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ABSTRACT: Urban air pollution disproportionately harms com-
munities of color and low-income communities in the U.S.
Intraurban nitrogen dioxide (NO2) inequalities can be observed
from space using the TROPOspheric Monitoring Instrument
(TROPOMI). Past research has relied on time-averaged measure-
ments, limiting our understanding of how neighborhood-level NO2
inequalities co-vary with urban air quality and climate. Here, we use
fine-scale (250 m × 250 m) airborne NO2 remote sensing to
demonstrate that daily TROPOMI observations resolve a major
portion of census tract-scale NO2 inequalities in the New York
City−Newark urbanized area. Spatiotemporally coincident TRO-
POMI and airborne inequalities are well correlated (r = 0.82−0.97),
with slopes of 0.82−1.05 for relative and 0.76−0.96 for absolute
inequalities for different groups. We calculate daily TROPOMI NO2 inequalities over May 2018−September 2021, reporting
disparities of 25−38% with race, ethnicity, and/or household income. Mean daily inequalities agree with results based on
TROPOMI measurements oversampled to 0.01° × 0.01° to within associated uncertainties. Individual and mean daily TROPOMI
NO2 inequalities are largely insensitive to pixel size, at least when pixels are smaller than ∼60 km2, but are sensitive to low
observational coverage. We statistically analyze daily NO2 inequalities, presenting empirical evidence of the systematic
overburdening of communities of color and low-income neighborhoods with polluting sources, regulatory ozone co-benefits, and
worsened NO2 inequalities and cumulative NO2 and urban heat burdens with climate change.
KEYWORDS: urban air pollution, environmental justice, nitrogen dioxide, satellite measurements, TROPOMI

■ INTRODUCTION
New York City, New York, and Newark, New Jersey, are
populous U.S. cities with poor air quality, where there are
documented inequalities in air pollution concentrations and
health impacts affecting communities of color and low-income
residents.1−7 There have been decades of community
organizing and activism around environmental racism issues,
including air pollution and asthma, for example, in the South
Bronx, West Harlem, and Ironbound.8−10 Air quality can vary
substantially between neighborhoods in the same city, and
recent observational and computational advances have
improved quantitative estimates of intraurban inequalities
across the U.S.11−17 However, fine-scale pollutant mapping
typically relies on measurements that are short-timescale
snapshots or long-time averages, trading temporal information
for enhanced spatial detail. As a result, we have less knowledge
of temporal variability in neighborhood-level inequalities and
relationships between inequalities, urban air quality issues such
as ozone, and climate change.

Nitrogen dioxide (NO2) is a criteria pollutant and surface
ozone (O3) precursor. NO2 is a chemically reactive primary
pollutant, and therefore, NO2 concentrations are variable in
space and time, with characteristic NO2 distance decay
gradients away from sources equaling hundreds of meters to
2 km.18−20 NO2 is emitted as NOx (�NO + NO2), with
sources dominated by fossil fuel combustion in cities,
especially traffic exhaust.21−23 NO2 exposure is associated
with numerous adverse health effects,24−29 and roadway
residential proximity has been linked to asthma-related urgent
medical visits, pediatric asthma, cardiac and pulmonary
mortality, and preeclampsia and preterm birth.30−35 NO2
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concentrations and NOx sources are unequally distributed with
race, ethnicity, and income in U.S. cities,1,2,4−6,12−14,17,36 with
urban NO2 inequalities being large enough to cause health
disparities.11,24

To date, air pollution inequality analyses focusing on
primary pollutants like NO2 have typically prioritized spatial
rather than temporal information, as observations and models
must resolve length scales of atmospheric dispersion to fully
describe disparities. Satellite NO2 tropospheric vertical column
densities (TVCDs) have been incorporated into regression
models and other measurement-model hybrid surface NO2
products relevant for health and environmental justice
applications, with spatial resolutions ranging from 100 m to
0.01° (∼1 km).11,12,24 The TROPOspheric Monitoring
Instrument (TROPOMI) currently provides the highest-spatial
resolution global satellite NO2 TVCDs, with TROPOMI
describing NO2 inequalities at census tract scales directly after
TVCDs are oversampled to 0.01° × 0.01°, time averaging at
least multiple months of measurements.13,14,17 For reference,
the average area of census tracts in New York City and Newark
is 2.1 km2. Oversampled TVCDs have been shown to observe
NO2 inequalities equivalently to high-spatial resolution (250 m
× 500 m) airborne remote sensing to within associated
uncertainties, independently of patterns in the structure and
heterogeneity of urban racial segregation, and similarly as
measured at the surface.13,17 TROPOMI has an order of
magnitude-improved spatial resolution than its predecessor,
the ozone monitoring instrument (OMI), enabling analyses of
NO2 spatial distributions with less time averaging,37,38

potentially revealing new insights into the sources of and
controls over intraurban NO2 inequalities. However, with
current TROPOMI nadir pixel areas of ∼20 km2, the need for
oversampling has been assumed. As a consequence of the loss
in temporal resolution, distributive NO2 inequalities are not
easily situated within our broader understanding of urban air
quality and climate and vice versa.
In this paper, we evaluate the use of daily TROPOMI

observations to describe census tract-scale NO2 inequalities
with race, ethnicity, and income in the New York City−
Newark urbanized area (UA). First, we report NO2 inequalities
using airborne remote sensing capable of resolving NO2
distance decay gradients, with pixel dimensions of 250 m ×

250 m, collected during the 2018 NASA Long Island Sound
Tropospheric Ozone Study (LISTOS). The airborne observa-
tions serve as a reference for evaluating tract-scale NO2
inequalities determined using spatially and temporally
coincident daily TROPOMI NO2 TVCDs. We show that the
airborne and TROPOMI inequalities are strongly correlated,
and the daily TROPOMI TVCDs resolve a major portion of
tract-scale NO2 inequalities. We calculate daily TROPOMI
NO2 inequalities from May 2018−September 2021 and
analyze biases in individual and mean daily TROPOMI results
as a function of measurement pixel area, which ranges 20−91
km2, and UA sampling coverage. Finally, we interpret empirical
relationships between daily TROPOMI NO2 inequalities and
overall NO2 pollution, O3 air quality, and climate-relevant
atmospheric conditions.

