Skip to main content
. 2022 Nov 3;7(45):41732–41743. doi: 10.1021/acsomega.2c05952

Table 4. Iterative Fitting Process for Hyperparameters.

iteration active workers eval result objective: log(1 + loss) objective runtime bestsofar (observed) bestsofar (estim.) sigma
1 8 best 2.8198 1499.2 2.8198 2.8198 23.245
2 8 best 1.6928 1930.3 1.6928 1.7527 0.00011607
3 8 best 1.6916 2003.1 1.6916 1.7458 0.10798
4 8 accept 1.8157 2040.9 1.6916 1.6916 0.25442
5 8 accept 1.7151 2042.7 1.6916 1.692 0.031193
6 8 accept 1.7796 2043.9 1.6916 1.6983 0.88557
7 8 accept 1.819 1979.5 1.6916 1.6918 0.00021741
8 8 accept 1.7869 1916.2 1.6916 1.7242 0.0005629
9 8 accept 1.7659 2042.8 1.6916 1.735 0.074124
10 8 accept 1.7739 2045.1 1.6916 1.7339 0.0022856
11 8 accept 1.7694 2050.4 1.6916 1.7339 0.00010002
12 8 accept 6.0762 5409.5 1.6916 1.737 819.24
13 8 accept 5.7821 6033.3 1.6916 1.7361 708.63
14 8 accept 1.7222 2189.1 1.6916 1.7262 0.011508
15 8 accept 4.8688 4670.2 1.6916 1.7226 372.45
16 8 accept 1.7966 2220.4 1.6916 1.7452 0.039516
17 8 accept 1.7491 2127.8 1.6916 1.7457 0.016879
18 8 best 1.6747 2207.9 1.6747 1.7161 0.00010001
19 8 accept 1.7589 2202.8 1.6747 1.7154 0.024322
20 8 accept 1.9357 1973.7 1.6747 1.7148 3.3463
21 8 accept 1.69 2189.4 1.6747 1.7141 0.005429
22 8 accept 1.72 2133.9 1.6747 1.7151 0.0011314
23 8 accept 1.705 2133.6 1.6747 1.7148 1.5404
24 8 accept 1.7 2211.5 1.6747 1.7165 0.0099237
25 8 accept 1.7516 2173.2 1.6747 1.7164 0.00010032
26 8 accept 1.7519 2248.1 1.6747 1.7161 0.00010015
27 8 accept 1.7126 2172.2 1.6747 1.7159 0.13824
28 8 accept 2.3887 1972.9 1.6747 1.7138 8.3652
29 8 accept 3.6048 1881.1 1.6747 1.7184 74.358
30 8 accept 1.7374 2040.4 1.6747 1.7182 0.47048