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Abstract

Objective: This work aims to develop an automated segmentation method for the prostate and its 

surrounding organs-at-risk (OAR) in pelvic computed tomography to facilitate prostate radiation 

treatment planning.

Approach: In this work, we propose a novel deep-learning algorithm combining a U-shaped 

convolutional neural network (CNN) and vision transformer (VIT) for multi-organ (i.e., bladder, 

prostate, rectum, left and right femoral heads) segmentation in male pelvic CT images. The 

U-shaped model consists of three components: a CNN-based encoder for local feature extraction, 

a token-based VIT for capturing global dependencies from the CNN features, and a CNN-based 

decoder for predicting the segmentation out- come from the VIT’s output. The novelty of our 

network is a token-based multi-head self-attention (MHSA) mechanism used in the transformer, 

which encourages long- range dependencies and forwards informative high-resolution feature 

maps from the encoder to the decoder. In addition, a knowledge distillation strategy is deployed to 

further enhance the learning capability of the proposed network.

Main results: We evaluated the network using: 1) a dataset collected from 94 patients with 

prostate cancer; 2) and a public dataset CT-ORG. A quantitative evaluation of the proposed 

network’s performance was performed on each organ based on 1) volume similarity between the 

segmented contours and ground truth using Dice score, segmentation sensitivity, and precision, 

2) surface similarity evaluated by Hausdorff distance (HD), mean surface distance (MSD) 

and residual mean square distance (RMS), 3) and percentage volume difference (PVD). The 

performance was then compared against other state-of-art methods. Average volume similarity 

measures obtained by the network over all organs were Dice score = 0.91, sensitivity = 0.90, 

precision=0.92, average surface similarities were HD = 3.78 mm, MSD = 1.24 mm, RMS = 2.03 

mm; average percentage volume difference was PVD = 9.9% on the first dataset. The network also 

obtained Dice score = 0.93, sensitivity = 0.93, precision=0.93, average surface similarities were 
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HD = 5.82 mm, MSD = 1.16 mm, RMS = 1.24 mm; average percentage volume difference was 

PVD = 6.6% on the CT-ORG dataset.

Significance: In summary, we propose a token-based transformer network with knowledge 

distillation for multi-organ segmentation using CT images. This method provides accurate and 

reliable segmentation results for each organ using CT imaging, facilitating the prostate radiation 

clinical workflow.

I. Introduction

During radiation therapy, radiation beams must be guided to the tumor while sparing 

normal tissue by accurately measuring the contours of the treatment target and organs-at-

risk (OARs) using planning CT images. Contour accuracy is crucial for determining the 

correct conformal prescribed dose distribution for treatment success. However, physicians’ 

current clinical practice involves manual contour delineation, a labor-intensive and operator-

dependent process. For example, in prostate cancer radiation therapy, the prostate must be 

contoured as a treatment target. The bladder, rectum, and left/right femoral heads are the 

most common organs contoured as OARs. Physicians would contour these organs based on 

their understanding of clinical guidelines, which involves inter- and intra-observer variances 

and takes hours. The contours of these organs are then used during the plan-generating 

process. Over-contouring on OARs may result in excess radiation on normal tissue, which 

can cause genitourinary complications. In contrast, under-contour on the prostate may result 

in an under-dose of cancer cells, leading to cancer recurrence. Therefore, it is desirable to 

develop a method for accurate automatic segmentation to standardize the radiation treatment 

workflow by reducing operator-dependent variation and improving efficiency.

Automated multi-organ segmentation can be roughly classified into two categories: model-

based and data-based segmentation. Model-based segmentation method pre-defines and 

utilizes critical image features to locate organs in CT scans, including but not limited 

to image variance and morphological features for heart segmentation in CT images(Tong 

et al., 2013); geometric landmarks and pose parameters for lung segmentation(Ecabert et 
al.); and multi-scale decomposition properties derived from a total variation/L model for 

lung cancer segmentation(Sun et al.). Despite good quantitative performance and the high 

interpretability of a model-based algorithm, a pre-determined model cannot fully represent 

the intricate visual information of organs in CT scans, which could adversely affect model 

generalization.

By contrast, data-based segmentation can mitigate this issue by automatically learning 

dataset-specific features as available large-scale public datasets train the models. With 

a sufficiently large dataset, a data-based segmentation yields excellent generalization 

and has demonstrated state-of-the-art performance in various tasks of CT-based organ 

segmentation. Recent data-based medical segmentation algorithms have relied primarily 

on fully convolutional neural networks (CNN)-based U-net architectures (Isensee et al., 
2021; Lu et al., 2019; Ronneberger et al., 2015). U-net consists of an encoder and 

decoder: the encoder gradually down-samplings the CT scans, which encodes the input 

into conceptual features across several resolutions. Then, the decoder up-samples the 
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extracted features to assemble an N-organ segmentation. In addition, a skip-connection 

concatenates the outputs of the encoder and decoder at various image resolutions to preserve 

information otherwise lost in down-sampling, further improving performance. In pelvic 

organ segmentation, following the typical U-net architecture, state-of-the-art algorithms 

utilize additional techniques to assist the network in learning more informative segmentation 

features. The additional techniques include a localization network to detect the location 

of each organ before the pixel-level segmentation; a self-attention/transformer mechanism 

for global feature acquisition, deep supervision for improving generality, and an auxiliary 

generative adversarial network to transfer CT images to MRI images to obtain better organ-

to-tissue contrast (Dong et al.; Lei et al., 2020; Sultana et al., 2020; Balagopal et al.; Pan 

et al., 2022b). The techniques were proposed to further improve U-net’s performance in CT 

multi-organ segmentation.