■ MEASUREMENTS AND METHODS
GCAS and GeoTASO. The Geostationary Coastal and Air

Pollution Events (GEO-CAPE) Airborne Simulator (GCAS)39

and Geostationary Trace gas and Aerosol Sensor Optimization
(GeoTASO)40 instruments are push-broom spectrometers that
function as satellite analogs for NASA airborne missions.
GeoTASO makes hyperspectral nadir-looking measurements
of backscattered solar radiation in the ultraviolet (290−390
nm) and visible (415−695 nm) regions. GCAS makes similar
observations at 300−490 nm (optimized for air quality) and
480−900 nm (optimized for the ocean color). Each of the two
channels in both instruments uses two-dimensional charge-
coupled device (CCD) array detectors, where one CCD
dimension provides the spectral coverage, one provides the
cross-track coverage across a 45° field of view, and the
movement of host aircraft generates the along-track coverage.
The GCAS and GeoTASO datasets used here have identical
NO2 retrieval algorithms, which are similar to those of major
satellite instruments, including TROPOMI and eventually
TEMPO.41−43 Briefly, NO2 differential slant columns are
produced by fitting the 425−460 nm spectral window using
QDOAS and a measured reference spectrum collected over a
nearby area away from NO2 sources. Differential slant columns
are converted to vertical column densities using an air mass
factor (AMF), which is a function of viewing and solar

Figure 1. Example airborne NO2 TVCDs (molecules cm−2) collected on 30 June 2018 at 1−4 pm during a large raster flight pattern (250 m × 250
m) (a), TROPOMI measurements on the same day, which have a mean pixel area of 43 km2 (b), and TROPOMI observations oversampled to
0.01° × 0.01° over 1 May 2018−30 September 2021 averaged to underlying census tracts (c). The black outline describes the New York City−
Newark UA. Background map data: Landsat 8 composite January 2017−June 2020.
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geometries, surface reflectance, and meteorological and trace-
gas vertical profile shapes, among other variables (see Judd et
al.43 and Judd et al.44 for details). NO2 vertical profiles are
calculated using bias-corrected PRATMO stratospheric NO2
climatologies41,45,46 and hourly output from the North
American Model-Community Multiscale Air Quality (NAMC-
MAQ) model (12 km × 12 km) from a developmental analysis
from the National Air Quality Forecasting Capability.47 The
resulting GCAS and GeoTASO TVCDs have a spatial
resolution of 250 m × 250 m.
During LISTOS, GeoTASO flew on the NASA LaRC HU-

25 Falcon in June 2018, and GCAS flew onboard the NASA
LaRC B200 from July to September 2018. On days when
elevated regional air pollution was predicted (Table S1), a
large raster flight pattern spanning nearly the full New York
City−Newark UA (Figures 1a and S1a) was mapped in the
morning (9−11 am local time, LT) and afternoon (1:30−4:10
pm LT). On other days, aircraft followed a smaller raster flight
pattern (Figure S1b), sub-sampling the UA in the early
morning (8:15−9:50 am LT), late morning (9:50−11:30 am
LT), early afternoon (1:15−3:00 pm LT), and late afternoon
(3:00−4:45 pm LT). During LISTOS, Judd et al.44 reported
that GCAS and GeoTASO TVCDs agreed with coincident
ground-based Pandora NO2 column measurements to within
±25% with no apparent overall bias. Here, we focus on cloud-
free observations from 37 large and small NO2 TVCD flight
rasters collected in 13 days having sampled at least 60% of
census tracts in the New York City−Newark UA. On average,
GCAS and GeoTASO sampled 79 ± 7% of UA census tracts.
Compared to the full New York City−Newark UA, Black and
African Americans, Hispanics and Latinos, and Asians were
statistically overrepresented by 16−25% in census tracts
sampled during the large and especially small raster patterns
(Table S2).

TROPOMI. TROPOMI is a hyperspectral spectrometer
onboard the sun-synchronous Copernicus Sentinel-5 Precursor
(S-5P) satellite.48,49 S-5P has an equatorial crossing time of
1:30 pm LT, with observations collected over the New York
City−Newark UA (Figure 1b) between 1 and 3 pm LT once or
twice daily. NO2 is retrieved by fitting the 405−465 nm
spectral band based on an updated OMI DOMINO algorithm
and work from the QA4ECV project.50−54 NO2 TVCDs have
documented low-bias overpolluted scenes, with uncertainties
driven by spatially and temporally coarse inputs to the AMF,55

including the surface albedo (monthly 0.5° × 0.5° OMI

climatology)56 and NO2 profile shape (daily 1° × 1° TM5-MP
output).57 We use level 2 NO2 TVCDs reprocessed on the
S5P-PAL system (qa value >0.75). From 1 May 2018 to 6
August 2019, encompassing the LISTOS period, the nadir
spatial resolution of TROPOMI NO2 TVCDs was 3.5 km × 7
km, with individual pixel areas of 27−63 km2 (mean ± 1σ).
Subsequently, the spatial resolution improved to 3.5 km × 5.5
km at nadir,58 giving pixel areas of 21−49 km2 (mean ± 1σ)
over the New York City−Newark UA. We focus on the
individual daily TVCDs (an example is shown in Figure 1b)
and observations over May 2018−September 2021 over-
sampled to 0.01° × 0.01° using a physics-based algorithm
(Figure 1c).59

