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ABSTRACT: Various neurological dysfunctions are associated with cytotoxic
amyloid-containing aggregates formed through the irreversible maturation of
protein condensates generated by phase separation. Here, we investigate the
amino acid code for this cytotoxicity using TDP-43 deep-sequencing data. Within
the droplet landscape framework, we analyze the impact of mutations in the
amyloid core, aggregation hot-spot, and droplet-promoting residues on TDP-43
cytotoxicity. Our analysis suggests that TDP-43 mutations associated with low
cytotoxicity moderately decrease the probability of droplet formation while
increasing the probability of multimodal binding. These mutations promote both
ordered and disordered binding modes, thus facilitating the conversion between
the droplet and amyloid states. Based on this understanding, we develop an
extension of the FuzDrop method for the sequence-based prediction of the
cytotoxicity of aging condensates and test it over 20,000 TDP-43 variants. Our
analysis provides insight into the amino acid code that regulates the cytotoxicity
associated with the maturation of liquid-like condensates into amyloid-containing aggregates, suggesting that, at least in the case of
TDP-43, mutations that promote aggregation tend to decrease cytotoxicity, while those that promote droplet formation tend to
increase cytotoxicity.

■ INTRODUCTION
Increasing evidence demonstrates that proteins can populate
three fundamental states in the cellular environment. In
addition to the native and amyloid states,1,2 proteins can
sample a dense, liquid-like state, which is reversibly formed
from the native state through a phase separation process and is
prone to irreversibly maturate into the amyloid state.3−5 This
liquid-like state, also known as the droplet state, seems to be
generally accessible to proteins6 and associated with a wide
range of physiological processes that involve the formation of
multicomponent functional assemblies referred to as mem-
braneless organelles.7,8

The droplet state is tightly regulated by the protein
homeostasis system,9 including molecular chaperones,10

ubiquitin ligases, and the autophagy system.11 Upon
dysregulation of the balance between the native state and the
droplet state, however, the latter can evolve into the amyloid
state (Figure 1).12 During this process of amyloid formation,
known as the condensation pathway, cytotoxic intermediates
can be generated.13−17 Cytotoxicity can be caused by a wide
variety of molecular mechanisms, including protein mislocal-
ization, a lack of availability of functional partners, or a
presence of nonphysiological partners, and by changes in the
protein structure, leading to oligomerization. In addition, a
delayed reconversion to the native state of proteins trapped in
a gel-like form can be due to recruitment of other cellular
components.18

We previously investigated the amino acid code that
determines the condensation pathway to amyloid formation.21

We suggested that the conversion of the droplet state to the
amyloid state can be described by a droplet landscape based on
the observation that the droplet and amyloid states are
stabilized by different binding modes.21,22 The droplet state is
mostly stabilized by disordered interactions, comprising
heterogeneous binding patterns among the same residues
(Figure 1A). The amyloid state, in contrast, is stabilized by
ordered interactions, which are formed by well-defined
contacts between residues (Figure 1A).
An important role in this discussion is played by protein

regions that can sample both ordered and disordered binding
modes. Regions that sample a multiplicity of binding modes
(MBM), including both disordered and ordered interactions
(Figure 1B), can be identified based on their sequences.22 Our
analysis suggests that regions that change their binding modes
upon alterations in the cellular environment overlap with
regions becoming the amyloid cores of the condensates and
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thus can serve as aggregation hot-spots.21 Based on this insight,
we could discriminate between FUS mutations associated with
amyotrophic lateral sclerosis (ALS) and those not associated
with the disease.23,24 In particular, our analysis indicates that
disease-associated mutations increased the multiplicity of
binding modes, i.e., the probability of sampling both ordered
and disordered interactions, while similar mutations not
affecting this property tended to be not associated with ALS.21

Here, we investigated the amino acid code that determines
cytotoxicity of the aging condensates using deep-sequencing
data of >20,000 mutants of the TAR binding protein 43 (TDP-
43).19 The presence of neuronal aggregates of mutant TDP-43
is a molecular hallmark of ALS.17,25,26 The cytotoxicity of
TDP-43 mutants measured in yeast indicated that mutations

that enhanced amyloid formation decreased cytotoxicity,19

while mutations that affected the secondary structure increased
cytotoxicity. By extending previous results on ALS-associated
mutations,23,24 our analysis here indicates that TDP-43
mutants increase the probability of sampling both ordered
and disordered interactions and in particular increase the
multiplicity of binding modes of droplet-promoting residues.
Based on this understanding, we report an extension of the
FuzDrop method6 for the sequence-based prediction of the
cytotoxicity of aging condensates.