Despite their superior accuracy, CNN-based U-nets inherently have limited ability to model 

global dependencies due to localized receptive fields(Luo et al., 2016). In medical images, 

the Vision Transformer (VIT) (Dosovitskiy et al., 2020) has been shown to be an effective 

method for emphasizing global dependencies and providing better segmentations, especially 

for those object structures with varying sizes and shapes. Using a transformer between the 

encoder and decoder of U-net, Chen et al.(Chen et al., 2021) segmented 2D abdominal CT 

scans by capturing global context from U-net feature maps. Cao et al.(Cao et al., 2021) 

proposed a U-shaped swim-transformer for 2D CT/MRI segmentation by replacing all the 

convolutional layers with sliding-window transformer blocks. By replacing the CNN-based 

encoder with a transformer in the U-net, Hatamizadeh et al.(Hatamizadeh et al., 2022) 

proposed a multi-organ/multi-tumor segmentation approach in 3D CT scans that achieved 

state-of-the-art accuracy.

Despite the fact that these models have demonstrated state-of-the-art performance in CT 

multi-organ segmentation; however, a transformer based on MHSA requires a massive 

dataset to achieve this performance. Without abundant data, it suffers severe overfitting 

greatly underperforms extant CNNs (Khan et al., 2021). Therefore, strong technique to 

reduce overfitting of the transformer is necessary for full realization of the potential for 

VITs, especially for the pelvic CT segmentation where the data are limited.

In this work, we propose a novel network architecture, Token-based Transformer Vnet 

(TTVnet), which bridges a 3D U-net (Vnet)(Lu et al., 2019) and VIT to take advantage 

of both architectures. TTVnet has a similar encoder-decoder structure to Vnet. In addition, 

we implement a token-based self-attention mechanism(Wu et al., 2020; Pan et al., 2022a), 

which facilitates us to obtain much stronger performance than VITs with order-of-magnitude 

less medical data, to enrich the global dependencies in the features from the encoder to 

the decoder. Motivated by the Data-efficient Vision Transformer(Touvron et al., 2021), a 

knowledge distillation (KD) strategy is applied to reduce network overfitting and assist 

the training process. To our best knowledge, we are the first paper utilize a token-based 

transformer with KD strategy in medical image segmentation. We implemented the network 

to segment: 1) bladder, prostate, rectum, left femoral head (LFH), and right femoral head 

(RFH) from 3D a pelvic CT dataset collected from 94 patients in Emory Winship Cancer 

Pan et al. Page 3

Phys Med Biol. Author manuscript; available in PMC 2023 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Institute; 2) liver, bladder, lung, kidney, and bone in CT-ORG dataset. A quantitative 

evaluation of the network performance is presented.

II. Method

As illustrated in Fig. 1 (a), TTVnet employs a 3D convolutional encoder-decoder 

architecture with a backbone inherited from Vnet. The encoder (left) consists of four 

compression stages to learn features from the pelvic data. Then the decoder (right) 

decompresses the features to assemble an N-class volumetric segmentation. We utilize a 

token-based self-attention mechanism to forward features between several layers of equal 

resolution in the encoder to the decoder. Here we introduce the architecture of the network 

and the mathematical formulation of its components.

II.A Network architecture

For the encoder’s architecture, we take advantage of the ”shortcut connection” used in 

ResNet(He et al., 2016), which improves network stability and has been applied in many 

deep learning applications such as 2D image segmentation. We propose a ResNet-like 

architecture as the encoder. The input pelvic data is first passed through a convolutional 

layer with 64 1 × 1 × 1 spatial filter with stride 1, then fed into four down-sampling 

residual blocks. Each residual block combines one trilinear down-sampling layer with two 

subsequent 3D-convolutional layers. The first convolutional layer has 1 × 1 × 1 spatial filter 

with stride 1 in each direction, and the second convolutional layer utilizes 3 × 3 × 3 filters 

with the same stride. A shortcut connection is applied between the outputs of the first and 

second convolutional blocks.

The transformer consists of 12 transformer blocks to compute global dependencies inherent 

in the tokenized feature maps T extracted from the encoder. As shown in Fig. 1 (b), the 

transformer block combines a Multi-head Self-Attention (MHSA) (Section II.B.2) and a 

multi-layer linear perceptron (MLP) of two linear layers. The first and second linear layer 

dimension was set to 3072 and 512, respectively.

The decoder mirrors the encoder’s architecture. First, the transformer’s output features are 

passed through 4 residual up-sampling blocks with 3 × 3 × 3 convolutional layers with stride 

1. Next, the resultant feature maps of the fourth residual block are connected to a 1 × 1 × 

1 convolutional layer with the number of channels equal to the number of organ segments 

desired. Finally, a Softmax activation function is applied, classifying each pixel into one of 

the segmentation classes corresponding to one of the bladders, prostate, rectum, LFH, and 

RFHs.

In this network, instance normalization(Ulyanov et al., 2016) followed by the leaky-ReLu 

activation with a negative slope of 0.2 is applied after every convolutional layer, MHSA 

module, and linear layer. We utilize the Adam optimizer with an initial learning rate of 

0.0001. After that, the learning rate decays to 0.93 of its value every ten epochs. The batch 

size was 2, and 250 epochs were used.
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II.B Token-based transformer

In general, transformer networks utilize MHSA and MLPs to map a sequence of patch 

embedding into pixel-level organ segmentation masks. A feature map or image F is split 

into fixed-size patches. Then feature embedding process condenses the patches into a 

compact set of information tokens T, which facilitates the network to focus on important 

regions instead of the whole input, to reduce overfitting and improve training efficiency. 

The resultant embedded tokens are then fed to the transformer network. The transformer 

captures the global information across the patch sequence primarily using the MHSA 

module. Several sets of weight matrices compute interactions between pixels to capture 

spatial context across the entire image, including across spatially distant pixels. In this 

project, we adopt sparse tokenization from the token-based transformer(Wu et al., 2020; Pan 

et al., 2022a) on the feature maps from each down-sampling block. Rather than encoding 

all contexts across the entire image, the sparse tokenization models semantic concepts in a 

few tokens relevant to the organ segmentation. The token-based transformer can then reduce 

irrelevant features to improve the network’s generalization and accelerate training. Finally, 

the tokens from convolutional blocks of different scales are concatenation and fed into the 

transformer to compute the interaction between each pixel across different resolutions. The 

transformer’s output is then combined with the original patches F to recover the pixel- level 

details for the final segmentation. In summary, the proposed token-based transformer is 

formulated in three steps:

1. F is sparsely tokenized as Tin.

2. A transformer network learns spatially-distant concepts from the Tin through the 

MHSA module.

