39
GPER1 no. Q2 (CCD 841 CoN): 59-CTGGATGAGCTTCGACCGCTA-39

Two oligonucleotides encoding human GPER1 short hairpin
sequence (59-TGCACTCCTCACACA GAATTGCTACAATC-39: sense,
TF316565D; and 59-GATTGTAGCAATTCTGTGTGAGGAGTG CA-39, anti-
sense) were synthesized (Eurofins Genomics). The control
SCRAMBLED shRNA sequence with no target in the human genome
was 59-CAUAAGCUGAGAUACUUCA-39. To generate a GPER1 shRNA
repression plasmid, pSuper-Retro was digested using HindIII and
BglII enzymes (New England Biolabs) according to manufacturer’s
instructions after ligation and transformation into competent DHα5
E.coli cells (Invitrogen). Cells were cultivated, selected with 100 μg/
ml ampicillin, and plated. Colonies were picked and incubated with
selection LBmedium (Roth) overnight. Plasmids were purified using
NucleoBond Xtra Plasmid Purification Kit (Macherey-Nagel)
according to the manufacturer’s protocol. Plasmids were diges-
ted and resolved on a 1.5% agarose gel to ensure proper ligation.
Final plasmids were sequenced with Sanger sequencing (Eurofins),
and the knockdown of GPER1 was verified by qRT-PCR. HCT116 cells
stably expressing pRetro-Super SCRAMBLED and pRetro-Super
GPER1 were used to generate stable cell lines. The GPER1 siRNA
rescue vector pRP-hGPER1-siRES containing silent mutations in the
GPER1 siRNA-targeted sequence (NM_001505.3: codons 335–341
were changed to AGGCTCTATATCGAACAGAAA), was obtained from
VectorBuilder.

RNA extraction and quantitative real-time PCR

Total RNA was extracted with Qiagen RNeasy Mini Kit according to
manufacturer’s instructions from cells growing in a six-well plate.
cDNA was synthesized from 1 μg of total RNA with High-Capacity
cDNA Reverse Transcription Kit (Thermo Fisher Scientific) on a
QuantStudio 7 Flex PCR machine (Thermo Fisher Scientific) using
optimized conditions for PowerUp SYBR Green dye (Thermo Fisher
Scientific): holding stage: 50°C for 2 min and 90°C for 10 min; cycling
stage: 40 cycles at 95°C for 15 s and 60°C for 1 min; and melt curve
stage: 95°C for 15 s followed by 60°C continuous heating to 95°C for
1-min holding at 95°C for 30 s and 60°C for 15 s. The amplification
specificity was confirmed by melt curve analysis. A relative gene
expression was calculated using ΔΔCt, with GAPDH as a normali-
zation control. The following primer sequences were used for the
qRT-PCR:

CTSD: F 59-CTACCTGAATGTCACCCGCA-39
R 59-GGGATCATGTACTCGCCCTG-39
ERBB2: F 59-GGCCGTGCTAGACAATGGAG-39
R 59-GGGTTCCGCTGGATCAAGAC-39
GAPDH: F 59-TGCACCACCAACTGCTTAGC-39
R 59-GGCATGGACTGTGGTCATGAG-39
GPER1 #1: F 59-CGTCATTCCAGACAGCACCGAG-39
R 59-CGAGGAGCCAGAAGCCACATC-39
GPER1 #2: F 59-CTCTTCCCCATCGGCTTTGT-39
R 59-CGGGGATGGTCATCTTCTCG-39
IGFBP6: F 59-GAACCGCAGAGACCAACAGA-39
R 59-GCAGCACTGAGTCCAGATGT-39
TGM2: F 59-CAGTCTCACCTTCAGTGTCGT-39
R 59-AAAGCTGGATCCCTGGTAGC-39

