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ABSTRACT: At present, regression modeling methods fail to achieve
higher simulation accuracy, which limits the application of simulation
technology in more fields such as virtual calibration and hardware-in-
the-loop real-time simulation in automotive industry. After fully
considering the abruptness and complexity of engine predictions, a
Gaussian process regression modeling method based on a combined
kernel function is proposed and verified in this study for engine torque,
emission, and temperature predictions. The comparison results with
linear regression, decision tree, support vector machine (abbreviated as
SVM), neural network, and other Gaussian regression methods show
that the Gaussian regression method based on the combined kernel
function proposed in this study can achieve higher prediction accuracy. Fitting results show that the R2 value of engine torque and
exhaust gas temperature after the engine turbo (abbreviated as T4) prediction model reaches 1.00, and the R2 value of the nitrogen
oxide (abbreviated as NOx) prediction model reaches 0.9999. The model generalization ability verification test results show that for
a totally new world harmonized transient cycle data, the R2 value of engine torque prediction is 0.9993, the R2 value of exhaust gas
temperature is 0.995, and the R2 value of NOx emission prediction result is 0.9962. The results of model generalization ability
verification show that the model can achieve high prediction accuracy for performance prediction, temperature prediction, and
emission prediction under steady-state and transient operating conditions.

1. INTRODUCTION
At present, simulation technology is showing its ability in the
automotive field, and the technology has been developed from
performance simulation to the application of full-life-cycle
simulation of products. Simulation technology has the character-
istics of visibility, verifiability, perception, and so forth.1 It can be
used to accelerate the automotive product development phase
and improve system reliability;2,3 however, the problem of low
simulation accuracy limits its wide application in fields of virtual
calibration and hardware-in-the-loop real-time simulation. The
main reasons for the low accuracy of engine performance
simulation are as follows:

1. Engine performance could abruptly change. Taking
carbon monoxide emission as an example, when the
exhaust gas temperature and air−fuel ratio exceed a
certain limitation, carbon monoxide emission would
possibly change abruptly, which brings challenges to
traditional Gaussian process regression (GPR) algo-
rithms, support vector machine (SVM), and their
covariance functions to reflect the correlation between
variables;

2. Engine system is a complex system involving multiple
disciplines such as mechanics, thermodynamics, chem-

istry, and so forth, which brings challenges to the feature
extraction of the regression modeling process.

In the field of engine performance prediction, scholars have
conducted long-term research. Engine modeling technology can
be divided into mechanism modeling technology and regression
modeling technology.

Mechanism modeling is a modeling technology based on the
physical properties of each component. This technology
analyzes the working process of the object and widely adopts
the ideal state equation, look-up table, and other methods to
establish the airflow process model and thermodynamic process
model of the engine.4−6

The advantage of the mechanism modeling method is that it
helps to understand the characteristics of engine components,
the interaction between components, and the effect of
components on the engine’s overall performance.7 Also, the
mechanism modeling method has the following disadvantages:

Received: September 14, 2022
Accepted: October 21, 2022
Published: November 3, 2022

Articlehttp://pubs.acs.org/journal/acsodf

© 2022 The Authors. Published by
American Chemical Society

41732
https://doi.org/10.1021/acsomega.2c05952

ACS Omega 2022, 7, 41732−41743

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiuyong+Shi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Degang+Jiang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Weiwei+Qian"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yunfang+Liang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.2c05952&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05952?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05952?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05952?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05952?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/7/45?ref=pdf
https://pubs.acs.org/toc/acsodf/7/45?ref=pdf
https://pubs.acs.org/toc/acsodf/7/45?ref=pdf
https://pubs.acs.org/toc/acsodf/7/45?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.2c05952?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/


1. The operation process of the engine is complex, involving
multiple disciplines such as mechanics, thermodynamics,
chemistry, electronic control technology, and so forth,
and the current research fails to clearly understand the
combustion process of the engine, which brings great
challenges to the mechanism modeling process;

2. The model shows low accuracy, and the calibration
process is challenging. Mechanism modeling methods
widely adopt approximation or idealization methods such
as the ideal state equation and look-up tables for
modeling, and many parameters could be obtained only
through the data fitting method instead of direct
experiments. This makes the model calibration process
difficult and the model accuracy low.