3. The transformer’s output is finally recovered to the feature maps of the original 

size of Tout, which is prepared for the decoder.

II.B.1 Sparse tokenization—We first perform tokenization of each input features maps 

extracted from layers of the encoder. The feature maps F 1,2,3,4 ∈ RH×W×L×D from four 

down-sampling blocks is flattened over the first three dimensions, where H, W,L are sizes 

of the feature map, D is the channel dimension. Then filter-based tokenizers are adopted 

to sparsely pool the n’th layer’s feature maps Fn to obtain multi-scale sparse information 

tokens Tn ∈ RN×D, where N is the number of tokens. For the feature maps from the first 

down-sampling block, the 3D filtered-based tokenizer performs the following operation:

T 1 = softmaxHW L(F1W F)TF1 (1)

where W F ∈ ℝD × N is a trainable weight matrix forms spatial semantic groups from F1, 

and softmaxHWL indicating Softmax operation on the first dimension. In our practice, the 

multiplication of F1 and WF can be represented as L(F1), where L is a linear layer without 

bias. The linear layer was further substituted by a convolutional layer conv(F1) with kernel 

size of 1 × 1 × 1, which is an efficient approximation of the linear layer(Szegedy et al., 
2015).
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For the feature maps from the other down-sampling blocks, we perform a recurrent 

tokenizer which is dependent upon the information token Tprev from the previous 

down- sampling block. With this guidance, we incrementally refine the tokens as more 

precise representations. The recurrent tokenizer utilizes two trainable weight matrices, 

W V ∈ ℝD × N and W R ∈ ℝD × N, performs:

T n = softmaxHW L FnW V TprevW R
TFn (2)

where WV and WR were replaced by the 1 × 1 × 1 convolutional layer. The number of 

tokens N was empirically chosen as 128 for all tokenizers; each token’s dimension D was 

set to 1024. The tokens from all the down-sampling blocks are concatenated in order with 

an additional class token Ct ∈ RC×D and a distillation token Dt ∈ RC×D, where C is the 

number of classes in the segmentation. We thus arrive at the final information tokens Tfinal 

∈ R4×(2×C+N )×D for the transformer (with four sets of feature maps, each at different 

resolutions).

II.B.2 Transformer—Each self-attention blocks consists of P transformer layers. As 

shown in Fig. 1, the trans- former layer combines a Multi-head Self-Attention (MHSA) and 

a Multi-layer perceptron (MLP). Each MHSA comprises of M parallel self-attention heads, 

each of which learns global representations by independent Query (Q), Key (K) and Value 

(V) weight matrices where Q, K, V ∈ ℝD × dk. The MHSA performs the following operation:

ℎeadm = softmax(TfinalQi TfinalKi
T

dk
) TfinalV i (3)

Tout = Concat ℎeadi, …, ℎeadM W (4)

where W represents another trainable projection, and Tout ∈ R4×(2×C+N )×D maintains the 

same shape with the Tfinal. The number of heads I was empirically set to 16, and the 

dimension dk was set to 64.

II.B.3 Feature detail recovery—The transformers’ output Tout are then projected back 

to the size of their corresponding input feature maps for pixel-level detail recovery (Fig. 

1). The output Tout is split, in the order of the concatenation we applied for the sparse 

information token before the transformer, back into different sets of tokens. The collection 

of tokens is then fused with the input feature maps to recover the pixel-level details. For the 

n’th set of tokens, the recovery performs:

Xout
n = Fn + softmaxL( FnW Q Tout

n W k
T)Tout

n (5)

where WQ and WK denotes two trainable linear layers (also replaced by 1×1×1 

convolutional layer), softma xL denotes the Softmax operation on the last dimension.

Pan et al. Page 6

Phys Med Biol. Author manuscript; available in PMC 2023 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



II.C Knowledge distillation for optimization

The knowledge distillation (KD) strategy initially was implemented in the Data-efficient 

vision transformer (Touvron et al., 2021), which learns prior information from a state-of-the-

art CNN model to prevent the transformer from overfitting with limited data. KD introduces 

a set of learnable distillation tokens Dt that flow through the transformer along with the 

information token T and the class tokens Ct, with only Dt and Ct used for predicting the 

output. The objective of Dt is to match the output produced by the teacher network, while 

the Ct is to match the ground truth labels. The distillation token, which learned knowledge 

from a CNN model, can interact with the and T Ct and transfer local inductive biases to 

the VITs, to improve network performance and efficiency. Motivated by this example, we 

propose a similar mechanism for prediction combined with the information token T to avoid 

information loss. As shown in Fig. 2, for the n’th layer’s input tokens, we append a Cn 

(blue star) and Dn (red circle) to both ends of the information token Tn. The output of the 

transformer Tout (with the same size of the whole input) are split back into four sets of 

tokens (since we input tokens from four layers), and each set of the tokens consists of the 

corresponding Cn, Tn, and Dn. The potions of Tn and Cn are fed into the feature recovery 

projector (as described in Section. II.B.3.) to be recovered to the feature maps Xct, which are 

then passed through the CNN decoder. Similarly, the portion of the Tn and Dn is recovered 

as Xdt and passed through the identical decoder (as shown in Fig. 3(a)). We aim to optimize 

the output (Yc) generated from Xct with the ground truth segmentations. In parallel, the 

output (YD) generated from Xdt is optimized to the output of the teacher model. In other 

words, during training the CNN decoder per epoch. Our segmentation thus benefits from 

the teacher model and the transformer architecture. For training, the optimization can be 

formulated as:

Ltotal = 1
2Ld Y C, OG + 1

2Ld Y D, OT (6)

where Ld refers to the Dice loss(Lu et al., 2019). OG and OT refer to the ground truth and the 

teacher model’s output, respectively. In inference, the prediction is generated by YC. In our 

practice, we applied 3D Deep attention U-net (DVnet) as the teacher model.