■ RESULTS
Aggregation Is Induced by Mutations Affecting the

Local Sequence Bias. We previously reported the prediction

Figure 1. Interaction modes in the droplet and amyloid states of proteins. (A) The local sequence bias of a protein region determines its binding
mode. Illustration of residues in regions with strong (blue) and weak (red) local sequence bias in the droplet (green), amyloid (purple), and hot-
spot (gray) regions of TDP-43.19 The local sequence bias of a given region is defined based on the difference between the amino acid composition
of the region itself and its flanking sequences.20 A strong bias leads to ordered binding modes with a well-defined contact pattern (orange dotted
line). A weak bias leads to alternative contact patterns between similar sites of the same set of residues (colored dotted lines). (B) The multiplicity
of binding modes (MBM) quantifies the spectrum of interaction modes sampled in the bound state. Protein interactions sample a wide range of
binding modes from ordered (blue) to disordered (red). The MBM is low when only one of these modes is sampled. This means that in the bound
state, the protein exhibits well-defined contact patterns (ordered binding, blue) or variable, heterogeneous binding patterns (disordered binding,
red), but it is unlikely to switch between these scenarios. In the case of high MBM, a protein region can exhibit both types of interactions and can
switch between ordered and disordered binding modes, depending on its partner, post-translational modification, or other cellular conditions. (C)
Landscape of binding modes of the three main cellular states of proteins. The x axis reports the multiplicity of binding modes (MBM), and the y
axis reports the ordered binding modes. The droplet state is characterized by disordered interactions (low degree of ordered binding) as well as low
MBM. That is, residues promoting the droplet state unlikely change disordered to ordered interactions. In contrast, residues that form the amyloid
state tend to exhibit ordered binding mode and high MBM, since they can change between disordered and ordered binding. The amyloid state can
be formed through the deposition pathway (diagonal) through unfolding of the native state or through the condensation pathway (along the arrow
passing through the lower-right corner) of irreversible maturation of the droplet state.
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of whether a protein region forms ordered or disordered
interactions based on its local sequence bias20 (Figure 1A).
The local sequence bias of a region arises from a difference in
the amino acid composition between the region itself and its
flanking sequences. When the bias is large, a well-defined
interaction tends to be established through an ordered binding
mode20 (Figure 1A,B). This type of interaction is usually
established in specific complexes of proteins with sequences of
high complexity. In contrast, when the bias is small, disordered
interactions are promoted due to competing binding sites with
similar properties20 (Figure 1A). In this case, a variety of
alternative interaction patterns can be established among the
same set of residues, resulting in a heterogeneous bound state
(Figure 1A,B). Disordered binding modes are usually linked
with low-complexity (LC) sequences and/or structural
disorder.27 We previously reported that the droplet state is
driven by such disordered interactions,6 which can be formed
through a wide range of sequence motifs5 of aromatic, charged,
and hydrophobic contacts.28

Thus, based on the local sequence bias, sequence elements
promoting droplet formation and amyloid formation can be
identified. Based on these insights, one can predict that
aggregation could be initiated by sequence elements where
mutations, post-translational modifications, or interactions
with other cellular factors considerably increase the sequence
bias and promote ordered interactions (Figure 1B,C).