Regression modeling is a mathematical modeling method
applying statistical methods to quantitatively show the working
process.8,9 Higher prediction accuracy could be achieved with
neural networks, decision trees, SVM, and so forth. Kang and
Zhou10 studied the relationship between the engine torque and
cylinder pressure through the linear regression fitting method
and obtained the correlation between the engine torque and
cylinder pressure: P = 0.0229N + 0.9969. Zhang et al.11 built a
diesel engine emission prediction model with a three-layer BP
neural network, and the result showed that the error between the
model prediction result and experimental result was less than
9%. Hui and Li12 used weighted least-squares method to
establish a linear regression model for engine torque prediction.
Test results showed that the model prediction error was 7.60%.
Li et al.13 built an RGF model for engine torque and fuel
consumption rate prediction, and the results showed that the
prediction error of engine torque under steady-state and
transient conditions would be within 5%. Shahpouri et al.14

built an engine soot emission prediction model with the
regression tree (RT), ensemble of RTs, SVMs, GPR, artificial
neural network, and Bayesian neural network, and results
showed that the fitting R2 value of the engine black-box model
using GPR and feature selection by LASSO reached 0.96, and
the fitting R2 value of the gray-box model using SVM reached
0.97.

The above-mentioned algorithms have wide applications in
the field of machine learning, and many scholars have conducted
in-depth research on them. However, the application perform-
ance in the field of engine performance prediction needs to be
further improved for higher simulation accuracy.

In recent years, GPR has been widely used in the field of
nonlinear system modeling. In a Gaussian process, each point in
a continuous input space is associated with a normally
distributed random variable. A Gaussian process is a random
process in which observations appear in a continuous domain.

The kernel function in Gaussian regression characterizes the
correlation between variables. As part of the model assumptions,
different kernel functions can achieve different fitting results.
Commonly used kernel functions include the radial basis
function kernel (abbreviated as RBF kernel), Matern kernel,
exponential function kernel (exponential kernel), rational
quadratic kernel (abbreviated as RQ kernel), periodic kernel,
polynomial kernel, and so forth.

Without limiting the form of the kernel function, Gaussian
regression is theoretically a universal approximator of any
continuous function in a compact space. In addition, Gaussian
regression can provide the posterior of the prediction result, and
this posterior has an analytical form, so Gaussian regression is a

general and analytic model.15 Based on the above advantages,
people can use the Gaussian regression technology to quickly
and efficiently create models of engines, power systems, or any
other systems, and people can more conveniently adjust and
optimize calibration parameters, reduce the need for calibration
development work on the engine test bench or vehicle, so this
technology makes powertrain system development more
efficient.

AlthoughGaussian regression has the advantages of generality
and analyzability,16−19 Gaussian regression is not flexible
enough when the data in different areas changes abruptly, and
a single kernel function cannot fit effectively.

Based on the above analysis, this study proposes and
demonstrates the technical feasibility of the GPR algorithm
based on a combined kernel function (Section 2), and a black-
boxmodel of a 3.0 L diesel engine is established (Section 3). The
engine torque, emissions, and temperature performance are
predicted using the method proposed in this study (Sections 4.1
and 4.3), and the prediction accuracy of engine torque by linear
regression, decision tree, SVM, neural network, GPR, and the
method proposed in this study is compared using the same
training dataset in Section 4.2. The generalization ability of the
model is validated under transient running conditions, which is
not included in the training dataset.

2. GPR TECHNOLOGY BASED ON A COMBINED
KERNEL FUNCTION

GPR is a major data fitting method in the field of machine
learning. Theoretically, this method can provide nonlinear
models for any system. Although the model space is infinitely
dimensional, the problem of overfitting can be prevented by
empirical Bayesian methods, which provide a maximum-
likelihood model given a limited set of measurement data. The
model fitted by the GPR method is given as a Gaussian
probability distribution for each array of input variables. From
the weight-space point of view, GPR can be derived from the
principle of Bayesian linear regression, that is, for a given set ofN
independent learning samples: X X X X, , ..., N1 1= { };
y y y y, , ..., N1 2= { }. Bayesian linear regression is a multiple
linear regression model20 that satisfies eq 1.

f X X y f X( ) , ( )T= = + (1)

where ω is the weight coefficient and ε is the residual or noise.
Bayesian linear regression is a linear parametric model, as

shown in eq 2, that characterizes the nonlinear relationship
between variables; a given function can be used to map X to a
high-dimensional space.

f X X y f X( ) ( ) , ( )T= = + (2)

where ωis the weight coefficient and εis the residual or noise.
Since the mapping space Φ(X) has nothing to do with the

model weight, it can be directly brought into the result of
Bayesian linear regression as shown in eqs 3 and 4.