III. Data Acquisition and Preprocessing

All experiments were implemented using the Pytorch framework in Python 3.8.11 on a 

workstation running Windows 11 and executed on a single Nvidia RTX 6000 GPU with 

48GB memory.

III. An Institution dataset: Pelvic organs segmentation dataset

We identified 94 patients with prostate cancer treated with external beam radiation therapy. 

All patients underwent CT simulation using a Siemens SOMATOM Definition AS CT 

scanner with a voxel size of 0.977 × 0.977 × 2 mm. Five organs (bladder, prostate, 

rectum, LFH, and RFHs) were contoured by a radiation oncologist. Another radiologist 

then modified the segmentations to reach a consensus. The pelvic image volumes and 

segmentation were resampled to size of 2 × 2 × 1 mm; then centered and cropped in the 

boundary. The input scans were divided into patches with size of 160 × 160 × 48 for both 
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training and inference. To increase data variation, we applied data augmentation by using 

elastic deformations (Ronneberger et al., 2015) on the training volumes and segmentation. 

The deformation field was generated by a normal distribution with a standard deviation of 

5 and a spacing of 2 voxels in each direction. In addition, we applied Mixup augmentation 

(Zhang et al., 2018) with λ = 0.2 on the training data to further improve the stability and 

generalization. The size for both training and inference, every sample was normalized to −1 

to 1. The training time for 250 epochs is about 10.4 hours. More details are shown in the 

Supplementary material Appendix 2.

III.B Public dataset: CT organ segmentation dataset (CT-ORG)

A public dataset is also deployed for evaluation. This CT-ORG (Rister et al., 2020) task 

involves 140 CT scans, with manual contours of the liver, lungs, bladder, kidney, and bones, 

where the brain is labeled on the minority of scans. We only adopt the 100 scans without the 

brains for fair comparison and aim to segment the rest of the organs. Each case is resampled 

with a voxel size of 2 × 2 × 5 mm. The size of input patches is 160 × 128 × 80. The same 

data augmentation and normalization strategy are utilized as preprocessing. The training 

time for 250 epochs is about 14.2 hours.

IV. Performance evaluation

Three aspects of segmentation performance were evaluated: volume-based similarity, 

surface-based distance, and volume difference between automated and ground truth 

segmentations. The volume-based overlapping was quantified by the Dice similarity 

coefficient (DSC), sensitivity (the proportion of organ pixels correctly classified), and 

precision (the ratio of non-organ pixels correctly classified). Greater values indicate greater 

volume similarity. The surface-based distance was evaluated by Hausdorff distance (HD), 

mean surface distance (MSD), and residual mean square distance (RMSD). Here, smaller 

values indicate better surface matching between the automated and manual contours. In 

addition, we calculate percentage volume difference (PVD) to evaluate the volume size 

differences, where smaller differences indicate better performance. In assessing the private 

pelvic dataset, we used five-fold cross-validation to validate the segmentation performance 

from 94 patients: four sub-groups (75 images) were used for training, and the remainder (19 

images) were used for testing. This data splitting for training and inference was repeated 

until each sub-group was tested. Finally, we report the average evaluation results across all 

pelvic scans. In evaluating the CT-ORG, we follow the split used in (Rister et al., 2020). The 

first 19 scans are used for testing, and the rest 81 scans are used to build the training set.

To validate the effectiveness of TTVnet, we run ablation experiments by using the private 

pelvic dataset. We firstly removed the KD strategy to demonstrate the benefits of knowledge 

distillation. On the other hand, we replace the token-based mechanism with vanilla VIT 

(remove the tokenization and feature recovery) and compare the performance between 

the TTVnet and the TTVnet with vanilla VIT (VITVnet). Then the proposed TTVnet 

is compared to widely-used segmentation networks, such as 3D U-net (Vnet), 3D Deep 

attention U-net (DVnet), nnUnet, and UNEt Transformers (UNETR) in both private and 

public dataset. For fair comparisons, we adopted the same hyper-parameter configuration, 

Pan et al. Page 8

Phys Med Biol. Author manuscript; available in PMC 2023 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



except that the input patch size is 160 × 128 × 80 for UNETR, in all networks for 

comparison. Mann-Whitney U-test was performed for all metrics using a significance 

threshold (p-value) of 0.05 to evaluate whether the proposed network’s improvement over 

the compared networks is significant statistical.

V. Result

A visual comparison of the proposed method with all competing techniques is shown in. 

Fig. 3 and Fig. 4. The quantitative performance for the TTVnet from the ablation study 

is shown in Table 1. Quantitative analysis results for the TTVnet and other competing 3D 

networks from the institutional dataset are summarized in Table 2 (more comparisons with 

competing 2D networks are shown in the (Supplementary material Appendix 1). And the 

results from the CT-ORG are summarized in Table 3. To efficiently display the performance 

of the TTVnet, we only show a p-value from Mann-Whitney U-test between the TTVnet 

with another network. The network is selected based on the following criterion: 1) If the 

TTVnet shows the best result, then the statistical p-value of TTVnet vs. the second-best 

model is shown, where p < 0.05 can indicate the TTVnet shows significant improvement. 

2) If the TTVnet does not show the best result, the p-value of TTVnet vs. the best model is 

shown, where p>0.05 can indicate that there is not enough evidence to show the TT-Vnet’s 

performance is significantly worse than the best model.

