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ABSTRACT

In this paper we focus on the detection of differentially
expressed genes according to changes in hybridization
signals using statistical tests. These tests were
applied to 14 208 zebrafish cDNA clones that were
immobilized on a nylon support and hybridized with
radioactively labeled target mRNA from wild-type
and lithium-treated zebrafish embryos. The methods
were evaluated with respect to 16 control clones that
correspond to eight different genes which are known
to be involved in dorso-ventral axis specification.
Moreover, 4608 Arabidopsis thaliana clones on the
same array were used to judge statistical significance
of expression changes and to control the false positive
rates of the test decisions. Utilizing this special array
design we show that differential expression of a high
proportion of cDNA clones (15/16) and the respective
genes (7/8) were identified, with a false positive error
of <5% using the constant control data. Furthermore,
we investigated the influence of the number of
repetitions of experiments on the accuracy of the
procedures with experimental and simulated data.
Our results suggest that the detection of differential
expression with repeated hybridization experiments
is an accurate and sensitive way of identifying even
small expression changes (1:1.5) of a large number
of genes in parallel.

INTRODUCTION

An important application of cDNA clone arrays is the identifi-
cation of genes that show significant changes when their
hybridization signals are compared using target mRNA from
different tissues or different physiological states. Parallel
detection of differential expression of the cDNA clones on the
array offers the chance to identify a large number of possible
markers, for example for a certain disease, and allows inferences
as to biological pathways and gene function that are fundamental
to scientific and industrial research. Hybridization-based
studies of differential expression are manifold and vary with
respect to the array support and labeling of the target mRNA
pool: a widely used system is immobilization of PCR products
on glass slides and hybridization with two-color fluorescently
labeled mRNA (1–3). Other protocols utilize immobilization

of a large number of short oligonucleotides on glass slides
hybridized with fluorescently labeled mRNA (4,5). Nylon
filter membranes and glass slides combined with radioactively
labeled mRNA have been applied (6,7), as well as nylon
microarrays combined with colorimetric detection (8). It has
been shown that the sensitivity of all these methods, i.e. the
amount of sample necessary to detect a given mRNA, is fairly
similar (9). Furthermore, a number of publications treat the
methodological aspects of these techniques (10–16).

The use of statistical tests is common in studies of differential
expression via tag sampling experiments incorporating
Fisher’s exact test and alternatives (17). In contrast, in
hybridization-based experiments statistical tests are rarely
used because of the lack of repetitions; in most studies changes
of expression are judged via thresholding and experiments are
repeated at most two or three times. However, hybridization
experiments are typically noisy and therefore their proper
evaluation is essential. An important aspect is the number of
times hybridization should be repeated in order to allow
sufficient reproducibility of the signals and thus distinction
between true expression changes and errors in hybridization
and data capture. Repetitions allow statistical modeling of the
experiment within a well-prepared framework: the two-sample
location test problem (18). Studies that incorporate tests use a
regularized version of Student’s t-test and adjustment of the
corresponding P values in order to determine true expression
changes (19,20).

In this paper we present a comparison of four different tests
(see Materials and Methods) with respect to their performance
in detecting significant changes in hybridization levels.

Procedures were applied to PCR products of 14 208
zebrafish cDNA clones selected from a representative cDNA
library from zebrafish gastrula stage embryos (5–6 h post-
fertilization); this library was pre-screened using the oligo-
nucleotide fingerprinting technique (21,22). The cDNA clones
were immobilized on a nylon filter membrane and hybridized
with target mRNA from wild-type and lithium-treated gastrula
stage embryos. Lithium is a well-known hyperdorsalizing
agent (23), which exerts its dorsalizing effect by mimicking the
endogenous maternal dorsalizing signal. Sixteen well-defined
cDNA clones corresponding to eight different genes were
previously identified as being influenced by lithium treatment
and served as control clones for testing the performance of the
methods. We show that up to 15 of these 16 clones (seven of
eight genes) were detected, with false positive rates of <5% as
judged by the constant control data.
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Furthermore, we show how the number of repetitions of
experiments influences the accuracy of the methods with
experimental data and with a simulation based on the Welch
test. We show that repetition of hybridizations compensates for
measurement errors to a high degree even when expression
ratios are small (1:1.5). Our results suggest that repeated
hybridizations followed by statistical testing are an accurate
and sensitive method to detect large numbers of reliable
expression changes in parallel.