Transfections and generation of stable cell lines

Transient DNA transfections were performed using Torpedo DNA
Transfection Reagent (Ibidi) according to manufacturer’s instruc-
tions. The following plasmids were used: pCMVflag-Plk4 as a gift
from Ingrid Hoffmann (DKFZ, Heidelberg, Germany); pSG5-hERβ
kindly provided by P Chambon and H Gronemeyer (Institute for
Genetics, and Cell and Molecular Biology, Strasbourg, France);
pcDNA3-H2B-GFP (91); and pRP-hGPER1-siRES (VectorBuilder). All
siRNA transfections were carried out using 60 pmol siRNA targeting
GPER1 or SCRAMBLED (Qiagen or Eurofins) using the INTERFERin
siRNA transfection reagent (Polyplus Transfection) according to the
manufacturer’s protocol. GPER1 rescue experiments were per-
formed by sequential transfection of cells with siRNAs, followed by
the ectopic expression of the siRNA-resistant version of GPER1 4 h
after siRNA transfection, and (xeno)estrogen treatment with or
without 2 mM thymidine after an additional 4.5 h. To generate
HCT116 cells with low GPER1 expression, stable transfections of
shRNA-expressing plasmids were performed using Metafectene
(Biontex) according to the manufacturer’s protocol using 2 μg of
pRetro-Super plasmids targeting GPER1. Transfected cells were
diluted (1:100–1:1,000), and single-cell clones were isolated and
expanded on selection in a medium containing 1 μg/ml puromycin.
The GPER1 repression of selected cell clones was verified using qRT-
PCR. For the long-term treatment of HCT116 cells with low GPER1
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expression, puromycin-resistant single-cell clones stably
expressing pRetro-Super empty vector or GPER1 shRNA were long-
term–cultivated in a medium containing puromycin (1 μg/ml) plus
10 nM E2, BPA, or DES.

FACS analyses and determination of the mitotic index

Cells were fixed in 70% ethanol overnight at 4°C and resuspended
in propidium iodide (5 μg/ml) and RNaseA (1 μg/ml) in PBS. FACS
analyses were performed on a BD FACSCanto II (BD Biosciences),
and 10,000 events were counted. Data analyses were performed
using the BD FACSDiva software (BD Biosciences) and adapted with
FlowJoTM 10.7.1. Representative examples of cell cycle profiles that are
shown in the figures were repeated at least three times. The mitotic
indexwas determined by staining of fixed cells with anti-MPM2 (1:1,600;
Millipore) and secondary antibodies conjugated to Alexa Fluor 488 (1:
2,000; Molecular Probes) as described previously (91).

Proliferation assays

For quantitative proliferation assays, 5 × 104 HCT116 or 1 × 105 CCD
841 CoN cells were seeded in six-well plates in a stripped FCS
medium. Cells were washed once they had attached to the surface
and pretreated with DMSO or 100 nM G15 for 30 min after additional
treatment with DMSO, 10 nM E2, BPA, DES, or 100 nM G1 for 7 d. The
mediumwas changed every 2–3 d (with ligands). From day 2 on, cells
were trypsinized and counted manually using a hemacytometer
(purchased from Fein-OPTIK). To exclude dead cells in the counting,
trypan blue was added in a ratio of 1:2.