V. An Efficacy of Token-based transformer and knowledge distillation

To demonstrate the contribution of the KD and token-based transformer on segmentation, 

we compare the results obtained with the proposed TTVnet with the network without 

KD and VITVnet. The segmentation performance for five-fold cross-validation is shown 

in Table. 1. The average DSC of the network without KD was 0.93, 0.93, 0.93, 0.82, 

and 0.86 for bladder, LFH, RFH, prostate, and rectum, respectively. The VITVnet reports 

average DSC was 0.91, 0.93, 0.930, 0.81 and 0.83. The organs’ DSC were increased to 

0.94, 0.95, 0.95, 0.841 and 0.891 when KD is applied. The p-values obtained from the 

Mann-Whitney U-test show statistically significant improvements by both utilizing the KD 

strategy and the token-based mechanism. Quantitative and statistical improvements are 

observed in either sensitivity (more organs pixels were correctly classified) and precision 

(less non-organ pixels were misclassified) for all organs. Improvements are also observed 

in surface-based similarities: the KD strategy shows lower quantitative surface distances, 

in terms of average HD, MSD, and RMSD, for bladder, LFH, RFH, and rectum with 

corresponding statistically significant improvement. On the other hand, the token-based 

mechanism shows surface-based improvement for all organs. For volume difference, the 

KD strategy presents both quantitative and statistical improvement for bladder, RFH and 

prostate, while the tokenization mechanism improves segmentation accuracy statistically on 

prostate.

V.B Contribution of TTVnet

For the private pelvic dataset, in terms of Dice score, the proposed TTVnet yielded non-

negligible improvements over prior networks for all organs: performance gains range from 

0.006 to 0.017 for bladder, 0.003 to 0.012 for the LFH and RFH, 0.007 to 0.022 for the 
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prostate, and 0.013 to 0.035 for the rectum. Most of the p-values (< 0.05) obtained from 

the Mann-Whitney U-test indicate that the TTVnet improved Dice score for bladder, LFH, 

prostate, and rectum at the 5% significance level. Combining the dice score results with 

the sensitivity and precision, the TTVnet gain quantitatively and statistically improvement 

mainly on the bladder, prostate, and rectum while showing comparable performance with 

the corresponding best model in each metric. Similarly, the TTVnet mainly indicates a 

significant improvement in bladder, prostate, and rectum for the surface-based distance. For 

these three organs, surface distance improvements range from 0.459 to 4.76 mm for HD, 

0.003 to 2.35 for MSD, and 0.138 to 2.80 for RMS. In addition, the TTVnet obtained 

the smallest volume difference for bladder, LFH, RFH, and prostate in terms of volume-

based difference. The statistical analysis shows that the TTVnet can improve segmentation 

accuracy on bladder, LFH, and prostate while still demonstrating comparable performance 

with the competing networks on the RFH and rectum. In summary, the higher volume-based 

similarity, surface-based similarity, and lower volume difference is primarily observed in 

segmentations of the bladder, prostate, and rectum, indicating the effectiveness of the 

TTVnet for improving the segmentation accuracy of these organs in pelvic CT images.

For the public CT-ORG dataset, in terms of Dice score, the proposed TTVnet obtains the 

best performance among all organs: it shows an improvement range quantitatively from 

0.016 to 0.018 for liver, 0.025 to 0.042 for bladder, 0.017 to 0.070 for lung, 0.005 to 0.046 

for kidney, and 0.017 to 0.042 for bone. The p-values indicate the statistical improvement 

for liver, bladder, kidney, and bone at the 5% significance level. The TTVnet also improves 

either sensitivity or precision in the liver, lung, and bone. On the other hand, in terms of 

surface-based similarity, the TTVnet shows statistically significant improvement in liver, 

lung, kidney, and bone while still demonstrating quantitively improvement in the bladder. 

In terms of volume difference, the TTVnet quantitively and statistically improves the 

segmentation of lung and bone. The TTVnet primarily improves the volume-based similarity 

and surface-based similarity of liver, lung, and bone. It also improves the Dice score on the 

bladder and surface-based similarity on the kidney.

VI. Discussion

This work proposes a U-shaped Token-based transformer network (TTVnet) using a 

knowledge distillation strategy for 3D CT-based pelvic multi-organ segmentation. The 

TTVnet has three main components: a convolutional encoder for extracting features at 

different resolutions, a token-based transformer decoder for enriching the global information 

to the extracted features, and a set of upsampling convolutional blocks for reconstructing 

the features into an N-class segmentation. One novelty to the TTVnet is that the transformer 

layers effectively capture global information otherwise lost in pure FCN networks due 

to their limited receptive field. On the other hand, the novel tokenization and knowledge 

distillation can effectively assist the transformer, and accordingly improve the network’s 

generalization, which are evidenced by example training loss and validation dice score 

in the Supplementary material Appendix 3 Fig. 1 and Fig. 2. TTVnet also incorporates 

distillation learning with Vnet, which is the process by which our TTVnet (student) learns 

not only from the ground truth, but also from the output of the Vnet (teacher). Furthermore, 

distillation learning conveys prior convolutional information from the Vnet to the TTVnet, 
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which provides extra guidance for our network to stabilize the training process and 

improve network generalization. To our knowledge, this paper presents the first transformer 

architecture with tokenization and knowledge distillation for multi-organ segmentation 

in pelvic CT pelvic scans. The proposed network efficiently demonstrates promising 

segmentation performance compared to current state-of the-art methods, suggesting a 

feasible approach to automated facilitation of routine prostate radiation treatment planning.

Performance of the TTVnet was investigated in three domains: 1) volume similarity by DSC, 

sensitivity, and precision; 2) surface similarity by HD, MSD, and RMSD; and 3) volume 

differences by percentage volume difference. Overall, our proposed TTVnet with distillation 

demonstrated statistically significant improvement, in terms of different metrics, over the 

competing networks. Even without distillation, the TTVnet still preserves or surpasses the 

segmentation performance of all competing networks. Such improvement demonstrates the 

advantages of transformer architecture in CT-based pelvic multi-organ segmentation and 

the transformer’s potential to be a reliable backbone for network design in other medical 

segmentation problems.

However, it is essential to note that the segmentation performance might still be limited. 