MATERIALS AND METHODS

Biological background

The zebrafish has emerged in recent years as a major model
organism for vertebrate development and human disease. In
particular, the combination of externally developing, optically
clear embryos with the possibility of forward genetics makes
the zebrafish a good model for studying vertebrate gastrulation.

During gastrulation, induction and patterning, together with
extensive cell movement, results in an embryo with the typical
vertebrate body plan, where the three main body axes and the
three germ layers are specified and patterned. To identify
genes involved in the specification of the dorso-ventral axis we
have compared gene expression data for lithium-treated
gastrula stage embryos with that for normal embryos. Lithium
is a well-known hyperdorsalizing agent (23), which exerts its
dorsalizing effect by interfering with two pathways: it mimics
an early dorsalizing Wnt signal by inhibiting glycogen
synthase kinase 3β (24,25) and it inhibits a ventralizing phos-
phoinositide signaling pathway (26–28). Dorso-ventral axis
specification is relatively well characterized and several of the
genes and pathways involved have been described. As controls
we have chosen 16 cDNA clones that correspond to eight
different genes known to be expressed either in the dorsal
organizer at the shield stage or known to be involved in the
Wnt signaling pathway at this stage.

cDNA clone array design

PCR products of 14 208 zebrafish cDNA clones and 4608
copies of a cDNA clone from Arabidopsis thaliana were
immobilized on 22 × 22 cm2 nylon filter membranes. All clones
were spotted twice on the filter to improve reproducibility.
17 664 spot positions were kept empty and were used for the
purpose of data normalization. The zebrafish clones were
derived from a representative cDNA library from gastrula
stage (5–6 h post-fertilization) embryos comprising an initial
55 000 cDNA clones. This library was normalized by the
oligonucleotide fingerprinting technique in order to produce a
low redundancy cDNA set that represents most genes activated
in the tissue (29). Clones were spotted on a rectangular grid of
blocks on the filter, each block containing 25 spots; clones
were spotted in duplicates so that in each single block 12
different spots were present comprising six or seven zebrafish
clones, two Arabidopsis clones, three or four empty spot
positions on average and one empty position in the middle of
each block. Raw data are accessible via the web site (http://
www.molgen.mpg.de/~lh_bioinf/projects/statistics/zebrafish/
zebrafish.html).

mRNA labeling and hybridization

For the lithium-treated and normal embryos 3 × 1 µg poly(A)+

RNA was labeled with [α-33P]dCTP as described previously
(7). Aliquots of 60 ng A.thaliana DNA template were likewise
labeled in a random priming labeling reaction (7) and 1/6 of the
reaction added to each of the labeled zebrafish target mRNAs.
The target mRNAs were denatured by addition of NaOH to a
final concentration of 1.25 M and diluted in 10 ml of hybridi-
zation solution (modified Church buffer, 0.25 M Na2HPO4,
pH 7.2, 5% SDS, 1 mM EDTA). Membranes were pre-hybridized
in modified Church buffer for a minimum of 30 min at 65°C
and then hybridized at 65°C for 16 h. The membranes were
then washed twice in 40 mM Na2HPO4, pH 7.2, with 0.1%
SDS at room temperature and twice in the same buffer at 65°C.

In situ hybridization

RNA in situ hybridization using wild-type and lithium-treated
embryos was performed as described previously (30) in order
to verify significantly differentially expressed clones.

Data capture and normalization

Six independent hybridizations were carried out with both the
lithium-treated and wild-type target mRNAs. After hybridization
the filter membranes were exposed to phosphor storage screens
for 14–16 h at room temperature. The screens were scanned at
a resolution of 100 µm using a Fuji BAS 5000 phosphor
scanner and stored in Fuji BAS format. Image analysis was
performed using VisualGrid image analysis software (GPC
Biotech, Munich, Germany). The range of the resulting spot
intensities was 0–400 (arbitrary units). Normalization of raw
intensity values was done within each filter to eliminate the
influence of factors not due to the probe–target interaction,
such as labeling efficiency, exposure time to the phosphor
storage screens, the scanning process, array quality, etc.
Normalization was performed by subtraction of the mean of all
intensity values derived from empty spot positions within the
same block (local background) and by division by a filter-specific
spot intensity (median type).

Calculating P values

Four different statistical tests were compared: Student’s t-test,
the Welch test, Wilcoxon’s rank sum test and a version of
Pitman’s permutation test. Student’s t-test assumes that the
control and treatment signal series are normally distributed
with the same variance, which restricts its application to a very
special case. If these assumptions are fulfilled, however, this
test procedure has the highest power of all the tests available.
If the assumption of equal variances is not valid, the t-test can
be approximated by the Welch test (31,32). It is still assumed that
both series are normally distributed. P values for Student’s t-test
and the Welch test were calculated according to the ‘Numerical
Recipes in C’ functions ttest and tutest (33), respectively.