Census Tract NO2 Inequalities. We average NO2 TVCDs
within 2018 census tract polygons for the New York City−
Newark UA. Individual airborne and TROPOMI TVCDs are
spatially continuous but discretized to 0.001° × 0.001° at the
pixel level prior to tract averaging without regridding or
oversampling. NO2 tract-averaged TVCDs are weighted using
tract-scale populations of non-Hispanic/Latino Black and
African Americans, non-Hispanic/Latino Asians, all races
identifying as Hispanic or Latino, and non-Hispanic/Latino
whites (eq S1). Poverty status is defined according to the U.S.
Census Bureau Family Ratio of Income to Poverty. Poverty
thresholds vary by family size and family member age but not
geographically. The U.S. census intends for poverty thresholds
to be a “statistical yardstick” rather than a complete
representation of families’ needs. Below-poverty tracts are
those with greater than 20% of households having an income-
to-poverty ratio of <1. Tracts above the poverty line are
defined as those with household income-to-poverty ratios of
>1. Tract-scale NO2 TVCDs within both categories are
population-weighted by residents at the given poverty status.
We combine race-ethnicity and income metrics, categorizing
census tracts as low-income and non-white (LIN), that is,
people of color in low-income tracts, or high-income and white
(HIW). In LIN tracts, NO2 TVCDs are weighted using the
population of Black and African Americans, Hispanics and
Latinos, Asians, and/or American Indians and Alaska Natives
in the lowest income quintile tracts (household incomes <
$49,544.50). Because American Indians and Alaska Natives
comprise less than 0.2% of the New York City−Newark UA
population, we do not report results for this group separately.
In HIW tracts, TVCDs are weighted using the population of
non-Hispanic/Latino whites in the highest income quintile

Figure 2. Fractional census tract populations for Black and African Americans (a), Hispanics and Latinos of all races (b), Asians (c), and non-
Hispanic/Latino whites (d) and median household incomes (e) in the New York City−Newark UA (black line). Background map data: Landsat 8
composite January 2017−June 2020.
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tracts (household incomes >$117,664). When we compute
results in New York City and Newark separately, dividing the
UA along state lines, lowest income quintile tracts are those
with tract-averaged median household incomes <$48,911 and
<$51,250, respectively; highest income quintile tracts are those
with tract-averaged median household incomes >$112,940 and
>$125,367, respectively. We discuss NO2 disparities in terms
of relative and absolute inequalities computed as percent (%)
and absolute differences (molecules cm−2) in population-
weighted census tract-averaged TVCDs. Race-ethnicity in-
equalities are in reference to population-weighted NO2
TVCDs for non-Hispanic/Latino whites, and poverty status
inequalities are in reference to NO2 TVCDs in census tracts
above the poverty line. Although there are numerous
dimensions of air pollution inequity, our focus is on the
evaluation and application of daily satellite measurements;
therefore, we limit the number of demographic characteristics
considered in the analysis. Census data are from the 2019
American Community Survey (ACS): 5 year dataset. Frac-
tional census tract populations for the four largest race-
ethnicity groups and median household incomes are mapped
in Figure 2, and census tract population densities are shown in
Figure S2. The ACS is a higher-time resolution alternative to
the longform decennial census. The ACS accounts for
variations in census tract sampling rates and differential
group response rates through a complex weighting process.
Sample weights prioritize accuracy over precision, with
individual tract estimates being more imprecise in tracts with
heterogeneous populations.60,61 We manage this imprecision
through aggregation using population weighting. We focus on
the UA, defined as densely populated and commercial areas
within cities, to describe intraurban inequalities rather than
urban−suburban differences.

Measurements of Surface NO2* and O3 and Meteor-
ology. We use NO2* surface observations collected at 11
stations across the New York City−Newark UA (Figure S3a).
These measurements are made by decomposing NO2 to NO

over a heated molybdenum catalyst, followed by the detection
of NO using the chemiluminescence technique. The resulting
NO2 data have a known positive interference from higher-
order nitrogen oxides and ammonia, which also decompose at
non-unity efficiency in the presence of the catalyst.62−64 We
use the term NO2* in acknowledgement of this interference,
opting not to apply a correction factor as we are interested in
the distance dependence of the correlations between surface
NO2* and overhead TVCDs, rather than the surface NO2
mixing ratios themselves. We use O3 measurements from 17
monitoring stations within the UA (Figure S3b) converted to
the policy-relevant metric of the daily maximum 8 h average
(MDA8) O3 mixing ratio. Temperature and wind speed
measurements are collected at 14 stations throughout the New
York City−Newark UA as part of the Automated Surface
Observing System (ASOS) and the Automated Weather
Observing System (AWOS) (Figure S3c), accessible through
the Iowa State University Iowa Environmental Mesonet
download service. Because of station-level variability in the
data collection interval, we average individual station
meteorological measurements from 12 to 3 pm LT prior to
computing the UA-wide mean.

NOx Emission Inventories: FIVE and NEI. The Fuel-
based Inventory of Vehicle Emissions (FIVE) tabulates
monthly on-road and off-road gasoline and diesel mobile
source emissions at 4 km × 4 km U.S. wide. FIVE is based on
publicly available datasets of taxable fuel sales and road-level
traffic and time-resolved weigh-in-motion traffic counts.22,65,66

We use emissions from the 2018, 2019, 2020 COVID-19, and
2020 business-as-usual (BAU) FIVE for 2018, 2019, 2020, and
2021, respectively. The 2020 COVID-19 inventory was
developed using monthly scaling factors from U.S. Energy
Information Administration fuel sales reports.22 In 2020 BAU
FIVE, fuel use is assumed unchanged from 2019.22 See
McDonald et al.65 and Harkins et al.22 for a detailed discussion
of the uncertainties, which are ±24% for both gasoline and
diesel vehicles. Annual NOx stationary source emissions are

Figure 3. Airborne NO2 inequalities for each of the 37 LISTOS flights for Black and African Americans (a), Hispanics and Latinos (b), and Asians
(c) compared to those for non-Hispanic/Latino whites, below poverty vs above poverty tracts (d), and LIN compared to HIW tracts (e). Morning
(8−11:30 am LT) (tan) and afternoon (1−5 pm LT) (brown) flights are shown separately. LISTOS mean inequalities with 95% confidence
intervals are reported in each panel, for all flights (black) and separately in the morning (tan) and afternoon (brown).
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taken from the 2017 National Emissions Inventory (NEI17),
including industrial and commercial facilities, power plants,
and airports. Uncertainties in power plant emissions are ±25%,
and uncertainties for industrial facilities and other stationary
sources are ±50%.67,68