Droplet Landscape Representation of Aggregation
within Protein Condensates. As noted above (Figure 1C),
to describe the transition from the droplet to the amyloid state,
one can use a droplet landscape (Figure 2A). This landscape
helps understand how the local sequence bias can be
modulated by the cellular conditions, which cause a change

in binding modes, thus leading to the conversion between the
droplet and amyloid states.21 The x axis of the droplet
landscape corresponds to the multiplicity of binding modes
(MBM), which is computed based on the Shannon entropy of
binding modes (Sbind), as defined in the FuzPred method22

(Figure 2A). The y axis of the droplet landscape is defined by
the residue-specific droplet-promoting propensity (pDP) of the
FuzDrop method, which characterizes the likelihood for
spontaneous phase separation6 (Figure 2A).
In the droplet landscape representation, droplet-promoting

residues are found in the lower-left section of the droplet
landscape (the “droplet region”), as they have a high
probability to form the droplet state mostly by disordered
interactions. Thus, the multiplicity of binding modes of the
droplet regions is low (Figure 2A,B). By contrast, the amyloid-
promoting residues are in the upper-right section of the droplet
landscape (the “amyloid region”), as they have lower
probability to undergo phase separation, by simultaneously
sampling both ordered and disordered interactions. Thus,
residues in the amyloid regions have a high multiplicity of
binding modes29 (Figure 2A,B). Residues in the lower-right
section of the droplet landscape have a high probability to form
the droplet state and sample both ordered and disordered
interactions. Therefore, these residues can initiate aggregation
in the protein condensates (“aggregation hot-spot”) (Figure
2A). Hot-spot residues have a high multiplicity of binding
modes, as they sample both ordered and disordered
interactions (Figure 2B).
The methods to compute the values of the multiplicity of

binding modes (MBM) and residue-specific droplet-promoting
propensity (pDP) have been published previously6,22 and are
publicly available.30 The pDP values are computed using a

Figure 2. Droplet landscape representation of the LC region of TDP-43. (A) Droplet landscape of the LC region of TDP-43 (residues 262−414).
The x axis of the droplet landscape corresponds to the multiplicity of binding modes (MBM).22 The y axis of the droplet landscape is defined by
the droplet-promoting propensity (pDP).

6 The droplet landscape of the wild-type TDP-43 LC domain (residues 262−414) illustrates droplet-
promoting residues (residues 262−311 and 342−414, green circles) in the lower-left section of the droplet landscape with high pDP values and low
MBM values. In contrast, residues forming the amyloid core (residues 321−330, purple triangles) are in the upper-right section, exhibiting low pDP
values and high MBM values. Regions that readily convert into amyloids (i.e., “aggregation hot-spots”, residues 312−320 and 331−341, gray
diamonds19) are in the lower cross section, with high pDP values and high MBM values. These residues prefer disordered binding configurations, as
well as also sample ordered states, as reflected by high interaction multimodality. (B) Frequencies of different binding modes in the TDP-43 LC
domain. The frequencies of different binding modes from ordered to disordered interactions are shown for the amyloid core (purple), aggregation
hot-spot (gray), and droplet-promoting region (green). While the amyloid core and the aggregation hot-spot exhibit wide distributions by sampling
both the ordered and disordered interactions, leading to high MBM, the droplet region mostly samples disordered (unimodal) interactions, leading
to low MBM.
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binary logistic model (Methods, eq. 4) and a scoring function
based on the conformational entropy of the free and bound
states (Methods, eq. 5). This method was shown to be robust
to identify droplet-promoting regions under physiological
conditions.6

The droplet landscape of the wild-type TDP-43 LC domain
(residues 262−414) illustrates distinct features of regions
promoting droplet formation and amyloid formation and
serves as hot-spots for aggregation (Figure 2A). Droplet-
promoting residues (residues 262−311 and 342−414) are in
the lower-left section of the droplet landscape and have high
pDP values and low MBM values. In contrast, residues forming
the amyloid core (residues 321−33031,32) are in the upper-
right section, exhibiting low pDP values and high MBM values.
Regions that readily convert to amyloids (i.e., “aggregation hot-
spots”; residues 312−320 and 331−34119) are in the lower
cross section with high pDP values and high MBM values.
These residues prefer disordered binding configurations, as

well as also sample ordered states, as reflected by high MBM
(Figure 2A,B).