A well-known distribution-free alternative to the t-test is the
unpaired Wilcoxon rank sum test. Here, the test statistic was
calculated according to the ranks of the signals derived from
the treatment sample within the combined sample of treatment
and control signals. For calculation of the exact values of this
test statistic we implemented a recursive function (18). The
Wilcoxon test is more conservative than the t-test, i.e. it will
detect a lower number of significant regulations, but if the
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assumption of a normal distribution is not applicable, it has
higher efficiency. A less well-known distribution-free test
procedure is the permutation test originally introduced by
Pitman (34). In this approach the absolute difference of the
means of the treatment and the control sample is used as the
test statistic. Under the hypothesis of no regulation, any
random division of the combined sample into a ‘treatment
sample’ and a ‘control sample’ of respective sizes will lead to
small values of the test statistic, whereas high values indicate
differences in the series. P values for the permutation test were
calculated by counting all combinations of such a random
division that lead to an equal or higher value of the test statistic
than the value observed divided by the number of all possible
combinations.

RESULTS

Simulations of the influence of sample size and fold change

We simulated the influence of sample size and fold change on
the performance of the Welch test and investigated how
measurement error can be compensated for by an increase in
the number of repetitions of the hybridization experiment
(Fig. 1). Normal samples were derived by the Box–Muller
method (35) with mean values corresponding to the intended

level of expression change. For example, if a 1:1.5 expression
change was simulated, then the control series was sampled
from a normal distribution with mean value µ = 1 and the treat-
ment series was sampled from a normal distribution with mean
µ = 1.5. The standard deviation of both series was set to σ = 0.5 µ,
since experimental observations indicate that this is a realistic
value for measurement error. We repeated sampling and
testing 1000 times for each pair of parameters, and counted the
number of times an expression change was detected by the test
with P < 0.05. For example, in 15.1% of the cases the test
detected a significant variation factor of 1:2 (green line) if
sample sizes were 3. This number was three times higher if sample
sizes were increased to 6 (48.4%). If sample sizes were 15 then
91.8% of the expression changes were detected. The results
give an upper boundary for the power of the Welch test, since
the theoretical assumptions were completely satisfied and we
did not take into account any false positive error. Figure 1 thus
suggests that only a small number of relevant regulations
(<50% up to the 10-fold level) will be detected when repeating
the experiment only two or three times and that at least five or
six replicated experiments should be done.

Quality assessment of hybridization signals

Repetitions of hybridization experiments enabled us to analyze
the reproducibility of the individual target–probe interactions
before and after data normalization and thus to give an overall
view of the performance of data normalization. For each clone
we calculated the coefficient of variation (CV) as a reproducibility
factor, i.e. the ratio of the standard deviation and the mean
derived from the six replicated hybridization experiments. If
reproducibility is perfect the CV is 0, if it is poor the CV tends
to higher values. If the CV is close to 1, i.e. measurement
deviation is on average of the order of the observed signal, no
meaningful analysis is possible.

Figure 2 shows the global effect of normalization. The upper
histograms show the CV values derived from hybridization
signals with the target mRNA from wild-type embryos using
raw (Fig. 2A) and normalized data (Fig. 2B). It is observable
that there is a shift of the mode of the histograms to the left,
from 0.28 to 0.21. In 10 741 of 14 208 cases (75.60%) the CV
was decreased by normalization, whereas in 3467 cases
(24.40%) it was increased.

Another way of assessing the quality of normalization is a
scatter plot of the intensity signals of different independent
experiments before and after normalization. Figure 2 shows
scatter plots of two replicated hybridization experiments with the
wild-type target mRNA before (Fig. 2C) and after normalization
(Fig. 2D). Normalization improved the linear dependency of
the hybridization signals and thus the robustness between
replications of the experiment. The lines show the regression
lines of the respective linear fits. For the raw data the slope (a)
and the intercept (b) of the regression lines were a = 0.8969 and
b = 0.6254 and for the normalized data a = 0.9906 and b = 0.0473
(note that ideally we have a = 1 and b = 0). Additionally, the
histogram (Fig. 2E) shows the mean difference of the duplicate
pairs over all six experiments for the 14 208 clones when using
normalized data. The line shows the shape of the histogram
when using raw data. It is observable that normalization
decreased duplicate differences by a significant amount.
Furthermore, a shift effect for raw data (probably due to
differing material transfer) is observable, which tends to assign