Protein extract preparation and Western blotting

To prepare whole-cell extracts, cells were washed once with PBS
and detached from the plate with trypsin/EDTA solution (0.05%/
0.02%[wt/vol]; PAN-Biotech), and the cell pellet was collected by
centrifugation at 130g for 5 min at RT. Cells were lysed for 20 min in
ice-cold lysis buffer (50 mM Tris–HCl [pH 7.4], 150 mM NaCl, 5 mM
EDTA, 5 mM EGTA, 1% [vol/vol] Nonidet P-40, 0.1% [wt/vol] SDS, and
0.1% sodium desoxycholate) supplemented with protease inhibitor
and phosphatase inhibitor mixtures (MilliporeSigma). For the
generation of GPER1 lysates, extracts were also sonicated (Hielscher
Ultrasonics GmbH) 20 times for 0.5 ms at 80% amplitude. Lysates
were centrifuged at 20,000g at 4°C for 20 min. The supernatant was
transferred into a new tube, and protein concentration was
measured using the DC Protein Assay Reagents Package (Bio-Rad)
according to the manufacturer’s instruction. The concentration was
determined photometrically at 750 nm using a TECAN Infinite M200
plate reader. 50 μg of protein was boiled with 5x sample buffer (250
mM Tris–HCl [pH 6.8], 50% [vol/vol] glycerol, 15% [wt/vol] SDS, 25%
[vol/vol] ß-mercaptoethanol, and 0.25% [wt/vol] bromophenol
blue) and loaded onto 10% SDS–PAGE with Tris running buffer and
transferred to a nitrocellulose or PVDF membrane (GE Healthcare)
using semidry or tank-blot procedures. Membranes were blocked
with 6% nonfat powdered milk in 1% Tween in Tris-buffered saline.
For Western blot experiments, the following antibodies and dilu-
tions were used: anti-flag (F3165, 1:700; MilliporeSigma); anti-GPER1
(1:500, ab154069; Abcam); anti-ERα (1:500, sc-8002; Santa Cruz); anti-

ERβ (1:500, sc-53494; Santa Cruz); anti-α-tubulin (1:2,000, sc-23948;
Santa Cruz); and anti-actin (clone AC-15, 1:60,000; Sigma-Aldrich).
Secondary anti-mouse or anti-rabbit antibodies conjugated to HRP
were used at 1:10,000 (111-035-146, 111-035-144; Jackson Immuno-
Research). Proteins were detected by enhanced chemoluminescence.
The quantification of Western blot bands was performed using the
ImageJ software.

Detection of centrosome amplification

For the quantification of amplified centrosomes, asynchronously
growing cells were treated with estrogenic substances or GPER1
agonists (G-1, Tam, or ICI) for 48, 96, or 144 h, or for 30 generations
where indicated. To block GPER1 activity, cells were pre-incubated
for 30 min with G15 or G36 before additional (xeno)estrogen or
control treatment. For GPER1 repression, cells were first transfected
with control or GPER1-specific siRNAs (Q2, CCD 841 CoN, #1 HCT116
and HCT-15) and subsequently treated with estrogens for 48 h. As a
positive control, HCT116 cells were transiently transfected with
pCMVflag-PLK4 (kindly provided by I Hoffmann, DKFZ, Heidelberg,
Germany). To visualize γ-tubulin, interphase cells were fixed with
2% PFA in PBS for 5 min at RT, followed by extraction with methanol
at −20°C for 5 min. Cells were washed once with PBS and blocked
with 5% FCS for 20 min. Subsequently, the cells were stained for
γ-tubulin (1:650, GTU-88; MilliporeSigma). For the visualization of
centrioles, cells were either fixed with methanol at −20°C for 6 min,
followed by 3-min incubation with 0.3% Triton X-100 at RT (Cep135),
or pre-incubated at 4°C for 40 min, followed by incubation with 1%
PFA for 10 min at RT (CP110). Cells were washed twice with PBS
supplemented with 0.05% Tween, and blocked with 1% BSA fraction
V, protease free (Roth) for 30 min at RT. For permeabilization, cells
were treated with 0.5% Triton X-100 for 40 s at RT, followed by
treatment with methanol at 20°C for 20 min. Subsequently, the cells
were stained for Cep135 (1:300, ab75005; Abcam) or CP110 (1:100,
ab243696; Abcam) to detect the centrioles, for α-tubulin (1:650,
C0415; Santa Cruz) to visualize microtubules, and with Hoechst
(Hoechst 33342, 1:15,000, H1399; Invitrogen) to identify nuclei.
Secondary antibodies conjugated to Alexa Fluor 488/555 (1:1,000,
A-11029, A-11034, A-21424, A-21428; Life Technologies) were used.
The amount of interphase cells with more than two centrosomes
was quantified, that is, more than two γ-tubulin signals or more
than two γ-tubulin/Cep135, and γ-tubulin/CP110 signals (39, 40)
localized at centrosomes, respectively.