TDP-43 LC Mutations Increase the MBM of Droplet-
Promoting Residues. A deep mutagenesis approach was
recently reported to generate >50,000 TDP-43 variants.19 The
cytotoxicity of these variants was assessed by monitoring
growth rates in Saccharomyces cerevisiae, and mutants
decreasing the growth rate were considered cytotoxic.19 We
analyzed the impact of these mutations on the droplet
landscape of the droplet region, amyloid core, and aggregation
hot-spot residues of 498 single mutants, leading to a large
change in cytotoxicity (Δetox > 3σ, where σ is the average
change over all the mutations;19Figure 3). Both the amyloid
core and the droplet region are shifted toward the aggregation
hot-spot region, with high pDP values (≥0.75) and high MBM
values (>2.25) (Figure 3A). That is, both the amyloid core and
droplet-promoting residues could sample both ordered and
disordered interactions, thus facilitating the conversion
between these states. Along these lines, our analysis indicated

Figure 3. Single mutations increase the MBM of the TDP-43 LC domain. We analyzed 498 single mutations with a change in cytotoxicity (Δetox) >
3σ .19 (A) Droplet landscape of TDP-43 single mutants. Amyloid core residues (residues 321−330, purple triangles) and droplet-promoting
residues (residues 262−311 and 342−414, green circles) considerably overlap with the aggregation hot-spot region (residues 312−320 and 331−
341, gray diamonds). This indicates a high probability to phase separate (pDP values, y axes) and a high multiplicity of binding modes (MBM, x
axis) that reflects sampling both disordered and ordered interactions. (B) Comparison of droplet propensities of wild-type and mutant TDP-43
residues. No significant change was calculated between the phase separation probability of wild-type (light) and mutant residues (dark) in the
amyloid core (purple), aggregation hot-spot (gray), and droplet region (green). (C) Comparison of MBM of wild-type and mutant TDP-43
residues. Mutations in the droplet region (dark green) significantly (p < 10−3) increase the MBM as compared to the wild-type values (light green),
reflecting a shift in binding modes toward ordered interactions. The statistical significance was computed by the Mann−Whitney test of the R
program.
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that while the pDP values did not significantly change for the
droplet, amyloid, and aggregation hot-spot regions (Figure
3B), the MBM values significantly increased for the droplet
region (Figure 3C).

Cytotoxicity of TDP-43 Mutants Is Linked with
Droplet Formation. Then, we analyzed how molecular
determinants of the condensation pathway (i.e., the conversion
from droplet to the amyloid state21) are related to cytotoxicity
(Tables S1 and S2). TDP-43 variants with increased
aggregation propensities did not exhibit higher cytotoxicity
(Figure 4A), in accord with previous results.19 Consistently,
double mutants located in the droplet region of the landscape
(pDP > 0.85; MBM < 2.0; Methods) have increased
cytotoxicity as compared to variants located in the amyloid
region (pDP < 0.75; MBM > 2.25) (Figure 4B). Then, we
compared the cytotoxicity of the amyloid, hot-spot, and
droplet regions using the classification based on the droplet
landscape (see Methods), obtaining results that suggest that
double mutations affecting droplet formation exhibit signifi-
cantly higher cytotoxicity than those promoting amyloid
formation or serve as aggregation hot-spots (Figure 4C).
Our analysis also indicated that mutations increasing glycine
(G) or proline (P) content also increase cytotoxicity, while

those depleting these residues decrease cytotoxicity (Figure
S1). This is in accord with previous results that G and P
facilitate the self-organization of elastomeric sequences.33

These results are consistent with the conclusion that TDP-
43 aggregation-promoting mutants may not provide major
contributions to cytotoxicity. Instead, mutations affecting the
droplet state and perturbing disordered interactions increase
cytotoxicity.