p f X y X N f y( , , , )
1

,n
n

T T2
2

1 1
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k
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where p f X y X( , , , )n
2

*| * is a likelihood of Bayesian linear

regression; ( )N f y ,T T1 1 1

n
2* * * * is the normal dis-

tribution with a mean value yT1 1

n
2 * ; and σ denotes the

standard deviation.
Using the kernel method, that is, defining the kernel function

k X X X X( , ) ( ) ( ) ( )T
1 2 1

2
2= , eq 3 can be rewritten as eq 5,

that is, using GPR to predict the mean and covariance values.

p f X y X N f f f( , , , ) , cov( ) ,n
2

*| * = [ *| * * ]

f k X X K I y( , )( ) ,n
2 1

* = * + (5)

f k X X k X X K I k X Xcov( ) ( , ) ( , )( ) ( , )n
2 1

* = * * * + *
The applicability of a Gaussian process is limited by its basic

mathematical assumptions, namely:
1 The dataset obeys a Gaussian distribution;
2 The sample noise is homoscedastic Gaussian noise;
3 Suitable for smooth function fitting;
4 The covariance function is satisfied between different

variables of the dataset.
However, the above assumptions are not always met in many

application scenarios. For example, when the exhaust gas
temperature exceeds a limit, the emission changes abruptly, and
the sample noise no longer meets the assumption of
homoscedastic noise. For the prediction of mutation signals,
the traditional GPR is not flexible enough, and it is difficult for a
single kernel function to achieve a higher fitting accuracy. This
study takes engine torque prediction based on main injection
quantity as an example and analyzes the fitting effect of square
exponential kernel function and rational quadratic kernel
function, and verifies the technical feasibility of the GPR
technique based on the combined kernel function in the
application of engine performance prediction.
2.1. Squared Exponential Kernel Function. The squared

exponential kernel, also called Gaussian kernel or RBF kernel, is
the function space expression of the RBF regression model with
infinitely many basis functions. The squared exponential kernel
function, whose expression is shown in eq 6, is widely applied in
GPR and SVM

k x x
x x x x

( , ) exp
1
2

( ) ( )
i j

i j
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i j
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| =

(6)

where σl is the scale of the signal feature length, which is used to
describe the smoothness of the function. When σl is small, the
dynamic response performance of the fitting function is better,
but it is accompanied by the risk of overshooting; when σl is
large, the resultant function tends to be smooth.

σf is the standard deviation of the signal, which is used to
characterize the deviation of the fitting function from the signal
mean value. When σf

2 is small, the fitting function deviates from
the signal mean value slightly. Whenσf

2 is large, the fluctuation of
the fitting function will become larger.21

x x x x( ) ( )i j
T

i j can be regarded as the squared Euclidean
distance between two eigenvectors; as the value of the squared
exponential kernel function decreases with the decrease of
distance, its value is limited between 0 and 1 (when xi = xj, its
value would be 1), so it is a ready-made similarity measure. The
feature space of a kernel has an infinite number of dimensions.

It can be seen from eq 6 that the squared exponential kernel
function is infinitely differentiable, which means that the GPR
with the squared exponential kernel function as a covariance
function has the mean-squared derivative of all orders;
meanwhile, the squared exponential kernel function replaces
the inner product of the basis function with a kernel, and the
advantage of this function is that the error is relatively
controllable when dealing with large datasets with high
dimensions. Therefore, the squared exponential kernel function
is widely suitable for the modeling of smooth and continuous
datasets, but it performs poorly when there are many training
samples or when the samples contain many features.22,23

2.2. Rational Quadratic Kernel. The expression of rational
quadratic kernel is shown in eq 7.

k x x
r

( , ) 1
2i jRQ f

2
2

l
2

i
k
jjjjj

y
{
zzzzz| = +

(7)

where σl is the scale of the signal feature length, α is a positive-
valued scale-mixture parameter (α is a positive-valued scale-
mixture parameter), and r is the Euclidean distance between xi
and xj, which is defined in eq 8.

r x x x x( ) ( )i j
T

i j= (8)

The rational quadratic kernel is a linear superposition of
infinite square exponential kernel functions. When α → ∞, the
rational quadratic kernel is equivalent to the square exponential
kernel function with l as the characteristic scale. The rational
quadratic kernel has a wide scope, which could help to reduce
the sensitivity of the model to smaller datasets and improve the
generalization ability and dynamic response performance.24

2.3. Combined Kernel Function. Based on the above
analysis, as shown in eq 9, this study intends to construct a new
kernel function based on square exponential kernel and rational
quadratic kernel, which not only takes advantage of square
exponential kernel function for modeling with high-dimensional
datasets but also the dynamic response performance of fitting
results could be improved by the rational quadratic kernel
function.

k k kSE RQ= + × (9)

where α is the weighted coefficient of the rational quadratic
kernel function in the combined kernel function.