■ RESULTS AND DISCUSSION
GCAS and GeoTASO Census Tract-Level NO2 Inequal-

ities during LISTOS. We report population-weighted census
tract-scale NO2 inequalities measured during each of the 37
LISTOS flights within the New York City−Newark UA in
Figure 3 and Table S3. Population-weighted NO2 TVCDs for
Black and African Americans, Hispanics and Latinos, and
Asians are 14 ± 3%, 14 ± 5%, and 15 ± 4% higher than those
for for non-Hispanic/Latino whites, respectively. NO2 TVCDs
are on average 17 ± 4% greater in tracts below the poverty line
compared to those above. When race-ethnicity and income
metrics are combined, NO2 TVCDs are 24 ± 4% higher in LIN
than those in HIW census tracts. Errors are defined as 95%
confidence intervals for mean inequalities, derived from
bootstrapped distributions sampled with replacement 104
times.
NO2 inequalities are more variable between days than by

time of the day during LISTOS. Although population-weighted
and/or income-sorted NO2 TVCDs for all groups are on
average 14−28% higher during morning (8−11:30 am LT)
than during afternoon flights (1−5 pm LT), corresponding
median relative and absolute NO2 inequalities are not
significantly different for any group (Mann−Whitney test, p
< 0.050). Mean relative and absolute inequalities are also
similar during morning and afternoon flights, with exceptions
of relative inequalities for Hispanics and Latinos and absolute

inequalities for Asians and in LIN tracts. This suggests that
observations collected in the early afternoon by TROPOMI
capture daytime patterns in tract-scale population-weighted
NO2 TVCD (not surface mixing ratio) differences generally, at
least during LISTOS. The small number of flights limits our
ability to statistically infer relationships between NO2
disparities and environmental factors; however, we observe
moderate, negative correlations between absolute inequalities
and mean surface wind speeds and moderate, positive
correlations with UA-mean NO2* and NO2 TVCDs for
some groups (p < 0.050) (Table S4). This is consistent with
slower surface winds reducing the mixing of NO2 pollution
away from NOx sources and higher NO2 pollution worsening
absolute inequalities.

Evaluating Daily TROPOMI Observations. To deter-
mine the extent to which daily TROPOMI measurements
resolve census tract-level disparities, we compare NO2
inequalities for spatially and temporally coincident tract-
averaged GCAS, GeoTASO, and TROPOMI observations
within the New York City−Newark UA. We consider
measurements to be coincidental if the minimum and
maximum overfly times of airborne columns within a given
census tract occur within ±30 min of the TROPOMI overpass.
Daily relationships between airborne and TROPOMI inequal-
ities are fit using an unweighted bivariate linear regression
model (Figure 4).69 We infer the portion of NO2 inequalities
captured by TROPOMI from the slope of this line and assess
agreement between the airborne and TROPOMI-derived
results using Pearson correlation coefficients.
Daily TROPOMI observations capture most tract-scale NO2

differences and are well correlated with inequalities measured
by GCAS and GeoTASO. Correlation slopes are from 0.82 ±

Figure 4. Daily relative (%) (blue circles) and absolute (molecules cm−2) (green diamonds) inequalities measured by GCAS and GeoTASO vs
TROPOMI during LISTOS for Black and African Americans (a), Hispanics and Latinos (b), and Asians (c) compared to those for non-Hispanic/
Latino whites, below-poverty vs above poverty tracts (d), and LIN compared to HIW tracts (e). Fits are derived from an unweighted bivariate
linear regression model. Slopes (m) and Pearson correlation coefficients (r) for each fit are reported for both relative (blue) and absolute (green)
inequalities. One data point in panel d is out of frame (−119.5%, −136.4%).
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0.10 to 1.05 ± 0.07 for relative inequalities and from 0.76 ±
0.09 to 0.96 ± 0.06 for absolute inequalities, implying that
TROPOMI detects at least 82% of relative and 76% of absolute
inequalities, with slopes for many population groups being
even higher. For comparison, the mean pixel area of coincident
TROPOMI TVCDs is 44 ± 18 km2 (±1σ), which is much
larger than typical atmospheric NO2 distance decay gradients
of a few hundred meters.18−20 Although some precision is lost,
our results suggest that measurements on the scale of these
gradients, for example, GCAS and GeoTASO, are not required
to constrain the majority of city-wide census tract-scale NO2
inequalities. Airborne and TROPOMI inequalities are strongly
correlated, with Pearson correlation coefficients ranging 0.82−
0.97 for relative and 0.88−0.96 for absolute inequalities. Slopes
and Pearson correlation coefficients do not improve signifi-
cantly when inequalities are weighted by the number of
coincident census tracts, mean TROPOMI pixel areas, UA-
mean surface wind speeds, or mean TROPOMI NO2 TVCDs,
suggesting that these variables do not have a strong influence
over the agreement, at least in the New York City−Newark UA
during LISTOS.
We calculate daily census tract-scale NO2 inequalities over

May 2018−September 2021 and investigate the sensitivity of
mean and individual daily results to the UA-mean TROPOMI
pixel area and UA coverage percentage (Table 1). First, UA-
mean daily TROPOMI pixel areas range ∼20−90 km2 (Figure
S4), providing an empirical test of the resolution dependence
of NO2 inequalities. We remove days from the analysis when
TROPOMI observations cover less than 30% of census tracts
across the New York City−Newark UA (justification below;
see Table S5 for an analysis of all days). We find that relative
inequalities are mostly insensitive to TROPOMI UA-mean
pixel area, with significant differences in medians emerging

when pixels are larger than ∼60 km2, defined as p < 0.050
(Kruskal−Wallis test). Additionally, there is no clear influence
of increasing UA-mean pixel area on the coefficient of variation
of the individual daily inequalities. Substantial day-to-day
variability limits our ability to identify an exact pixel area−
sensitivity threshold, and because observation days with UA-
mean pixel area >60 km2 comprise less than 15% of the full
dataset, their inclusion does not significantly affect our results.
Relationships between inequalities and UA-mean pixel area
suggest that key spatial scales for describing NO2 inequalities
are larger than those of atmospheric NO2 dispersion gradients,
which is consistent with recent work by Chambliss et al.16 and
Demetillo et al.,13 likely because NOx emission sources are
ubiquitous and distributed, and tracts with similar population
characteristics are spatially aggregated.70