First, compared to CNN-based models with more complex architecture and advanced 3D 

pelvic CT segmentation techniques, the proposed TTVnet achieved lower accuracy in the 

prostate and rectum. Dong et al.(Dong et al.), who used an additional Cycle-GAN to 

perform 3D CT-to- sMRI synthesis and trained the segmentation network in the synthetic 

sMRI scans to exploit the superior soft-tissue contrast of sMRI, reported DSC was 0.95 

± 0.03 for bladder and 0.87±0.04 for prostate using a dataset of 140-patients pelvic CT 

images. Similar works utilizing additional networks such as, GAN (Lei et al.) for CT-to-

sMRI synthesis and 2D organ localization network before segmentation (Balagopal et al.), 
reported better segmentation accuracy in terms of DSC than the TTVnet. Second, the 

teacher model’s segmentation power (e.g., the accuracy) may also affect the TTVnet’s 

performance. In this work, errors resulting from the teacher model were propagated to the 

student TTVnet’s and may lead to lower performance. Finally, the model’s performance may 

be subjected to inter-observer variability inherent in the manually-delineated expert ground 

truth contours. We hypothesize that the inter-observer variability could impede the teacher 

model first and, therefore, have a compound effect on the proposed TTVnet through the 

KD. However, these limitations do not diminish the significance of the proposed TTVnet but 

call for incorporating more advanced techniques (such as an additional auxiliary network) 

with this method to improve segmentation performance further. Also, we aim to investigate 

more powerful teacher models for the distillation process and the inclusion of additional 

training data to overcome inter-observer variability in the dataset. Moreover, in clinical use, 

all segmented contours will be finally reviewed by physicians to ensure the contour quality 

for patient safety.

In the future, the current work will incorporate advanced techniques/networks to support 

the TTVnet’s segmentation. Future work will also extend the distillation process, such 

as a more sophisticated teacher model and a more effective method to distillate the 

knowledge from the teacher model to the student model for segmentation. Furthermore, 

we will include dosimetric evaluation in the segmentation result in radiation treatment 
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planning. The network’s effect on the planning quality will be investigated. Moreover, the 

proposed method can also be potentially applied on daily cone-beam CT to provide patient 

organ contours on treatment day. Physicians can then compare the daily contours with 

contours from planning CT to decide whether to resume, pause or modify the treatment 

plan. However, cone-beam CT contains more image artifacts than planning CT. Thus, the 

feasibility of the proposed method on cone-beam CT needs further evaluation.

VII. Conclusion

This work presents a segmentation network with novel feature forwarding using Token-

based self-attention for pelvic CT segmentation. The proposed method yields more accurate 

contours, in terms of volume-based accuracy and surface-based accuracy, than Vnet and 

other competing state-of-the-art methods. The network demonstrates potential as an accurate 

and efficient tool to facilitate prostate radiation treatment planning.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
(a) Network structure: transformer (middle) is deployed as a bridge between the Vnet 

encoder (left) and the decoder (right). The Encoder’s feature maps are first tokenized with 

class and distillation tokens, then passed to the Transformer block. The output is split into 

a set of tokens corresponding to each residual block and then passed to the decoder. The 

number of filters in the first to the fourth layers in the encoder are 128, 256, 512 and 1024, 

respectively. The numbers of the filters in the decoder mirrors the encoder in an inverse 

direction. (b) Transformer layer: the transformer layer consists of an MHSA and an MLP. 

c) Up/Down-sampling block: the block contains a trilinear interpolation followed by two 

convolutional layers.
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Figure 2: 
Tokenization with knowledge distillation: The CNN decoder first takes the class token 

and the information token as input to generate segmentations matching the ground truth. 

The decoder then takes the distillation token with the information tokens as input for 

segmentation, aiming to reach the output of the teacher models.
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Figure 3: 
Segmentation result from Private pelvic dataset. The 3D structure, a central slice contains 

all the organs,and the region-of-interest of each organ from manual contours (row 1), the 

TTVnet (row 2) and all competing networks (row 3–6): bladder (green), prostate (blue), 

rectum (red), LFH (yellow) and RFH (brown).
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Figure 4: 
Segmentation result from CT-ORG dataset. The 3D structure, the selected region-of-interest 

of each organ from manual contours (row 1), the TTVnet (row 2) and all competing 

networks (row 3–6): liver (green), bladder (blue), lung (yellow), kidney (brown) and bone 

(red).
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Table 1:

Quantitative analysis: Table shows statistics for the volume-based similarity, surface-based similarity, and 

absolute volume difference for the proposed TTVnet, TTVnet without KD, and VITVnet. “(1)” indicates 

the TTVnet without KD, “(2)” indicates the VITVnet. The statistical analysis of Mann-Whitney U-Test is 

presented to compare the TTVnet with the other networks. The best results are bolded.

Volume-based Similarity Surface-based Similarity Volume Difference

Organ Method Dice score Sensitivity Precision HD (mm) MSD (mm) RMSD (mm) PVD (%)

Bladder

TTVnet (no DS) 0.93±0.02 0.92±0.042 0.94±0.03 3.53±1.69 1.34±0.321 2.08±0.54 6.8±4.6

VITVnet 0.91±0.03 0.925±0.04 0.91±0.04 3.64±1.59 1.39±0.398 2.23±0.534 6.5±4.1

TTVnet 0.94±0.03 0.92±0.045 0.95±0.03 3.16±0.77 1.06±0.425 1.91±0.86 5.8±4.4

Significance: TTVnet vs (1) <0.001 0.578 <0.001 0.130 <0.001 0.033 0.050

Significance: TTVnet vs (2) <0.001 0.128 <0.001 <0.001 <0.001 0.002 0.209

LFH

TTVnet (no DS) 0.93±0.03 0.95±0.03 0.92±0.05 2.93±1.25 1.26±0.37 1.80±0.55 9.1±6.3

VITVnet 0.93±0.03 0.93±0.05 0.92±0.05 3.32±1.16 2.15±1.50 7.86±6.92 9.0±6.3

TTVnet 0.95±0.03 0.94±0.04 0.95±0.04 2.78±1.06 0.95±0.49 1.42±0.52 7.9±6.0

Significance: TTVnet vs (1) <0.001 0.071 <0.001 0.271 <0.001 <0.001 0.317

Significance: TTVnet vs (2) <0.001 0.175 <0.001 0.002 <0.001 <0.001 0.199

RFH

TTVnet (no DS) 0.93±0.03 0.95±0.03 0.92±0.05 3.25±1.02 1.20±0.44 1.91±0.47 10.1±6.6