Figure 1. Simulation results. True positive rates of the Welch test (y-axis) and
dependence on sample sizes (x-axis). Curves show different levels of simulated
fold changes: 1:1.2 (black), 1:1.5 (red), 1:2 (green), 1:2.5 (blue), 1:5 (yellow)
and 1:10 (magenta).
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Figure 2. Global effects of data normalization. CV of 14 208 zebrafish clones according to six replicated experiments with raw data (A) and normalized data (B).
(C) A scatter plot of two independent wild-type experiments with raw data. The line shows the regression line. (D) A scatter plot for the same experiments when
normalized data were used. (E) Plot of the mean duplicate differences of the six replications for the wild-type hybridizations before (solid line) and after normalization
(histogram). (F) Selection criterion for judging cDNA clone absence within one experiment. The left histogram shows the distribution of 17 664 log signals measured
on empty spots, the right histogram shows the distribution of 14 208 zebrafish log signals. The line indicates the 95% upper quantile of the left histogram.
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one duplicate a higher intensity on average than the other, so
that the duplicate differences were not symmetrical around
zero but around a slightly negative value. This effect is also
eliminated by data normalization.

Sensitivity of the clone array

An important consideration in array experiments is obtaining a
sufficient number of positive signals. In our study we used a
tissue-specific array that represented the majority of the genes
in the target mRNA under analysis (see Materials and
Methods). The numerical criterion for judging cDNA clone
presence was based on the empty positions. Within each experiment
we determined the 95% quantile of the sample of empty spots
(total 17 664 signals) and marked each zebrafish clone signal
as ‘positive’ for that experiment if it was above this threshold
and ‘negative’ if it was below (Fig. 2F). If more than half of the
replicated signals of the clone were marked positive we tagged
this clone as ‘present’, otherwise we tagged it as ‘absent’.
Exploring all replications we found that 13 061 of 14 208
(91.93%) of the clones on the array were present within the
wild-type and the lithium-treated target mRNA pools, clearly
an effect of the preselection of cDNAs.

Error analysis and adjustment of P values using control data

An important issue in testing is the false positive rate. A fixed
error level would only be valid if the distributional assumptions
were valid (see Materials and Methods). In practice, however,
these assumptions are hardly ever given, so that any calculated
P value must be adjusted. Here, we used 4608 copies of an
A.thaliana cDNA clone that were spotted on each filter
membrane to control the false positive rates of the various tests
and also to judge the significance of the calculated P values.
Since the amount of Arabidopsis target was spiked at a
constant level in the target mRNA, values obtained from these
data represent the test statistics given the null hypothesis of no
differential expression. To judge whether a given P value
indicated a significant change or not we applied the following
procedure:
(i) For each test statistic we calculated the values for the 4608
Arabidopsis data (Fig. 3).
(ii) Let α1,…, αN be the corresponding P values for the inner
95% range of the Arabidopsis data. The adjusted P value αad =
min{α1,…, αN} was defined as the minimal P value of the
inner 95% range of these Arabidopsis data.

Figure 3. Baseline distributions of the test statistics under the null hypothesis. Histograms of the t-statistic (upper left), the Welch statistic (upper right), the
Wilcoxon statistic (lower left) and the permutation statistic (lower right) when using 4608 Arabidopsis samples that served as control data (null hypothesis). The
lines indicate the lower and upper 2.5% proportion of the sample, the area between the lines thus indicates the 95% area of the samples. In the case of the
permutation statistic the line indicates the upper 5% area of the sample.



e117 Nucleic Acids Research, 2001, Vol. 29, No. 23 PAGE 6 OF 9

(iii) Each zebrafish cDNA clone with a P value < αad was
marked ‘significantly differentially expressed’.
With this procedure we forced the false positive rate of our
decision process to be <5% for the experimental data, which is
far more accurate than simply setting the significance value of
the tests to 0.05. Adjusted P values at that level decreased
considerably: they were 0.0156 for the t-test statistic, 0.0161
for the Welch test statistic, 0.0173 for the Wilcoxon test
statistic and 0.0121 for the permutation test statistic.