Detection of centriole overduplication and premature
disengagement/loss of centriole segregation

To detect “templated centriole overduplication” or centriole seg-
regation defects during the onset of the M phase (likely indicating
premature centriole disengagement), cells were blocked twice with
2 mM thymidine (Sigma-Aldrich). For templated centriole over-
duplication, cells were washed with fresh culture medium for 5 min
and subsequently released into a medium supplemented with
DMSO, or 10 nM E2, BPA, or DES for an additional 130 min. The
S-phase release was verified by FACS analyses using propidium
iodide as described in the Materials and Methods section “De-
termination of lagging chromosomes.” Cells were fixed as described
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previously (47). In short, cells were pre-extracted for 40 s in 0.5%
Triton X-100 in BRB80 (80 mM K-Pipes, 1 mM MgCl2, and 1 mM EGTA),
washed once with PBS, and fixed with methanol for 7 min at −20°C.
Cells were blocked with 5% BSA/PBS (sterile-filtered; Carl Roth) for
30 min. To visualize centrosomes and centrioles, cells were stained
with antibodies against γ-tubulin (1:650, T3559; Merck Sigma) and
Sas-6 (1:300, 91.390.21, sc-81431; Santa Cruz) diluted in 1% BSA/PBS
and 0.2% Triton X-100 for 2 h. Subsequently, the cells were stained
with Hoechst (Hoechst 33342, 1:15,000, H1399; Invitrogen) to identify
nuclei. Secondary antibodies conjugated to Alexa Fluor 488/555 (1:
1,000, A-11029, A-21428; Life Technologies) were used. Images were
recorded with the ×63, 1.42 oil immersion objective with 40 z-stacks
and a z-optical spacing of 0.28 μm under a Zeiss AxioObserver Z1
microscope (Zeiss). Images were acquired under constant exposure
in each channel for all of the cells. Images were processed with
ImageJ and shown as maximum-intensity projections. Analysis of
cells for templated centriole overduplication was performed with
CellProfiler (version 2.1.1). The mean centrosome intensity of HsSas-
6 was quantified by drawing a region over the centrosomes, auto-
matically identified as primary object by the software (see Fig 2F,
inner red circle), and by measuring the mean integrated intensity
values of γ-tubulin (MIγ) and hsSas-6 (MIS). To remove microscope
noise, the background was measured on areas that expand the
centrosome region by six pixels (see Fig 2F, outer red circle) after
subtraction from MIγ values. The mean intensities of HsSas6 were
calculated from the ratio of background-corrected HsSas-6 and
γ-tubulin for each cell. The geometric mean was calculated from
212–241 cells of three independent experiments (10 nM [xeno]es-
trogens) and 89–178 cells of one experiment from five different
coverslips (1 μM [xeno]estrogens).

To detect centriole segregation defects as an indication of
premature disengagement, cells were released from the double
thymidine block into a fresh culture medium for 4.5 h (to pass S
phase). Subsequently, cells were treated as before for 4 h (i.e., from
G2 to metaphase). Cells were fixed, stained, and imaged (up to 30
z-stacks) as described above. Hoechst 33342 staining was used to
identify metaphase chromosomes. Images were processed with the
ZEN 3.1 blue edition software (Carl Zeiss Microscopy GmbH) and
shown as maximum-intensity projections. Metaphase cells were
examined for the presence or absence of Sas-6 signals positive for
PCM markers (i.e., γ-tubulin), as the latter could indicate premature
centriole disengagement.

Determination of lagging chromosomes

To detect lagging chromosomes in the anaphase of mitosis, cells
were either treated with 10 nM E2, BPA, DES, or 5 nM nocodazole (9)
alone or, where indicated, exposed to 100 nM G15 for 30 min (CCD
841 CoN, HCT-15; RKO) or transfected with control or GPER1 siRNAs
for 24 h (#1, HCT116; #1 or Q2, CCD 841 CoN) followed by (xeno)es-
trogen treatment. For synchronization in anaphase, HCT116, HCT-15,
and RKO cells were blocked twice with 2 mM thymidine (Sigma-
Aldrich) and subsequently released into fresh medium for 8–9 h as
described previously (91). CCD 841 CoN cells were treated and grown
asynchronously for 48 h. Cells were fixed with 2% PFA in PBS for 5
min at RT followed by extraction with methanol at −20°C for 5 min.
To visualize kinetochores, cells were stained with antibodies