VITVnet 0.93±0.02 0.92±0.04 0.93±0.05 2.77±0.60 1.09±0.35 1.78±0.34 8.0±5.6

TTVnet 0.95±0.02 0.94±0.04 0.95±0.04 2.56±0.77 0.91±0.47 1.50±0.50 7.9±5.5

Significance: TTVnet vs (1) <0.001 0.092 <0.001 <0.001 <0.001 <0.001 0.008

Significance: TTVnet vs (2) <0.001 <0.001 <0.001 0.033 0.001 <0.001 0.860

Prostate

TTVnet (no DS) 0.82±0.04 0.84±0.08 0.84±0.09 5.84±1.71 2.14±0.53 3.04±0.80 17.1±10.0

VITVnet 0.81±0.05 0.86±0.06 0.77±0.13 5.71±2.71 2.26±0.81 3.25±1.13 19.6±13.8

TTVnet 0.84±0.04 0.87±0.06 0.83±0.08 6.03±1.74 2.03±0.58 2.89±0.64 12.9±9.4

Significance: TTVnet vs (1) <0.001 0.010 0.103 0.596 0.114 0.115 0.005

Significance: TTVnet vs (2) <0.001 0.581 0.001 0.135 0.050 0.031 <0.001

Rectum

TTVnet (no DS) 0.86±0.05 0.83±0.09 0.83±0.06 6.59±3.62 1.89±0.81 4.97±2.97 16.8±12.8

VITVnet (2) 0.83±0.04 0.81±0.08 0.87±0.08 7.28±4.57 2.42±1.04 5.97±3.94 17.1±11.2

TTVnet 0.89±0.04 0.86±0.08 0.92±0.05 4.28±2.19 1.30±0.52 2.30±0.77 16.9±12.7

Significance: TTVnet vs (1) <0.001 0.032 <0.001 <0.001 <0.001 <0.001 0.412

Significance: TTVnet vs (2) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.063
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Table 2:

Quantitative analysis for the private pelvic dataset: Table shows statistics for the volume-based similarity, 

surface-based similarity, and absolute volume difference for the proposed TTVnet, Vnet, DVnet, nnUnet and 

UNETR. The statistical analysis of Mann-Whitney U-test is also efficiently presented (as described in Section 

V) to compare the TTVnet with each competing network. The best performance is bolded, and the second-best 

results are underlined.

Volume-based Similarity Surface-based Similarity Volume Difference

Organ Method Dice score Sensitivity Precision HD (mm) MSD (mm) RMSD(mm) PVD (%)

Bladder

V-net 0.92±0.03 0.94±0.03 0.91±0.04 5.34±1.23 3.41±0.38 3.13±0.67 9.0±4.5

DV-net 0.93±0.02 0.91±0.04 0.96±0.02 5.76±2.37 3.37±0.54 3.09±1.08 10.1±4.6

nnUnet 0.93±0.02 0.93±0.03 0.93±0.04 4.03±1.46 1.15±0.31 2.05±0.61 6.8±5.0

UNETR 0.93±0.03 0.91±0.04 0.96±0.03 7.92±5.92 1.66±0.98 3.56±2.38 6.7±5.7

TTVnet 0.94±0.03 0.92±0.05 0.95±0.03 3.16±0.78 1.06±0.43 1.91±0.86 5.8±4.4

P-values 0.005 0.040 0.412 <0.001 <0.001 <0.001 <0.001

Femoral head (left)

V-net 0.94±0.03 0.93±0.06 0.93±0.04 4.74±0.78 3.13±0.37 2.68±0.43 11.5±6.9

DV-net 0.93±0.03 0.93±0.05 0.94±0.05 4.71±0.70 3.16±0.38 3.26±1.29 12.1±6.9

nnUnet 0.94±0.03 0.92±0.05 0.95±0.04 2.75±0.97 1.00±0.53 1.52±0.54 8.1±6.4

UNETR 0.95±0.03 0.92±0.05 0.95±0.04 2.77±1.09 0.94±0.55 1.48±0.59 8.1±5.8

TTVnet 0.95±0.03 0.94±0.04 0.95±0.04 2.78±1.06 0.95±0.49 1.42±0.52 7.9±6.0

P-values 0.002 0.250 0.180 0.075 0.055 0.012 0.012

Femoral head (right)

V-net 0.94±0.02 0.94±0.04 0.93±0.05 4.66±0.75 3.15±0.32 2.65±0.40 11.2±6.1

DV-net 0.93±0.03 0.93±0.04 0.93±0.05 4.99±0.780 3.15±0.36 2.80±0.41 10.3±6.3

nnUnet 0.95±0.03 0.94±0.04 0.94±0.05 2.67±0.96 0.92±0.50 1.48±0.51 8.3±6.1

UNETR 0.94±0.03 0.94±0.04 0.94±0.05 2.67±0.82 0.91±0.50 1.44±0.48 7.2±5.3

TTVnet 0.95±0.02 0.94±0.04 0.95±0.04 2.56±0.77 0.91±0.47 1.50±0.50 7.9±5.5

P-values 0.129 0.203 0.007 0.033 0.680 0.193 0.315

Prostate

V-net 0.83±0.04 0.85±0.07 0.82±0.09 7.15±1.33 4.05±0.39 3.81±0.47 20.1±12.9

DV-net 0.83±0.04 0.82±0.09 0.83±0.10 7.41±1.12 4.04±0.30 3.82±0.46 23.0±14.9

nnUnet 0.82±0.05 0.88±0.07 0.78±0.10 7.02±2.17 2.39±0.82 3.16±0.88 16.5±11.5

UNETR 0.83±0.03 0.84±0.08 0.85±0.08 6.49±1.44 2.26±0.48 3.11±0.44 14.5±9.6

TTVnet 0.84±0.04 0.87±0.07 0.83±0.08 6.03±1.74 2.03±0.58 2.89±0.64 12.9±9.4

P-values 0.021 <0.001 0.007 0.057 0.083 0.168 0.018

Rectum

V-net 0.86±0.06 0.87±0.10 0.85±0.07 9.04±5.03 4.07±1.13 4.07±1.13 17.8±11.2

DV-net 0.86±0.04 0.87±0.07 0.89±0.07 8.22±3.87 3.73±0.73 3.73±0.73 17.1±10.8

nnUnet 0.86±0.05 0.83±0.09 0.90±0.06 7.74±5.04 3.60±1.82 1.94±1.15 22.7±16.8

UNETR 0.88±0.04 0.89±0.067 0.87±0.08 6.16±3.04 2.89±1.48 1.64±0.68 13.8±10.3

TTVnet 0.89±0.04 0.85±0.089 0.91±0.05 4.33±2.12 1.27±0.59 1.27±0.59 14.8±11.6
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Volume-based Similarity Surface-based Similarity Volume Difference