Comparison of tests and influence of sample size

Table 1 shows the results for the procedure with dependency
on sample size for the different tests. In each table entry we
give the number of significantly differentially expressed control
clones (maximum 16) and the total number of differentially
expressed zebrafish clones (maximum 14 208). Since the
control clones should be differentially expressed, the proportion
of detected significant fold changes indicates the power of the
tests. Results show that there is a considerable increase in
detected fold changes when sample size was increased from 6
to 12 (in the cases of sample sizes >6 we incorporated the
duplicate signals for each clone on the same array). The true
positive rate of the 16 control clones improved from 8 (sample
size 6) to 15 (sample size 12) when, for example, using
Student’s t-test. The distribution-free tests seemed to perform
better, especially when sample sizes were small; however, this
difference disappeared when the number of repetitions
increased.

It should be pointed out that sample signals cannot in general
be considered as independent signals when derived from
replicate clones on the same array (see Discussion), so that the
upper three cases in Table 2 (sample sizes 8, 10 and 12) cannot
be straightforwardly compared to the case where only the
six independent signals from replicate experiments were used.
However, using all signal samples increased the performance
by a considerable amount.

Of the clones, 878 (6.18%) had a significant fold change
based on all tests using all available data. These were the
candidates for further characterization by in situ hybridization.

Comparison of P values and expression ratios

Figure 4 shows a plot of the mean wild-type signals versus the
mean lithium signals (log–log scale) for the normalized values;

significant (plus signs) and non-significant clones (squares) as
judged by P value are marked. The results show that most
significant clones had a ratio within the 2–1.5-fold range and
indicate that simple detection of fold changes for these clones
would have failed in this study (see Discussion). On the other
hand, checks on control data by in situ hybridization indicated
significant regulation, although the ratio did not exceed the 2-fold
up or down threshold, so that these detected regulations are
truly given (see below). Thus, Figure 4 implies that P values
are far more sensitive and reliable than expression ratios.

Verifying test results by in situ hybridization

Lithium treatment at the early blastula stage causes hyper-
dorsalization of the embryo, converting ventro-lateral cells to a
dorsal fate, with a concomitant expansion of expression
domains of dorsal marker genes. Whole mount in situ hybridi-
zation can thus be used to verify the test results for genes that
have a localized expression pattern. Figure 5 shows in situ
hybridization images for three control clones. It is observable
that the expression of all three genes was clearly amplified
when comparing the lithium-treated (right) with the wild-type
(left) embryos. Table 2 shows a summary. The results for the
redundant control clones were consistent. For example,
chordin was spotted six times on the array while forkhead-2,
forkhead-4 and one-eyed pinhead were spotted twice. All these
clones showed significant changes in expression according to
all four tests. The ratio of the mean signals indicated that even
small expression changes, such as a 1.47-fold up-regulation in
the case of the one-eyed pinhead clones and a 1.45-fold down-
regulation in the case of the otx-3 clone, were verified.
Furthermore, of 15 clones (apart from the control clones) that
have been tested as being differentially expressed all showed
clear regulation when judged by in situ hybridization. One
false negative clone (floating head) showed no significant
regulation. This might be due to poor data reproducibility since
the wild-type signals had a CV of 0.66, i.e. the standard
deviation was 66% of the observed mean signal across the six
replications.

Dependency of reliability on signal range

An important issue is the reliability of the observed signal with
respect to the signal range. For example, the independence of
the variation from the absolute signal value is a theoretical

Table 1. Dependency of detection rates on sample size for 16 control cDNA clones and the total proportion of differentially expressed zebrafish clones

Significance was judged by adjusted P values.

Sample size Student’s t-test Welch test Wilcoxon test Permutation test Intersection of tests

12 1026 (7.22%) 1002 (7.05%) 962 (6.77%) 1115 (7.85%) 878 (6.16%)

15 15 14 15 14

10 789 (5.55%) 751 (5.29%) 776 (5.46%) 841 (5.92%) 656 (4.62%)

13 13 13 13 13

8 670 (4.72%) 641 (4.51%) 696 (4.90%) 745 (5.24%) 563 (3.96%)

11 11 11 11 11

6 341 (2.40%) 283 (1.99%) 324 (2.28%) 324 (2.28%) 227 (1.60%)

8 7 9 9 7
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prerequisite for applying statistics based on ‘normality’
assumptions. In Table 3 we summarize the results of our
experimental observations. For example, 5213 (36.69%) of
the zebrafish clones had mean control signals between 10- and
100-fold above background level, the average standard
deviation across the six replicated experiments with the wild-
type target mRNA was 1.076139 and this average standard
deviation was reduced to 0.096985 when normalized
data were used. Additionally, we counted the number of

significantly differentially expressed clones for the respective
signal range (total 878, cf. Table 1). In the 10- to 100-fold bin
387 significant clones (44.08%) were detected. It is observable
that: (i) signal variation increases with signal range; (ii) signal
variation is almost one order of magnitude lower for normal-
ized data; (iii) significant clones are spread proportionally
across the bins so that the selection criteria for choosing statis-
tical significance of differential expression is robust across the
signal range.