Extension of the FuzDrop Method to Predict the
Cytotoxicity of Aging Condensates. The analysis reported
above indicates that the molecular determinants of the
condensation pathway offer insight into the cytotoxicity of
the mutants. Thus, we probed whether we can quantitatively
estimate the change in experimental cytotoxicity19 based on
these quantities: the mutation-induced changes in droplet-
forming (ΔpDP) and amyloid-forming (ΔpAP) probabilities as
well as the change in MBM (ΔMBM). Droplet-promoting
propensities (pDP) were computed by the FuzDrop program,6

and amyloid-promoting propensities (pAP) were obtained from
the solubility scores by the CamSol program,34 and MBM
values were derived from the FuzPred program.22 We
determined the differences in these quantities for the mutant
and the wild-type sequences (Methods).

Figure 4. Investigation of the amino acid code of the cytotoxicity of TDP-43 LC double mutants. (A) Amyloid formation propensity is linked with
a reduction of the cytotoxicity of TDP-43 LC double mutants. Variants with increased droplet-forming probabilities are more toxic than variants
that tend to form amyloids. The cytotoxicity scale ranges from green (not cytotoxic) to red (cytotoxic) and is shown on the right. (B) Droplet
formation propensity is linked with the cytotoxicity of TDP-43 LC double mutants. Droplet-promoting residues located at the left bottom of the
droplet landscape (high pDP and low MBM values) exhibit higher cytotoxicity than amyloid-promoting residues at the top right with lower pDP and
high MBM values. The cytotoxicity scale, which ranges from green (not toxic) to red (toxic), is shown on the right. (C) Cytotoxicity is linked with
high droplet formation propensity. Variants were classified based on their position on the droplet landscape: droplet-promoting (pDP > 0.85; MBM
< 2.0; green), amyloid-promoting (pDP < 0.75; MBM > 2.25; purple), and aggregation hot-spot (0.75 < pDP < 0.85; MBM > 2.25; gray). The
variants promoting droplet formation are significantly (p < 10−6) more toxic than amyloid-promoting variants and aggregation hot-spots.
Cytotoxicity values were taken from ref 19.

Biochemistry pubs.acs.org/biochemistry Article

https://doi.org/10.1021/acs.biochem.2c00499
Biochemistry 2022, 61, 2461−2469

2465

https://pubs.acs.org/doi/suppl/10.1021/acs.biochem.2c00499/suppl_file/bi2c00499_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.biochem.2c00499/suppl_file/bi2c00499_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.biochem.2c00499/suppl_file/bi2c00499_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.biochem.2c00499?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biochem.2c00499?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biochem.2c00499?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biochem.2c00499?fig=fig4&ref=pdf
pubs.acs.org/biochemistry?ref=pdf
https://doi.org/10.1021/acs.biochem.2c00499?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


We used optimized random forest approaches with the out-
of-bag (OOB) validation technique (Methods) on ΔpDP, ΔpAP,
and ΔMBM parameters used for TDP-43 single and double
mutants with Δetox ≥ 3σ ,19 respectively. We obtained
Pearson’s correlation coefficient between the experimental
(Δetox) and predicted cytotoxicity (Δptox) values of r = 0.975
for 498 single mutants and r = 0.983 for 23,802 double
mutants (Table S3). Then, we developed a combined model
for both single and double TDP-43 mutants (Methods). The
combined model also gave a good performance, with r > 0.90
between the experimental and predicted cytotoxicity values of
the different data sets (Table 1 and Figure 5). In particular, it

also exhibited a comparable performance on the data set of
droplet region mutations (Table 1), which provide a major
contribution to cytotoxicity. Then, we applied the model to
ALS-associated mutants35 (Table S4). Using 2430 double
mutants, where at least one of the mutations was associated
with ALS, we obtained Pearson’s correlation coefficient of r =
0.89 (Table 1). Although cytotoxicity of TDP-43 was assessed
in a model organism,19 this analysis suggests the presence of
general molecular mechanisms.
Our analysis indicates that changes in cytotoxicity during

droplet maturation can be predicted from the protein sequence
based on the change in droplet-forming probability (ΔpDP),
amyloid-forming probability (ΔpAP), and change in multiplicity
of binding modes (ΔMBM).

