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Complete Genome Sequences of Microbacterium paraoxydans

Phages Cassita and Fransoyer
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ABSTRACT Phages Cassita and Fransoyer were isolated from soil in northwestern
Wisconsin using Microbacterium paraoxydans as the host. The genomes of Cassita and
Fransoyer are 61,868 bp and 62,277 bp, respectively, with direct terminal repeats. Both
phages exhibit siphoviral morphology and are predicted to have lytic life cycles.

acteriophages are the most abundant biological entities and represent a large reser-

voir of undiscovered genetic information (1). Analyzing the genomes of phages infect-
ing a single host genus, such as Microbacterium, can provide insights into viral evolution
and genetic diversity (2). Here, we report the genome sequences of two phages isolated
on Microbacterium paraoxydans strain NRRL B-14843. Phages Cassita and Fransoyer were
isolated from soil in northwestern Wisconsin (Table 1) using standard procedures (3).
Briefly, soil samples were washed with peptone-yeast extract-calcium (PYCa) medium, the
wash was collected by centrifugation and filtration (0.22-um pore size), and the filtrate
was inoculated with Microbacterium paraoxydans. Following incubation with shaking for 2
days at 30°C, the culture was filtered, and the filtrate was plated in PYCa top agar with
Microbacterium paraoxydans, with three rounds of plaque purification. Both phages pro-
duced clear plaques of 1- to 2-mm diameter after 24 h at 30°C. Negative-staining transmis-
sion electron microscopy revealed that both phages have Siphoviridae morphology, with
isometric capsids and long, flexible tails (Fig. 1).

Double-stranded DNA was isolated from phage lysates using the Promega Wizard
DNA cleanup system, and sequencing libraries were prepared using the NEBNext Ultra
Il DNA library preparation kit. Sequencing was performed using an lllumina MiSeq sys-
tem (v3 reagents), yielding 504,360 and 377,911 single-end 150-bp reads for Cassita
(1,220-fold genome coverage) and Fransoyer (906-fold coverage), respectively. Raw
reads were assembled using Newbler v2.9, and completeness was verified using Consed
v29.0 (4). Sequencing results are reported in Table 1. Both genomes have defined ends
with direct terminal repeats.

The genomes were annotated using DNA Master (http://cobamide2.bio.pitt.edu), PECAAN
(https://blogkbrinsgd.org), Glimmer v3.02 (5), GeneMark v2.5 (6), Starterator v1.1 (http://
phages.wustl.edu/starterator), and Phamerator (7). Predicted gene functions were determined
using BLASTp v2.9 (8), HHpred (9), TMHMM?2 (https:/services.healthtech.dtu.dk/service.php
?TMHMM-2.0), and SOSUI (10), and tRNAs were identified using ARAGORN v1.2.38 (11) and
tRNAscan-SE v3.0 (12). Default settings were used for all programs. Annotation revealed 130
protein-coding genes and one tRNA gene in the Cassita genome and 101 protein-coding
genes in the Fransoyer genome. Both phages are predicted to have Iytic life cycles, due to the
absence of genes associated with lysogeny.

Cassita was assigned to cluster GB and Fransoyer to cluster EG, based on gene con-
tent similarity (GCS) of =35% to phages in the Actinobacteriophage Database (13, 14).
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FIG 1 Transmission electron micrographs of Cassita (A) and Fransoyer (B). High-titer lysates were placed
on Formvar-coated grids, negatively stained with 1% uranyl acetate (3), and imaged using a FEI Tecnai
Spirit BioTwin transmission electron microscope at 120 kV. Cassita has a head diameter of 62 nm and a
tail length of 167 nm (n = 1). Fransoyer has a capsid diameter of 60 to 62 nm and a tail length of 150
to 154 nm (n = 4).

Cassita shares 63.5 to 68.5% GCS with the three other phages in cluster GB, all of which
were isolated on M. paraoxydans (14). We were able to assign putative functions for 35
of Cassita’s 130 genes. Twenty-four genes are unique, with no homologues in the data-
base. Fransoyer shares >85% GCS with the cluster EG phages isolated on M. paraoxy-
dans but <65% GCS with cluster EG phages isolated on Microbacterium foliorum (14).
Some of the differences from M. foliorum phages are in genes predicted to encode
minor tail proteins, which may play a role in currently unexplored host ranges (15).
Fransoyer has four minor tail protein genes (genes 39 to 42), compared to three in the
M. foliorum phage OneinaGillian (GenBank accession number MH727556) (genes 36 to
38) (14). Fransoyer gene 39 also has a 993-bp insertion relative to the homologous
gene, OneinaGillian gene 36.

Data availability. For Cassita, the GenBank accession number is ON526969 and the
Sequence Read Archive (SRA) accession number is SRX14443489. For Fransoyer, the GenBank
accession number is ON645340 and the SRA accession number is SRX14443505.
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