against centromeres (CREST, HCT-0100, 1:200; Europa Bioproducts).
Chromosomes were stained with Hoechst 33342 (MilliporeSigma).
A secondary antibody conjugated to Alexa Fluor 555 (1:1,000,
A-21433; Life Technologies) was used. Cells were analyzed by
immunofluorescence microscopy, and chromosomes that were
CREST-positive and clearly separated from two pole-oriented
chromosome masses were counted as “lagging chromosomes.”
Cell cycle profiles and the mitotic index were determined of
ethanol-fixed cells, treated with RNaseA (1 μg/ml) for 30 min
followed by immunostaining with anti-MPM2 antibodies (1:1,600,
05-368; MilliporeSigma) and treatment with propidium iodide (5
μg/ml) for 30 min. FACS analyses were performed using the BD
FACSDiva software (Becton Dickinson).

Karyotype analyses and Cep-FISH

HCT116 single-cell clones or CCD841CoN and HCT-15 cell pop-
ulations were treated with DMSO, E2, BPA, DES, or Noc for 30
generations. To arrest cells in mitosis, cells were treated with 300
nM Noc or 2 μM dimethylenastron (MilliporeSigma) for 4 h (HCT116,
HCT-15) or 2 μM dimethylenastron for 7 h (CCD 841 CoN). Cells were
harvested andhypotonically swollen in 40%RPMI 1640 for 15–20min at
RT. Cells were fixed in Carnoy’s fixative solution (75% methanol/25%
acetic acid) and subsequently dropped onto cooled glass slides after
drying at RT. Chromosomes were stained with 5% Giemsa solution
(MilliporeSigma) for 10 min, rinsed with water, air-dried, and mounted
with Euparal (Roth). Theproportionof cells with chromosomenumbers
deviating from the modal number was determined. Chromosome
number variability was also determined by interphase FISH. FISH was
performed using α-satellite probes specific for chromosomes 2 and 8
(CytoCell) according to the manufacturer’s protocol. Images were
acquired as 0.24-μmoptical sections with the ×63 1.4 NA objective, and
chromosome signals in 100 nuclei were determined.

Immunofluorescence microscopy

Microscopy of fixed cells was performed on a Zeiss AxioObserver Z1
microscope (Zeiss) equipped with an Apotome 2.0 module, a heated
chamber, and an AxioCam MRm camera (Zeiss). Images were
recorded with the ×63, 1.42 oil immersion objective and a z-optical
spacing of 0.24 μm, processed with the ZEN 3.1 blue edition software
(Carl Zeiss Microscopy GmbH), and shown as maximum-intensity
projections. Image sections had a size of 25 × 25 or 35 × 35 μm. For
the visualization of live chromosomes, HCT116 cells transfected with
10 μg of pcDNA3-H2B-GFP (91) were seeded in 12-well plates and
treated with DMSO, 10 nM of each (xeno)estrogen, or 5 nM noco-
dazole once cells had attached to the cell culture surface. After 24 h,
cells were seeded in 35-mm glass-bottom dishes (Ibidi) with four
compartments in a stripped FCS medium and cultured overnight. A
fresh stripped FCS medium (with ligands) was added before cells were
transferred into the prewarmed microscope chamber. Images were
recorded with the ×40, 1.42 objective, and a z-optical spacing of 2 μm
was recorded every 2 min for 10 h. 10 frames for each condition were
determined. The time-point of NEB was defined as the first frame
showing the loss of smooth appearance of chromatin, and anaphase
was the first frame when chromosomes move toward the cell poles.
Mitotic delay was defined as the median time from NEB to anaphase
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equal to or greater than 1.5-fold of themedian time observed in DMSO-
treated control cells (22 min). Box-and-whisker plots with 5–95 per-
centile were calculated from image sequences from at least 400
recorded cells (100 for each experiment) using the PRISM8.2.0 software.