Second, we investigate the sensitivity of daily inequalities to
TROPOMI observation UA coverage extent (Table 1).
Reduced sampling coverage is largely caused by clouds, but
snow accumulation can be important in the winter. In the New
York City−Newark UA, snow cover accounted for 29% of
missing pixels in winter months, with snow present on 43% of
observations days in December−February and 12% of total
observation days across May 2018−September 2021. Dis-
tributions of daily relative and absolute NO2 inequalities for
each group are shown in Figure 5 on all days, on days with at
least 30% UA coverage, and on days with at least 60% UA
coverage. Inclusion of days with sparse coverage (<30%)
decreases mean relative NO2 inequalities by 4−6% percentage
points. Individual daily inequalities are more affected by
missing data than means, with increasing coefficients of
variation at UA coverage levels of <60% in comparison to
days with >90% coverage. Effects of incomplete UA coverage
are largely explained by insufficient sampling of key race-

Table 1. Influence of TROPOMI Pixel Area and Sampling Coverage on Both Mean and Individual Daily Relative Inequalities
(May 2018−September 2021) and Comparison between Mean Daily and Oversampled Relative Inequalities for Black and
African Americans, Hispanics and Latinos, and Asians Compared to Those for Non-Hispanic/Latino Whites, for below
Poverty versus above Poverty Tracts, and for LIN Compared to HIW Tractsa

mean of daily inequalities daily inequalities

relative inequalities (%) coefficient of variation

pixel area
(km2)

Black and African
Americans

Hispanics and
Latinos Asians

below
poverty tracts

LIN
tracts

Black and African
Americans

Hispanics and
Latinos Asians

below
poverty
tracts

LIN
tracts

20−25 31 ± 2 30 ± 2 28 ± 2 28 ± 2 40 ± 3 0.44 0.52 0.43 0.45 0.40
25−30 32 ± 3 30 ± 3 28 ± 2 26 ± 3 39 ± 3 0.45 0.53 0.42 0.52 0.41
30−35 31 ± 3 29 ± 3 30 ± 2 26 ± 2 38 ± 3 0.42 0.42 0.32 0.43 0.37
35−45 31 ± 2 26 ± 3 28 ± 2 25 ± 3 38 ± 3 0.37 0.62 0.34 0.53 0.41
45−60 30 ± 3 27 ± 3 28 ± 3 25 ± 2 38 ± 4 0.54 0.60 0.51 0.53 0.53
>60 26 ± 3 25 ± 3 23 ± 2 22 ± 2 31 ± 3 0.47 0.60 0.49 0.50 0.43
UA coverage (%)
<30 12 ± 2 11 ± 2 10 ± 2 11 ± 4 18 ± 4 1.99 2.00 2.05 2.47 1.81
30−60 30 ± 3 29 ± 3 26 ± 3 25 ± 3 37 ± 4 0.64 0.62 0.65 0.66 0.65
>60 30 ± 1 28 ± 1 28 ± 1 26 ± 1 38 ± 1 0.40 0.53 0.36 0.45 0.36

mean of daily inequalities oversampled inequalities

all days 24 ± 1 22 ± 1 21 ± 1 21 ± 1 32 ± 1 28 ± 1 27 ± 1 28 ± 1 25 ± 1 36 ± 2
>30% 30 ± 1 28 ± 1 28 ± 1 25 ± 1 38 ± 1 28 ± 1 27 ± 1 28 ± 1 25 ± 1 35 ± 2
>60% 30 ± 1 28 ± 1 28 ± 1 26 ± 1 38 ± 1 28 ± 1 26 ± 1 28 ± 1 25 ± 1 36 ± 2

aThe pixel area analysis only includes days with >30% UA coverage. Observations are grouped such that each category contains at least 80
observation days. Inequalities are binned by days with low (<30%), moderate (30−60%), and high (>60%) UA coverage. Daily inequalities are
assessed using the coefficient of variation. Errors are 95% confidence intervals based on bootstrapped distributions sampled with replacement 104
times. The oversampled TROPOMI TVCDs are oversampled to 0.01° × 0.01° prior to census tract averaging for all days, on days with >30%
coverage, and on days with >60% coverage, with uncertainties as standard mean errors.
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ethnicity, poverty, and income groups, with greater coverage
capturing more representative UA demographics and observa-
tions on lower-coverage days more likely to sample the
population groups in the majority (Figure S5): non-Hispanic/

Latino whites (44%) and tracts above the poverty line (73%).
As a result, we remove days with <30% UA coverage from our
discussion of mean NO2 inequalities (323 days or 33% of the
full dataset) and days with <60% coverage from our analysis of

Figure 5. Daily TROPOMI NO2 inequalities over May 2018−September 2021 for Black and African Americans (a), Hispanics and Latinos (b),
and Asians (c) compared to non-Hispanic/Latino whites, below-poverty vs above poverty tracts (d), and LIN compared to HIW tracts (e). Top
panels depict relative inequalities (%) on all days (light blue), on days with at least 30% UA coverage (gray blue), and on days with at least 60% UA
coverage (bright blue). Bottom panels depict absolute inequalities (molecules cm−2) on all days (light green), days with at least 30% UA coverage
(yellow green), and on days with at least 60% UA coverage (dark green). The mean relative inequalities and 95% confidence interval are included
in each panel for each coverage threshold: on all days (light blue), on days with at least 30% UA coverage (gray blue), and on days with at least 60%
UA coverage (bright blue).