Based on the above analysis, to further verify the fitting
performance of the square exponential kernel function, the
rational quadratic kernel function, and the combined kernel
function, this paper selects the test data of a 3.0 L diesel engine
under transient working conditions for verification. There are 60
sample points in total; each point contains two variables: engine
main injection quantity and engine torque. The basic
information of the engine is shown in Table 1, and the dataset
information is shown in Figure 1. It can be seen from Figure 1
that the dataset contains both a relatively smooth stable
operation stage and a signal mutation process.

With the same dataset, different kernel functions are used for
engine torque prediction. As shown in eqs 10−13, the root-
mean-square error (RMSE), R2 (goodness of fit), mean square
error (MSE), and mean absolute error (MAE) of engine torque
deviation value is calculated by comparing the predicted value
and the true value to evaluate the fitting performance of different
kernel functions.
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A reserved crossover method is used in the model training
process; the training results of the GPR models using the square
exponential kernel function, rational quadratic kernel function,
and combined kernel function are shown in Figure 2 and Table
2. As shown in Figure 3, the comparison chart between predicted
results and the true value is used in this paper to illustrate the
fitting performance of the model at different sample points. The
predicted results of the model should theoretically be close
enough to the true value, that is, all operating points should be
located on the diagonal line, the distance between each
operating point and the diagonal line means the prediction
error of the point, and the prediction error of a good model
should be as small as possible. The prediction results show that,
compared with GPR with the square exponential kernel
function, the GPR model with the rational quadratic kernel
function could achieve a higher R2 value (R2 = 0.99) and lower
RMSE value (7.9321), MSE value (62.919), and MAE value
(3.2494). However, the GPR with the combined kernel function

has a R2 value of 1.00, the RMSE value is reduced to 3.262, and
the MSE value and MAE value of the combined kernel function
are also lowered.

3. CONSTRUCTION OF ENGINE BLACK BOX MODEL
Engine operating conditions change rapidly and are influenced
by many factors. As is shown in Figure 4, the operating data of
the engine under steady-state DoE test conditions are taken as
sample data25 for the construction of an engine black box model.
The main influencing factors of engine torque, exhaust gas
temperature after turbo (shown as T4 in Figure 4), andNOx raw
emission (shown as NOx in Figure 4) are taken into
consideration. The research points covered by the dataset are
shown in Figure 5.

As shown in Figure 6, if the engine is regarded as a black box
system, the input information can be divided into the following
three categories with a total of 15 input signals:

1 Actuator information, 10 signals�APP_r (accelerator
pedal percentage), EGR_r (exhaust gas recirculation
valve percentage), InjCrv_qMI (main injection quantity),
InjCrv_qSetUnBal (total injection quantity),
ThrVlv_rAct (throttle valve percentage), InjCrv_phiPiI1
(pilot injection 1 angle), InjCrv_phiMI1 (main injection
angle), InjCrv_phiPoI2 (postinjection 2 angle), In-
jCrv_qPiI1 (pilot injection 1 quantity), and In-
jCrv_qPoI2 (postinjection 2 quantity);

2 Engine operating environment information, three sig-
nals�EnvT_t (ambient temperature), CEngDs_t (en-
gine coolant temperature), and BattU_u (engine battery
voltage);

3 Engine running status information, two signals�
Epm_nEng (engine speed) and RailP_p (rail pressure
of common rail fuel injection system).

4. GPR-BASED ENGINE MODEL TRAINING
In this study, the operating data under the DoE test condition is
used as the training dataset, and the combined kernel function is
used for the fitting of the engine black box system. Version
information of the main tools used is shown in Table 3. The
computer used is amobile workstation equipped with an 8-core/
16-thread processor and an NVIDIA Quadro T600 discrete
graphics card, and GPU parallel computing is used to accelerate
the training process.