Statistical analysis

All quantifications of CA and lagging chromosomes are based on
three to six independent experiments (if not stated otherwise), in
which 300–1,200 interphase cells (CA) or 500–600 anaphases
(lagging chromosomes) were evaluated, and mean values with
standard error of the mean (SEM) or median with 95% confidence
interval (qRT-PCR) or median with box and whiskers with 5–95
percentile were calculated. All karyotype analyses are based on the
quantification of individual chromosome numbers from 25 to 50
metaphase spreads. No data were excluded from the analysis.
Investigators, who obtained these data, were not blinded to sub-
stance treatment. Statistical analyses of most experiments were
performed with R.4.0.2. P-values for centriole overduplication
(Mann–Whitney’s test) and P-values for FACS analyses (ordinary
one-way ANOVA) were calculated using GraphPad Prism 6. Data
from most experiments are (i) count data dealing with (ii) fixed
effects (substance treatments) and (iii) random effects (biological
replicates). The generalized linear mixed model (glmm) considers
all three conditions (i–iii). In detail, glmm was applied to test the
effect of substance treatments on the probability π of the formation
of cells with CA or lagging chromosomes:

π = expη
1 + expη;

η = Xβ + Zb + ε:

Here, β denotes a coefficient vector of the substance treatment, X
is the corresponding fixed-effect matrix, b is the coefficient vector
of the biological replicates with random-effect matrix Z, and ε
denotes the technical error. Here, b and ε are regarded as normally
distributed with zero mean and standard deviations σb and σε.

For the estimation of the glmm, the function glmmTMB (92, 93)
from the R package glmmTMB was used. The null hypothesis β0 ≥ βi,
that is, the hypothesis that the substance i has the same or smaller
impact on π as the control, was tested by Wald’s z-statistics and its
corresponding P-values. To test the null hypothesis that there is no
difference in π resulting from n different substance treatments (β0 =
β1 = .. = βn), two different glmms were compared with the R function
ANOVA. The first model regards the commonmean only (η = μ + Zb +
ε) as a fixed effect. The second model regards the substance
treatment as a fixed effect (η = Xβ + Zb + ε). The biological replicates
were regarded in both models as random effects.

If for the control or one treatment the number of cells with CA
was zero for all biological replicates, P-values were estimated by
the following bootstrap procedure: for the control and each
treatment, i probabilities of CA were estimated by

πij = ðnumber of cells with centrosome amplificationÞ=
ðnumber of all observed cellsÞðj = 1; ::;nbÞ:

From this, nb × 100,000 probabilities were drawn with a re-
placement for each treatment and the control. With these probabil-
ities, the number of cells with centrosomes (nij) was randomly chosen
from the corresponding binomial distribution. The number of cases,
where the sum over the nb numbers of cells with CA for a treatment
was equal or smaller than the corresponding number for the control,
was counted. This number divided by 100,000 is then the P-value.

Standard deviations and median values of CA with substance
treatment i were estimated by the following bootstrap procedure:
for each of the nb biological replicates, this probability was esti-
mated by

πij = ðnumber of cells with centrosome amplificationÞ=
ðnumber of all observed cellsÞðj = 1; ::;nbÞ:

nb probabilities were 1,000 times randomly drawn with re-
placement from the above-described set of nb estimated proba-
bilities. For each of the chosen estimates, the number of cells with
CA was 10 times chosen randomly according to the binomial dis-
tribution with probability πij and size = n (number of all observed
cells). Therefore, we have obtained 10,000 simulated estimates of πi.
The median and SD are calculated from this set.

Fig S4B: The effect of substance treatment on the proportion of cells
with a time fromNEB to anaphasemore than 1.5 that of themedian time
observed in the DMSO control is tested in the same way as described
with the R function glmmTMB. Standard deviations and medians were
estimated by the bootstrap procedure described above.

ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001; and ****P <
0.0001. P-values are given online.
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