Table 2. Mean Daily TROPOMI Inequalities (May 2018−September 2021) on Days with >30% Coverage across the New York
City−Newark UA Based on the S5P-PAL NO2 Product, as Used throughout the Analysis, on Days with >30% Coverage Based
on the RPRO and OFFL Operational Products, Separately in New York City and Newark, and within the Large (30 June) and
Small (15 August) LISTOS Flight Rastersa

mean of daily inequalities (%)

New York City−Newark UA
(S5P-PAL)

New York City−Newark UA
(operational product)

New York
City, NY

Newark,
NJ

large LISTOS raster
flight pattern

small LISTOS raster
flight pattern

Black and African
Americans

30 ± 1 26 ± 1 22 ± 1 33 ± 2 22 ± 1 10 ± 1

Hispanics and
Latinos

28 ± 1 23 ± 1 19 ± 1 43 ± 2 20 ± 1 11 ± 1

Asians 28 ± 1 25 ± 1 25 ± 1 26 ± 2 19 ± 1 10 ± 1
below poverty
tracts

25 ± 1 22 ± 1 20 ± 1 24 ± 1 22 ± 1 14 ± 1

LIN tracts 38 ± 1 32 ± 1 30 ± 1 43 ± 1 32 ± 1 20 ± 1
aErrors are 95% confidence intervals based on bootstrapped distributions sampled with replacement 104 times.
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daily inequalities (457 days or 47% of the full dataset). Results
are skewed toward clear sky conditions, corresponding to
daytime (12−3 pm LT) mean surface NO2* mixing ratios of
8.1 ± 4.4 ppb (days with >30% UA coverage) compared to
daytime mean NO2* ratios of 11.9 ± 6.6 ppb (days with <30%
coverage), likely biasing daily absolute NO2 inequalities low
(discussion below).
Mean daily population-weighted NO2 TVCDs over May

2018−September 2021 are 30 ± 1%, 28 ± 1%, and 28 ± 1%
higher for Black and African Americans, Hispanics and Latinos,
and Asians, respectively, compared to those for non-Hispanic/
Latino whites (Figure 5 and Table 1). NO2 TVCDs are 25 ±
1% greater in tracts below the poverty line than above and 38
± 1% higher in LIN compared to those in HIW census tracts.
We report results separately in New York City and Newark,
where mean daily NO2 inequalities are 19−30% and 24−43%,
respectively (Table 2). Means and 95% confidence intervals
are derived from bootstrapped daily NO2 inequality distribu-
tions resampled 104 times. We repeat NO2 inequality
calculations by first oversampling the same subset of days to
a resolution of 0.01° × 0.01° using a physics-based algorithm59

prior to census tract averaging and find that oversampled and
mean daily results are equal to within associated uncertainties
for days with at least 30% UA coverage (Table 1). Finally, our
analysis is based on recently reprocessed S5P-PAL TROPOMI
TVCDs, which include improvements resolving some of the
low biases occurring over polluted northern midlatitude scenes
and in the wintertime.71 Mean daily inequalities computed
with the S5P-PAL TVCDs are 3−6 percentage points higher
compared to those of the RPRO and OFFL operational
products (Table 2), indicating that TROPOMI NO2 inequality
estimates using previously available NO2 products are biased
low, as suggested by Demetillo et al.17 in their detailed

evaluation of oversampled NO2 TVCDs and census tract-scale
inequalities in Houston, Texas.
Although inequalities based on spatially and temporally

coincident airborne and TROPOMI TVCDs are in good
agreement (Figure 4), mean daily TROPOMI NO2 inequalities
are significantly higher than those measured by GCAS and
GeoTASO during LISTOS (Table 1). This is true both over
the full May 2018−September 2021 period and on LISTOS
flight days when all TROPOMI TVCDs, not just those
coincident with airborne observations, are considered.
Absolute inequalities are higher in the winter than in the
summer; however, relative NO2 inequalities exhibit little
seasonal variation. Although LISTOS inequalities are within
the distribution of daily TROPOMI inequalities, differences in
mean disparities are explained by changes in UA observational
coverage and corresponding demographic composition. Mean
daily TROPOMI inequalities within a typical LISTOS large
(30 June 2018) and small (15 August 2018) flight raster are
3−9 and 11−20 percentage points lower than those across the
full New York City−Newark UA (Table 2), respectively.
However, there are similarities; for example, mean inequalities
for Black and African Americans, Hispanics and Latinos, and
Asians are comparable to within associated uncertainties, as
also observed by GCAS and GeoTASO during LISTOS, and
inequality distributions for Hispanics and Latinos exhibit a
heavy tail using both daily TROPOMI and aircraft TVCDs.
Finally, TROPOMI measures NO2 atmospheric columns

rather than surface mixing ratios. For satellite remote sensing
to inform environmental justice decision-making, spatial and
temporal patterns in TVCDs must reflect NO2 distributions at
the surface.13,17 To investigate NO2 column−surface relation-
ships, we calculate Pearson correlation coefficients between
daily TROPOMI TVCDs (without averaging to underlying
census tracts) and mean daytime (12−3 pm LT) NO2* mixing

Table 3. Correlation Coefficients between Daily Absolute Inequalities and UA-Mean NO2* Mixing Ratios (12−3 pm LT), NO2
TVCDs, Surface Wind Speeds (12−3 pm LT), Surface Temperatures (12−3 pm LT), Daily Maximum Temperatures, and
MDA8 O3 Mixing Ratiosa

summer

correlations with absolute daily inequalities
correlations with relative

daily inequalities

surface wind
speeds

surface
NO2*

NO2
TVCDs

MDA8
O3

surface
temperatures

daily maximum
temperature

surface
NO2*

NO2
TVCDs

Black and African
Americans

−0.31 0.56 0.61 0.41 0.19† 0.19† 0.25 0.17†

Hispanics and Latinos −0.24 0.62 0.67 0.55 0.28 0.33 0.46 0.39
Asians −0.34 0.59 0.68 0.51 0.30 0.28 0.32 0.25
below poverty tracts −0.29 0.62 0.64 0.50 0.26 0.30 0.38 0.25
LIN tracts −0.32 0.63 0.66 0.50 0.23 0.27 0.40 0.24

winter

correlations with absolute daily inequalities
correlations with relative daily

inequalities

surface wind speeds surface NO2* NO2 TVCDs surface temperatures surface NO2* NO2 TVCDs