Table 1. Engine Basic Information

parameter value

displacement (L) 2.977
air intake system turbocharged
cylinder arrangement in-line
number of cylinders 4
rated power/speed(kW/rpm) 125/2800
compression ratio 16.0:1
fuel injection system common rail
idle speed (rpm) 800 ± 30
fuel injection pressure (MPa) 200

Figure 1. Dataset overview. (a) Main injection quantity; (b) engine torque.
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4.1. Training of Engine Torque Model. The GPR-based
model training process is mainly composed of two parts:
hyperparameter optimization and data fitting.

As shown in eq 9, the kernel function of the regression model
used in this study is weighted by the square exponential kernel
function and rational quadratic kernel function. After further
sorting, the combined kernel function can be expressed as eq 15.

Figure 2.GPR training result. (a) GPR training result with the squared exponential kernel; (b) GPR training result with the rational quadratic kernel;
(c) GPR training result with the combined kernel.

Table 2. GPR Training Result with Different Kernel
Functionsa

RMSE R2 MSE MAE

GPR with the squared
exponential kernel

16.287 0.97 265.27 5.8231

GPR with the rational quadratic
kernel

7.9321 0.99 62.919 3.2494

GPR with the combined kernel 1.8060 1.00 3.262 1.2807
aGPU is used for parallel computing.

Figure 3.Comparison of predicted results with actual results. (a) GPR training result with the squared exponential kernel; (b) GPR training result with
the rational quadratic kernel; (c) GPR training result with the combined kernel.

Figure 4. Engine schematic.
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Figure 5. Research points covered by the dataset.

Figure 6. Schematic diagram of the engine black box system.
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where θ1 is the standard deviation of the signal in the square
exponential kernel function, θ2 is the scale of the signal feature
length in the square exponential kernel function, θ3 is the
standard deviation of the signal in the rational quadratic kernel
function, θ4 is the length of the signal feature in the rational
quadratic kernel function, θ5 is the scale mixing parameter of the
rational quadratic kernel function, and θ6 is the weight
coefficient of the rational quadratic kernel function in the
combined kernel function.

It can be seen from eq 15 that there are six hyperparameters:
θ1−θ6. The optimization process of hyperparameters is the
process of finding the optimal solution of θ1−θ6. The algorithm
is designed to find hyperparameters that minimize fivefold cross-
validation loss by using automatic hyperparameter optimization.

As shown in Table 4 and Figure 7, after 30 iterations, the
observed best objective function value is 1.6747, and the
standard deviation of the dataset (shown as sigma in the table) is
0.00010001. The obtained hyperparameter optimal solution is
shown in Table 5.

In this study, the norm value from functional analysis theory is
used to measure the discrete degree of dataset in the vector
space. The L2 norm value, also known as Euclidean norm, is
defined as the distance between all elements in the vector and
the origin point, the calculation formula is shown in eq 16; the
infinity norm is defined as the absolute value of the largest
element in the vector, and its calculation formula is shown in eq
17. The L2 norm and infinite norm characterize the degree of
dispersion between sample data and fitting results.

x x
i

i2
2|| =

(16)

x xmax
i n

i
1

|| = | |
(17)

The fitting results are shown in Table 6, Figure 8 and Table 7.
The results show that the infinite norm of the final gradient is
37.96 (shown as norm grad in the table), the L2 norm at the final
step is 0.1074 (shown as the norm step in the table), the relative
infinite norm of the final gradient is 0.008030, the degree of
dispersion between the predicted value and the actual value of
engine torque is small, R2 reaches 1.00, RMSE is 1.7381, MSE is
3.0211, and MAE is 1.0077.

Table 3. Tool Information

tools version information

MATLAB version 9.10 (R2021a)
deep learning toolbox version 14.2
statistics and machine learning toolbox version 12.1
parallel computing toolbox version 7.4

Table 4. Iterative Fitting Process for Hyperparameters

iteration active workers eval result objective: log(1 + loss) objective runtime bestsofar (observed) bestsofar (estim.) sigma