■ DISCUSSION AND CONCLUSIONS
The possibility for proteins of populating different states
creates a challenge for the protein homeostasis system, since
dysregulated transitions into nonfunctional assemblies can
generate pathological processes.12,16 In particular, aging
condensates often appear to cause cytotoxicity and to be
associated with neurological disorders.25,36,37

In this study, we have investigated the amino acid code of
the cytotoxicity of aging protein condensates. Our approach is
based on the analysis of the binding modes in the droplet and
amyloid states.21,38 Since changes in the multiplicity of binding
modes due to sequence modifications (e.g., post-translational
modifications) or cellular properties (e.g., localization) may
enable proteins to switch between the different states,5 we
reasoned that changes in binding modes may also affect
interactions with cellular partners contributing to promiscuity .
Our analysis indicates that mutations promoting well-

defined, ordered interactions and aggregation decrease
cytotoxicity, in agreement with previous observations.19 In
contrast, mutations that perturb disordered interactions and
TDP-43 droplets tend to increase cytotoxicity. These
observations are in accord with previous results that
structurally labile regions (LARKs) are associated with TDP-
43-linked pathologies.31,32 Earlier results also suggested that
protein hydrogels may contain amyloid-like structures.39,40

In conclusion, our analysis suggests that the amino acid code
for the cytotoxicity of aging droplets may be similar to that for
the condensation pathway from the droplet to the amyloid
states and that amyloid aggregation within condensates may
have a partially protective role against cytotoxicity. It will be
interesting to investigate whether these conclusions will extend
beyond the case of TDP-43 investigated here.

■ METHODS
Probability of Disordered Interactions. The probability

of disordered interactions, pDD, is estimated for each amino Ai
as20

= [ ]p A R( ) median ( )i i NDD DD (1)

Table 1. Correlation between Experimental (Δetox) and
Predicted (Δptox) Changes in Cytotoxicitya

mutations data set N R

double all 23,802 0.911
droplet region 7,296 0.903
ALS-associated 2,430 0.885

single all 498 0.933
droplet region 271 0.880

aRandom forest models were developed on a combined set of single
and double mutants, respectively. N is the size of the data set.
Pearson’s correlation coefficients were computed by the R program.

Figure 5. Correlation between experimental (Δetox) and predicted (Δptox) changes in cytotoxicity upon TDP-43 single (A) and double (B)
missense mutants. Predictions were performed with the extended FuzDrop method based on three parameters: the change in droplet-promoting
probability (ΔpDP), amyloid-promoting probability (ΔpAP), and change in multiplicity of binding modes (ΔMBM). (A) Prediction of the
cytotoxicity of single mutants. Application of random forest models (Methods) on 498 single variants. (B) Prediction of the cytotoxicity of double
mutants. Application of random forest models (Methods) on 23,802 double variants, where the parameters were averaged for the region of residues
312−341. Only 10% of the data is shown for clarity, and the R value is computed for the whole data set (Table 1). Pearson’s correlation coefficients
were calculated in R. The cytotoxicity scale ranges from green (not toxic) to red (toxic) and is shown on the right panels. Cytotoxicity values were
taken from ref 19.
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where πDD(Ri) is the probability of disordered binding mode of
Ri, a region of 5−9 residues around Ai, and N is the number of
possible regions Ri. We refer to πDD(Ri) as the “binding mode
probability” of region Ri because a value of 0 indicates a
binding from fully disordered to fully ordered states and a
value of 1 indicates a binding from fully disordered to fully
disordered states. pDD is computed using the FuzPred
program.20

Residue-Specific Multiplicity of Binding Modes
(MBM). The MBM was derived from the Shannon entropy
of binding modes (Sbind),

22 which quantifies the variability of
binding modes at the amino acid level. To define Sbind, we start
by defining the frequency f of different possible binding modes
for an amino acid Ai:

[ ] = [ ]
f R

n R
N

( )
( )

i
R i

DD
DD

(2)