Black and African Americans −0.75 0.60 0.65
Hispanics and Latinos −0.65 0.70 0.64 0.44 0.28
Asians −0.77 0.69 0.75
below poverty tracts −0.71 0.63 0.54
LIN tracts −0.78 0.64 0.60

aRelationships between daily NO2 inequalities, surface NO2*, and NO2 TVCDs are Pearson correlation coefficients (r). All other relationships are
Spearman rank correlation coefficients (ρ). Correlations are separately analyzed in the winter (December−February) and summer (June−August)
for days with TROPOMI observations with >60% UA coverage. Only statistically significant coefficients are reported, with r and ρ significant to 1%
(p < 0.010) unless indicated as (†), which means significant to 5%.
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ratios as a function of the distance between observations.13,17,72

We find the strongest mean correlations (r = 0.61 ± 0.03; error
is the 95% confidence interval) between NO2* and directly
overhead TVCDs, defined as TVCDs within 1 km of a monitor
based on pixel center points. Mean daily column−surface
correlations subsequently weaken with increasing distance,
falling to 0.56 ± 0.03 at 1−2 km, 0.49 ± 0.02 at 2−5 km, and
0.43 ± 0.02 at 5−10 km. The distance dependence of mean
Pearson correlation coefficients reflects typical NO2 distance
decay gradients,18−20 indicating that coarser-resolution daily
observations resolve finer-scale NO2 gradients, at least to some
extent in the average. Column−surface correlations covary
with wind speeds and overall NO2 pollution levels in physically
meaningfully ways. Daily r values are significantly, although
weakly, negatively associated with UA-mean surface wind
speeds and positively associated with UA-mean NO2* and
NO2 TVCDs. Lastly, we find no relationship between Pearson
column−surface correlation coefficients and daily UA-mean
pixel area (Table S6).

Daily Variability in NO2 Inequalities. Here, we apply the
daily TROPOMI NO2 inequality observations, describing
statistical relationships with overall NO2 and O3 pollution and
climate-relevant atmospheric conditions (Table 3). We discuss
the implications of each in turn. We report Pearson correlation
coefficients among NO2 inequalities, surface NO2* mixing
ratios, and NO2 TVCDs. We compute Spearman rank
correlation coefficients (ρ) among NO2 inequalities, MDA8
O3, surface wind speeds, and surface daytime and daily
maximum temperatures, as these relationships are monotonic
but nonlinear. Surface NO2* mixing ratios, wind speeds, and
temperatures are UA-wide means over 12−3 pm LT in
correspondence with the TROPOMI overpass time. We
calculate r and ρ values on days with >60% TROPOMI UA
coverage, separately in the winter (December−February) and
summer (June−August).
First, we find that absolute NO2 inequalities are strongly

associated with UA-mean surface NO2* and NO2 TVCDs.
However, relative inequalities are mostly uncorrelated in the
winter and only weakly or moderately associated with NO2
pollution in the summer. Observed differences between
absolute and relative inequalities are evidence that NOx
sources are systematically located in communities of color
and low-income neighborhoods, as variability in individual
terms affecting the NO2 mass balance will have a larger effect
on absolute NO2 concentrations than on relative differences
city-wide. Therefore, while incremental NOx controls will
decrease localized NO2 burdens, any emissions above zero will
drive continued disparities. Results from daily TROPOMI
TVCDs are supported by predictions from FIVE and the NEI.
We calculate inequalities in NOx source densities equivalently
to those based on observations (Measurements and Methods),
with point source emissions summed within census tracts and
total NOx emissions (FIVE + NEI) divided by tract area.
Inequalities in population-weighted NOx emission source
densities are 90 ± 6% for Black and African Americans, 95
± 5% for Hispanics and Latinos, 71 ± 6% for Asians, 88 ± 5%
for below-poverty tracts, and 113 ± 7% for LIN tracts.
NO2 is a key reactant in the chemistry of O3 production

(PO3); therefore, neighborhood-level NO2 inequalities and
urban O3 are potentially coupled. In the New York City−
Newark UA, there were 59 exceedances of the MDA8 70 ppb
National Ambient Air Quality Standards (NAAQS) over May
2018−September 2021. Briefly, PO3 is a nonlinear function of

NO2. At low NO2 levels, NOx emission reductions decrease
PO3 (chemistry is NOx-limited). At high NO2 levels, NOx
reductions increase PO3 (chemistry is NOx-suppressed), with
decreases in gas-phase organic compounds being the most
effective form of O3 control, at least until NO2 is sufficiently
reduced to transition to NOx-limited PO3. Here, we find that
absolute NO2 inequalities are moderately, positively associated
with summertime UA-mean MDA8 O3 (Table 3), with similar
results over the May−September O3 season (Table S7). For
comparison, correlation coefficients relating UA-mean surface
NO2* and column NO2 TVCDs with MDA8 O3 on >60% UA
coverage days are 0.43 and 0.46, respectively. This suggests
that there are regulatory O3 co-benefits to reducing NO2
inequalities and to strategies prioritizing NOx emission
reductions in communities of color and low-income
communities, consistent with recent work showing PO3 in
New York City and Newark trending toward NOx limitation.73