Organ Method Dice score Sensitivity Precision HD (mm) MSD (mm) RMSD(mm) PVD (%)

P-values <0.001 0.538 <0.001 <0.001 <0.001 0.036 0.762
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Table 3:

Quantitative analysis for CT-ORG: Table shows statistics for the volume-based similarity, surface-based 

similarity, and absolute volume difference for the proposed TTVnet, Vnet, DVnet, nnUnet and UNETR. The 

statistical analysis of Mann-Whitney U-test is also efficiently presented (as described in Section V) to compare 

the TTVnet with each competing network. The best performance is bolded, and the second-best results are 

underlined.

Volume-based similarity Surface-based similarity Volume difference

Organ Method Dice score Sensitivity Precision HD (mm) MSD (mm) RMSD (mm) PVD (%)

Liver

V-net 0.94±0.02 0.94±0.02 0.94±0.03 6.55±2.14 1.62±0.59 3.38±1.16 3.6±2.4

DV-net 0.94±0.01 0.94±0.02 0.95±0.03 6.47±2.04 1.56±0.47 3.40±0.97 3.6±2.5

nnUnet 0.94±0.02 0.95±0.02 0.93±0.02 7.35±3.07 2.26±2.34 7.10±10.37 3.0±2.3

UNETR 0.94±0.02 0.95±0.02 0.94±0.03 6.75±4.19 2.52±4.72 7.01±16.42 3.3±1.9

TTVnet 0.96±0.01 0.95±0.02 0.97±0.02 6.12±2.37 1.10±0.40 3.08±1.10 3.6±2.9

P-values <0.001 0.687 <0.001 0.036 0.002 0.005 0.376

Bladder

V-net 0.83±0.11 0.89±0.10 0.80±0.15 8.23±5.77 2.39±1.36 3.73±2.03 14.7±14.8

DV-net 0.83±0.12 0.89±0.10 0.79±0.15 8.59±6.82 2.41±1.38 3.91±2.26 14.0±13.0

nnUnet 0.85±0.12 0.89±0.12 0.84±0.17 10.30±10.00 2.59±2.75 6.32±11.0 19.0±25.2

UNETR 0.82±0.13 0.89±0.14 0.80±0.16 9.61±5.94 2.77±2.06 5.95±6.48 24.7±32.82

TTVnet 0.88±0.09 0.90±0.09 0.85±0.13 8.19±7.78 1.84±1.23 3.34±2.34 12.7±10.13

P-values 0.044 0.573 0.872 1.000 0.809 0.872 0.658

Lungs

V-net 0.95±0.04 0.94±0.04 0.97±0.05 17.62±33.31 2.94±4.57 7.90±10.81 4.8±4.3

DV-net 0.95±0.04 0.94±0.04 0.97±0.06 17.53±34.82 2.77±4.11 7.42±10.43 5.2±4.7

nnUnet 0.95±0.07 0.93±0.09 0.98±0.04 9.88±4.99 3.54±7.80 8.48±12.6 6.6±9.8

UNETR 0.90±0.16 0.88±0.20 0.95±0.04 26.42±51.03 10.62±25.01 22.32±41.00 27.6±83.1

TTVnet 0.97±0.02 0.95±0.03 0.99±0.03 5.45±4.70 1.13±0.82 3.88±2.20 6.4±4.1

P-values 0.002 0.042 <0.001 0.036 0.003 0.018 0.005

Kidney

V-net 0.89±0.08 0.93±0.07 0.92±0.12 4.51±2.60 1.06±0.72 2.21±1.11 11.2±13.7

DV-net 0.91±0.05 0.91±0.07 0.94±0.06 6.98±12.1 1.38±1.91 3.77±6.14 7.8±9.0

nnUnet 0.93±0.04 0.94±0.04 0.93±0.06 3.86±2.46 0.75±0.47 2.60±2.50 6.5±6.7

UNETR 0.90±0.05 0.89±0.06 0.96±0.08 6.99±2.25 1.39±0.47 3.17±0.96 10.0±8.0

TTVnet 0.94±0.02 0.95±0.04 0.95±0.03 3.70±4.01 0.57±0.50 1.77±1.76 5.2±4.8

P-values 0.295 0.198 0.277 0.008 0.002 0.014 0.227

Bone

V-net 0.86±0.05 0.85±0.07 0.86±0.06 9.83±6.70 2.01±0.97 2.01±0.966 8.8±7.0

DV-net 0.87±0.04 0.86±0.07 0.88±0.05 8.63±7.34 1.73±0.98 1.73±0.977 8.1±6.8

nnUnet 0.88±0.05 0.85±0.08 0.91±0.04 7.70±5.34 1.55±0.83 1.55±0.827 9.1±11.1

UNETR 0.88±0.05 0.86±0.08 0.91±0.05 7.74±6.93 1.70±0.97 1.70±0.967 8.5±10.4

TTVnet 0.90±0.03 0.90±0.03 0.90±0.04 5.65±1.44 1.15±0.30 1.15±0.301 4.9±4.3
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Volume-based similarity Surface-based similarity Volume difference

Organ Method Dice score Sensitivity Precision HD (mm) MSD (mm) RMSD (mm) PVD (%)

P-values <0.001 0.001 0.008 0.008 0.049 0.006 0.008
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