1 8 best 2.8198 1499.2 2.8198 2.8198 23.245
2 8 best 1.6928 1930.3 1.6928 1.7527 0.00011607
3 8 best 1.6916 2003.1 1.6916 1.7458 0.10798
4 8 accept 1.8157 2040.9 1.6916 1.6916 0.25442
5 8 accept 1.7151 2042.7 1.6916 1.692 0.031193
6 8 accept 1.7796 2043.9 1.6916 1.6983 0.88557
7 8 accept 1.819 1979.5 1.6916 1.6918 0.00021741
8 8 accept 1.7869 1916.2 1.6916 1.7242 0.0005629
9 8 accept 1.7659 2042.8 1.6916 1.735 0.074124
10 8 accept 1.7739 2045.1 1.6916 1.7339 0.0022856
11 8 accept 1.7694 2050.4 1.6916 1.7339 0.00010002
12 8 accept 6.0762 5409.5 1.6916 1.737 819.24
13 8 accept 5.7821 6033.3 1.6916 1.7361 708.63
14 8 accept 1.7222 2189.1 1.6916 1.7262 0.011508
15 8 accept 4.8688 4670.2 1.6916 1.7226 372.45
16 8 accept 1.7966 2220.4 1.6916 1.7452 0.039516
17 8 accept 1.7491 2127.8 1.6916 1.7457 0.016879
18 8 best 1.6747 2207.9 1.6747 1.7161 0.00010001
19 8 accept 1.7589 2202.8 1.6747 1.7154 0.024322
20 8 accept 1.9357 1973.7 1.6747 1.7148 3.3463
21 8 accept 1.69 2189.4 1.6747 1.7141 0.005429
22 8 accept 1.72 2133.9 1.6747 1.7151 0.0011314
23 8 accept 1.705 2133.6 1.6747 1.7148 1.5404
24 8 accept 1.7 2211.5 1.6747 1.7165 0.0099237
25 8 accept 1.7516 2173.2 1.6747 1.7164 0.00010032
26 8 accept 1.7519 2248.1 1.6747 1.7161 0.00010015
27 8 accept 1.7126 2172.2 1.6747 1.7159 0.13824
28 8 accept 2.3887 1972.9 1.6747 1.7138 8.3652
29 8 accept 3.6048 1881.1 1.6747 1.7184 74.358
30 8 accept 1.7374 2040.4 1.6747 1.7182 0.47048
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4.2. Comparison with Other Commonly Used Fitting
Methods for Engine Torque Prediction. In recent years,
with the continuous in-depth exploration of machine learning
technology, researchers have proposed and verified many
prediction techniques, such as linear regression, decision tree,
SVM, GPR, neural network, and so forth. These prediction
methods have a wide range of applications in the field of deep
learning. However, for engine performance prediction, the
performance of different prediction methods varies widely.

The same training dataset used in this study is used for
prediction comparison of engine torque performance using
different data fitting methods included in the officially released
Regression Learner APP from MathWorks; the fitting result is
shown in Table 8.

Comparison results show that
1. For linear regression fitting methods, compared to linear

(RMSE = 11.34) and robust linear regression (RMSE =
11.786), interaction linear can achieve a lower RMSE

value (RMSE = 7.7276) because interaction linear
regression adds interaction terms to the regression
model, and this is helpful to explore relationships between
variables;

2. Bagged tree achieves the lowest RMSE value (RMSE =
5.149), except for the method proposed in this study.
Unlike other decision tree algorithms, bagged tree uses
many trees for data fitting, and this could help to leverage
the insight of many models;

3. SVM is a linear classifier that performs binary
classification of data in a supervised learning manner.
SVM performs well in classification problems but
performs poorly in engine torque prediction.

4. The neural network has the characteristics of large-scale
parallel processing, distributed storage, elastic topology,
high redundancy, and nonlinear operation. The medium
neural network achieves a relatively lower RMSE value
(RMSE = 6.1125) in torque prediction.

5. The GPR algorithm based on the combined kernel
function proposed in this study has the lowest RMSE
value (RMSE = 1.7381).

4.3. Training of T4 and NOx Emission Models. In this
study, data modeling of T4 and NOx emissions is carried out.
The modeling results are shown in Figure 9 and Tables 9 and 10.

The fitting results of T4 and NOx emissions show that the
infinite norm of the final gradient is 81.05 and 95.53, the L2
norm of the final step is 0.3889 and 5.844 × 10−3, and the relative
infinite norm of the final gradient is 9.488 × 10−3 and 8.092 ×

Figure 7. Hyperparameter value fitting plot: (a) variation of the minimum objective value with function evaluations; (b) variation of the estimated
objective function value with different sigma values.