Because O3 is an intermediately long-lived secondary pollutant,
it is more evenly distributed and not generally associated with
large intraurban exposure disparities.74 However, NO2
concentrations are highly spatially heterogeneous, and NO2
reductions in neighborhoods overburdened by NOx sources
could potentially worsen O3 locally. To investigate this, we
compare population-weighted census tract-scale MDA8 O3
NAAQS exceedance frequencies on weekdays and weekends
based on surface O3 measurements (Table S8). In the New
York City−Newark UA, NO2 TVCDs were on average 27%
lower on weekends compared to those on weekdays over May
2018−September 2021. Across U.S. cities, weekday−weekend
O3 differences are a well-established test of the NO2
dependence of PO3, as substantial NO2 decreases occur
without comparatively large changes in other aspects of O3
chemistry.75 We find that MDA8 O3 NAAQS exceedances are
more frequent on weekdays than weekends for all race,
ethnicity, and/or income groups (Table S8), indicating that
NOx reductions will not worsen O3 where NOx emissions are
greatest. This said, we add caution that our results may be
influenced by the locations of the O3 monitors.
Finally, atmospheric conditions influence intraurban NO2

distributions in ways that inform how NO2 inequalities may
scale with climate change. The Northeast U.S. is expected to
experience warmer surface temperatures and more frequent
stagnation days in summer and winter months, with slower
surface winds from reduced mid-latitude cyclone activity and a
northward shift of the summer mid-latitude jet stream.76−81

We find that NO2 inequalities exhibit moderate to strong
negative associations with surface wind speeds, consistent with
the accumulation of NO2 pollution near NOx sources from
reduced atmospheric mixing. This indicates that more frequent
atmospheric stagnation events will exacerbate disparities.
During summer months, NO2 inequalities are weakly but
significantly positively correlated with both daytime average
and maximum daily temperatures. As a result, NO2 inequalities
and temperature may not scale together; however, people of
color and low-income residents in New York City and Newark
also bear disproportionate urban heat risks compared to non-
Hispanic/Latino white and wealthy residents,82−84 suggesting
that cumulative unequal climate-driven burdens will be greater
without targeted NOx emission controls.

Summary, Future Opportunities, and Implications.
We have demonstrated that individual daily TROPOMI
observations capture a major portion of census tract-scale
NO2 inequalities in the New York City−Newark UA using
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high-spatial resolution (250 m × 250 m) GCAS and
GeoTASO remote sensing measurements as a standard of
comparison. LISTOS airborne observations resolve length
scales of dispersion, allowing for accurate representations of
tract-averaged NO2 TVCDs. We show that spatially and
temporally coincident TROPOMI and aircraft measurements
are strongly correlated (0.82−0.97) with slopes of 0.82 ±
0.10−1.05 ± 0.07 and 0.76 ± 0.09−0.96 ± 0.06 for relative
and absolute inequalities, respectively. Moreover, daily
TROPOMI NO2 inequalities are generally insensitive to
observation resolution for UA-mean pixel areas smaller than
60 km2; therefore, key spatial scales for measuring NO2
inequalities are larger than those of atmospheric NO2
gradients,16 as tracts with similar population characteristics
are spatially aggregated, even in New York City and Newark
where the structure of racial segregation is highly heteroge-
neous.13,70 As a result, fine-scale observations may not always
be required to understand variability in intraurban air pollution
disparities, especially if biases can be well characterized,
opening new opportunities for satellite remote sensing and
chemical transport modeling. We limit our conclusions to
decision-making on city-wide NO2 inequalities, as we have not
attempted to resolve near-field impacts of individual polluters
in communities with air pollution-related environmental justice
concerns, instead focusing on accumulated NO2 burdens from
ubiquitous and overlapping urban NOx sources. Daily
TROPOMI observations cannot replace hyper-localized
community-driven monitoring,85 but spatially comprehensive
and temporally resolved satellite measurements offer compli-
mentary information on spatiotemporal trends and in
unmonitored locations.
We report mean daily NO2 inequalities of 28−30% for Black

and African Americans, Hispanics and Latinos, and Asians and
inequalities of 25% for residents of below-poverty census tracts.
When race-ethnicity and income metrics are combined, we find
38% greater population-weighted NO2 TVCDs for people of
color living in low-income tracts (LINs). These mean daily
NO2 inequalities equal those based on TROPOMI NO2
TVCDs first oversampled to 0.01° × 0.01° to within associated
uncertainties. Biases arise using individual observations with
reduced UA coverage due to inadequate sampling of key race-
ethnicity and income groups, affecting mean daily NO2
inequalities and the precision of individual daily results (Figure
S5). The dependence of city-level inequalities on sampling
coverage has relevance for other measurement approaches for
which it is difficult to collect observations city-wide, for
example, mobile monitoring. Reliance on clear sky measure-
ments likely biases absolute NO2 inequalities low, and relative
inequalities to a smaller extent, as UA-wide mean surface
NO2* mixing ratios are 40% higher (3.8 ppb higher) on low-
(<30%) than on high-coverage (>30%) days and as
TROPOMI absolute inequalities are strongly, positively
associated with overall NO2 pollution, at least in the New
York City−Newark UA.
Observations of daily NO2 inequalities offer new insights

into the causes and countermeasures of neighborhood-level
disparities through their statistical relationships with other
factors. We present empirical evidence for the systematic
placement of NOx sources in communities of color and low-
income neighborhoods across the New York City−Newark
UA. Specifically, absolute NO2 inequalities are strongly
correlated with overall NO2 pollution, while relative NO2
inequalities are not. The issue of source placement has been

long identified by community organizations and residents, with
TROPOMI providing space-based accountability of whether
the promises of recent legislation in both states to consider
cumulative burdens during permitting are kept.86,87 Municipal-
ities have several tools for addressing existing siting disparities:
establishing penalties; eliminating nonconforming uses; using
environmental reviews, impact analyses, and comprehensive
planning; and tightening existing zoning codes in polluted
neighborhoods with marginalized and vulnerable populations.
Daily TROPOMI observations enable approaches to prioritize
affected communities where and when NO2 burdens are
highest. We find that more frequent stagnation conditions in
the coming decades will exacerbate neighborhood-level NO2
inequalities, and warming summer surface temperatures will
increase cumulative disparities from overlapping NO2 and
urban heat burdens. Thus informed, municipalities have
opportunities for targeted interventions focused on redressing
harms and eliminating disparities by preventing the arrival of
new sources and decreasing existing NOx emissions in
overburdened communities. In addition, because NO2 inequal-
ities are positively associated with high MDA8 O3 in the New
York City−Newark UA, targeted NOx emission reductions in
communities of color and low-income neighborhoods have the
potential to improve O3 city-wide.
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