Figure 4. P values versus expression ratios. Log–log plot (base 2) of the mean normalized signal values of the treatment (x-axis) and the control samples (y-axis).
Each square denotes a data point that showed no significant regulation judged by the adapted P value of Student’s t-test; each plus denotes a data point that showed
significant regulation. Zebrafish control data are marked with a green circle when they were truly detected as significant (total 15); one data point was not detected
and is marked by a blue circle. The violet and blue lines indicate the 2- and 1.5-fold up- and down-regulated thresholds, the black line denotes the identity.

Table 2. Results for the control clones: expression ratios, reproducibility factors and detection rates

Gene (GenBank identifier) Ratio (treated versus controls) Coefficient of variation No. of cDNA clones Identified by t-test

Treatment Control

chordin (AF034606) 2.22 0.33 0.35 6 6

forkhead-4 (AF052247) 2.09 0.39 0.35 2 2

frizzled-8b (AF060696) 2.08 0.34 0.40 1 1

forkhead-2 (AF052245) 2.01 0.38 0.49 2 2

lim-1 (L37802) 1.92 0.40 0.41 1 1

one-eyed pinhead (AF041440) 1.47 0.21 0.32 2 2

otx-3 (D26174) 0.69 (–1.45) 0.22 0.34 1 1

floating head (L48017) 1.16 0.28 0.66 1 0
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DISCUSSION AND CONCLUSION

We have shown that standard statistical test procedures can be
used efficiently in order to detect a large number of differentially
expressed genes on cDNA clone arrays. The calculation of
exact P values is far more accurate than simple binary classification
via thresholding of expression ratios for treated and control
probes, which seems somewhat heuristic (for a discussion see
11). It should be pointed out that the actual expression ratio is
only a rough indicator of the strength of the expression
changes. Especially in cases where high biological variation is
present, as in our case, since we worked with target mRNA
derived from a pool of embryos, the expression ratio will not
distinguish significant from non-significant clones as sharply
as necessary.

P values for both distribution-free test procedures (i.e. the
Wilcoxon and permutation tests) cannot be calculated exactly
when sample sizes are large because the number of possible
combinations for the test statistic increases rapidly with
increasing sample size (e.g. 924 for a sample size of 6,

2 704 156 for a sample size of 12, and 155 117 520 for a
sample size of 15); thus, P values should be approximated by
asymptotic distributions of the test statistics. The approxima-
tion for the Wilcoxon rank sum test statistic using the standard
normal distribution is, for example, known to be accurate if the
sizes of the individual samples are greater than four and if the
combined sample size is more than 20. However, in most gene
expression studies the sample sizes are smaller and it would be
necessary to perform exact calculations.

The origin of the cDNA clones on the array is important. The
advantage of using tissue-specific arrays lies in the fact that
they ensure a large number of true positive signals and thus
allow extraction of meaningful information.

The method of normalization of experimental data was
optimized to our special application, but in general our results
indicate that gene array data should be normalized ‘locally’
rather than ‘globally’, since variations in the array area are
locally influenced (pin effects, local contamination, differences in
the spot environments, masking by neighboring bright or large
spots).

Our results reveal how an increasing number of repetitions
improves the performance of the procedure. Practically, repetitions
can be achieved either by repeating the hybridization experiment
or by spotting clones multiple times on the array. In theory, test
procedures require independent repetitions of experiments so
that the number of hybridizations should be increased rather
than the redundancy on the array, since spots on the same array
correlate substantially. It was shown by simulations as well as
with experimental data that six signal values should be available
for both the treated and the control samples. In practice,
however, it is far more efficient to increase redundancy on the
array rather than to repeat hybridization experiments a large
number of times. For example, it is conceivable that in the near
future there will exist clone arrays with only a few (<500)
disease- or pathway-specific genes that can then be spotted at
high redundancy, at say 20 or more times. This would enhance
the sensitivity of the procedure to a high degree and would
allow the identification of very small fold changes, for
example in the early stages of a disease, which would be
extremely useful in medical research.
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