Table 5. Hyperparameter Values Obtained after Training

hyperparameters value

θ1 0.8663
θ2 0.6700
θ3 4.9035
θ4 2.2162
θ5 1.3625
θ6 2.1214

Table 6. Fitting Process for Hyperparameters

iteration fun value norm grad norm step curv gamma alpha accept

0 4.06 × 104 5.15 × 104 0.00 × 100 1.94 × 10−5 0.00 × 100 yes
1 9.33 × 103 7.59 × 103 1.19 × 100 ok 2.23 × 10−5 1.00 × 100 yes
2 8.02 × 103 5.57 × 103 1.86 × 10−1 ok 8.29 × 10−5 1.00 × 100 yes
3 6.00 × 103 2.30 × 103 5.10 × 10−1 ok 1.41 × 10−4 1.00 × 100 yes
4 5.38 × 103 1.13 × 103 3.59 × 10−1 ok 2.80 × 10−4 1.00 × 100 yes
5 5.08 × 103 4.84 × 102 3.71 × 10−1 ok 5.02 × 10−4 1.00 × 100 yes
6 4.91 × 103 2.41 × 102 4.08 × 10−1 ok 1.39 × 10−3 1.00 × 100 yes
7 4.80 × 103 1.46 × 102 5.36 × 10−1 ok 2.85 × 10−3 1.00 × 100 yes
8 4.75 × 103 6.98 × 101 5.79 × 10−1 ok 2.75 × 10−3 1.00 × 100 yes
9 4.73 × 103 1.01 × 102 4.79 × 10−1 ok 1.43 × 10−3 1.00 × 100 yes
10 4.73 × 103 3.80 × 101 1.07 × 10−1 ok 6.62 × 10−4 1.00 × 100 yes

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c05952
ACS Omega 2022, 7, 41732−41743

41739

https://pubs.acs.org/doi/10.1021/acsomega.2c05952?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05952?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05952?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05952?fig=fig7&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c05952?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


10−3 with R2 of 1.0000 and 0.9999. The results show that the
accuracy of the model trained by the GPR fitting method based
on the combined kernel function is high.
4.4. Verification of the Generalization Ability of the

Model. To verify the generalization prediction accuracy of the
constructed engine model, the actual operating data of the same
type of engine under the World Harmonized Transient Cycle

(WHTC) condition is used in this study as the validation
dataset, 1817 samples are included in this dataset with a sample
rate of 1 s. This validation dataset is a brand new dataset that the
model has never seen during the training process.

The model verification results are shown in Figure 10. Under
transient conditions, the errors of engine torque, T4, and NOx
emission results are small. The R2 value of engine torque
prediction result is 0.9993, theR2 value of T4 prediction is 0.995,
and the R2 value of NOx emission prediction is 0.9962. The
results show that GPR technique based on the combined kernel
function adopted in this study could be applied for engine
performance prediction (shown as torque prediction in this
study), temperature prediction (shown as T4 temperature
prediction in this study), and emission prediction (shown as
NOx prediction in this study).

Figure 8. Engine torque fitting result with GPR: (a) deviation plot of predicted and actual values of engine torque; (b) engine torque fitting results
(only a subset of data sample points is shown).

Table 7. Engine Torque Model Training Result

item value

R2 1.00
RMSE 1.7381
MSE 3.0211
MAE 1.0077

Table 8. Engine Torque Prediction with Different Fitting Methods

fitting result (validationa)

fitting methods hyperparameters RMSE R2 MSE MAE

GPR introduced in
this study

combined kernel defined in this study 1.7381 1.00 3.0211 1.0077

linear
regression

linear preset: linear robust option: off 11.34 1.00 128.59 8.1743
interaction linear preset: interactions linear robust option: off 7.7276 1.00 59.715 4.2302
robust linear preset: robust linear robust option: on 11.786 0.99 138.91 7.9663

decision tree

fine tree minimum leaf size: 4 surrogate decision splits: off 6.1395 1.00 37.694 1.6206
medium tree minimum leaf size: 12 surrogate decision splits: off 6.0582 1.00 36.702 1.672
coarse tree minimum leaf size: 36 surrogate decision splits: off 6.6141 1.00 43.747 1.8936
boosted trees minimum leaf size: 8preset: boosted trees 14.932 0.99 222.96 11.591
bagged tree minimum leaf size: 8preset: bagged trees 5.149 1.00 26.512 1.341