To calculate f, the binding modes are divided into discrete bins
(usually 10), and nR is the number of binding regions within a
given bin. The Shannon entropy of binding modes (Sbind) is
then defined as the entropy of the frequencies of f:22

= [ ] [ ]S A f R f R( ) ( ) log ( )i i ibind DD 2 DD (3)

where the summation is over the [πDD(Ri)] bins.
Residue-Specific Droplet-Promoting Probability. The

droplet-promoting propensity profile pDP quantifies the
probability of spontaneous phase separation6

=
+

p A
exp F A

exp F A
( )

( )
1 ( )i

i

i
DP

S

S (4)

where FS (Ai) is a scoring function for residue Ai

= + +F A p A p A( ) ( ) ( )i i iS 1 D 2 DD (5)

Here, pD(Ai) is the probability of disorder in the free state, and
pDD(Ai) is the probability of disordered binding. pD(Ai)
approximates the conformational entropy in the unbound
form, while pDD(Ai) estimates the conformational entropy of
binding. λ1 and λ2 are the linear coefficients of the predictor
variables and γ is a scalar constant (intercept), which were
determined using the binary logistic model.6pD was derived
from the disorder score as computed using the ESpritz NMR
algorithm.41 The pDD values were predicted by the FuzPred
method.20pDP = 0.60 is the threshold used to predict whether a
residue is readily involved in spontaneous phase separation.6

Residue-Specific Amyloid-Promoting Probability. The
amyloid-promoting propensity profile pAP of a protein
expresses its sequence-dependent probability to aggregate.
Amyloid-promoting propensity profiles were obtained by the
solubility profiles obtained by the CamSol program (pCS).

34pAP
= − pCS and pAP = 0.90 is the threshold above which a protein
is predicted to readily aggregate.42

Analysis of TDP-43 Deep-Sequencing Data. We
analyzed 498 single and 23,802 double TDP-43 missense
mutants with Δetox ≥ 3σ.19 Mutations were assigned to
amyloid core (321−330 residues), droplet (262−311; 342−
414), and “aggregation hot-spot” regions (312−320; 331−
341) based on experimental data σ.19 For classification of
double mutations, we used only both mutations in the same
region. Droplet-promoting probabilities (pDP) were computed
by the FuzDrop program,6 and amyloid-promoting propen-
sities (pAP) were obtained from the solubility scores by the
CamSol program.34 In the case of single mutants, we

determined the differences in these quantities computed for
the mutant and the wild-type (UniProt Q13148) residue. In
the case of double mutants, we averaged the pDP, pAP, and
MBM values for the 312−341 residue region and computed
the difference between the average values of the mutant and
wild-type sequence.

Extending the FuzDrop Method to Predicting
Cytotoxicity of Protein Droplets upon Mutations. We
defined Δptox using a machine learning method with three
input parameters : the difference between the mutant and wild-
type protein in residue-specific droplet-promoting probability
(ΔpDP) as computed by the original FuzDrop method,6 the
change in residue-specific amyloid-promoting probability
(ΔpAP) obtained as the negative of the solubility score of the
CamSol program,34 and the change in multiplicity of binding
modes (ΔMBM) obtained as the differences between the Sbind
by the FuzPred method.22

The models were built using the random forest method with
the OOB validation technique where two-thirds of the original
data set is used for training and validation is performed on the
remaining part. Random forest models with the highest
Pearson’s correlation coefficients were inferred using grid
optimization on the parameters of the number of individual
decision trees (ntree) and the number of variables used at each
split (mtry) with the randomForest package using the R
program. Models were developed on single and double
mutation data sets, respectively (Table S3), as well as using
a combined data set of 498 single mutants and 23802 double
mutants. In-house R scripts used to generate data and figures
as well as the serialized random forest models can be
downloaded from the GitHub repository (https://github.
com/ahorvath/Biochemistry_2022.git).
The models were tested on all mutants with Δetox ≥ 3σ, as

well as on mutations of the droplet region (Table 1 and Table
S3). In addition, the models were tested on mutations, where
at least one of the mutations was ALS-associated35 (Table S4).
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