SVM

linear SVM kernel function: linear kernel scale: automatic 12.409 0.99 153.99 9.7683
quadratic SVM kernel function: quadratic kernel scale: automatic 10.492 1.00 110.08 8.0499
fine Gaussian SVM kernel function: Gaussian kernel scale: 0.97 12.908 0.99 166.62 9.952
medium Gaussian
SVM

kernel function: Gaussian kernel scale: 3.9 10.949 1.00 119.88 8.7303

coarse Gaussian SVM kernel function: Gaussian kernel scale: 15 10.394 1.00 108.03 7.6224

neural
network

narrow neural
network

number of fully connected layers: 1; first layer size: 10;activation: ReLu 7.1358 1.00 50.92 3.8654

medium neural
network

number of fully connected layers: 1; first layer size: 25;activation: ReLu 6.1125 1.00 37.362 2.8717

bilayered neural
network

number of fully connected layers: 2; first layer size: 10; second layer size: 10;
activation: ReLu

6.69 1.00 44.756 3.326

trilayered neural
network

number of fully connected layers: 3; first layer size: 10; second layer size: 10;
third layer size: 10;activation: ReLu

12.728 0.99 162 6.4575

aValidation data are 5% randomly selected from the training dataset.
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5. CONCLUSIONS
In this study, we explore the application of GPR technology
based on a combined kernel function in the fields of engine
torque prediction, temperature prediction, and emission

prediction. The above analyses lead to the following
conclusions:

1. Compared with the square exponential kernel function
and rational quadratic kernel function, the combined
kernel function constructed in this study could not only
have the advantage of square exponential kernel function
in modeling with high-dimensional samples but also
improve the dynamic response performance through the
rational quadratic kernel function;

2. The comparison results with linear regression, decision
tree, SVM, neural network, and Gaussian regression show
that GPR technique based on the combined kernel
function proposed in this study could achieve higher
prediction accuracy in the fields of engine torque
prediction, emission prediction (NOx emission predic-
tion), and exhaust temperature prediction (T4 temper-
ature prediction). The R2 values of engine torque
prediction and T4 prediction reach 1.00, and the R2

value of NOx prediction model reaches 0.9999;
3. The generalization ability verification results of the

prediction model show that for the new data the model
has not seen during the training process, the R2 value of
engine torque calculation result is 0.9993, the R2 value of
T4 is 0.995, and the R2 value of NOx emission result is
0.9962, results show that for the data not included in the
training dataset, the model can still achieve high
prediction accuracy;

4. The Gaussian regression technique based on the
combined kernel function proposed in this study is
suitable for both engine prediction under steady-state

Figure 9. Fitting results of T4, NOx, and soot: (a_1) change of T4 objective function value with sigma; (a_2) deviation plot of predicted and actual
values of T4; (a_3) comparison of predicted and actual T4 values; (b_1) change of the NOx objective function value with sigma; (b_2) deviation plot
of predicted and actual values of NOx raw emissions from engine; (b_3) comparison of predicted and actual NOx values.

Table 9. Hyperparameter Values Obtained after Training

hyperparameters value_T4a value_NOxb

θ1 1.6085 5.2944
θ2 0.6986 −2.4635
θ3 4.3196 4.9019
θ4 0.6815 −1.5238
θ5 0.9611 0.0521
θ6 2.0553 2.8000

aCorresponding values for T4 prediction. bCorresponding values for
NOx prediction.

Table 10. Model Training Result

item value_T4 value_NOx

Inf norm grad finala 81.05 95.53
two norm step finalb 0.3889 5.844 × 10−3

Inf norm grad finalc 9.488 × 10−3 8.092 × 10−3

R2 1.0000 0.9999
RMSE 10.5446 9.1829
MSE 111.1887 84.3262
MAE 5.0621 2.1530

aInfinity norm of the final gradient. bL2 norm of the final step.
cRelative infinity norm of the final gradient.
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operating conditions (as shown by the model training
results) and engine prediction under transient conditions
(as shown in the model’s generalized verification test).

As mentioned above, the GPR algorithm based on combined
kernel function proposed in this study can effectively improve
engine performance simulation accuracy, and further research
can be carried out in the fields of engine/vehicle virtual

calibration, DoE design, and hardware-in-the-loop real-time

simulation.

Figure 10. Validation results of the GPRmodel based on the combined kernel function underWHTC: (a_1) validation results of engine torque under
WHTC; (a_2) R2 result of engine torque under WHTC; (b_1) validation results of T4 under WHTC; (b_2) R2 result of T4 under WHTC; (c_1)
validation results of NOx emission under WHTC; (c_2) R2 result of NOx emission in WHTC.
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