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Abstract
Background: Asthma	exacerbations	are	a	serious	public	health	concern	due	to	high	
healthcare	 resource	utilization,	work/school	productivity	 loss,	 impact	on	quality	of	
life,	and	risk	of	mortality.	The	genetic	basis	of	asthma	exacerbations	has	been	stud-
ied in several populations, but no prior study has performed a multi- ancestry meta- 
analysis	of	genome-	wide	association	studies	(meta-	GWAS)	for	this	trait.	We	aimed	to	
identify	 common	genetic	 loci	 associated	with	 asthma	exacerbations	 across	diverse	
populations	 and	 to	 assess	 their	 functional	 role	 in	 regulating	DNA	methylation	 and	
gene	expression.
Methods: A	 meta-	GWAS	 of	 asthma	 exacerbations	 in	 4989	 Europeans,	 2181	
Hispanics/Latinos,	1250	Singaporean	Chinese,	and	972	African	Americans	analyzed	
9.6 million genetic variants. Suggestively associated variants (p	≤	5	× 10−5) were as-
sessed	for	replication	in	36,477	European	and	1078	non-	European	asthma	patients.	
Functional	 effects	on	DNA	methylation	were	assessed	 in	595	Hispanic/Latino	and	
African	American	asthma	patients	and	in	publicly	available	databases.	The	effect	on	
gene	expression	was	evaluated	in	silico.
Results: One	hundred	and	twenty-	six	independent	variants	were	suggestively	associated	
with	asthma	exacerbations	 in	 the	discovery	phase.	Two	variants	 independently	 repli-
cated:	rs12091010	located	at	vascular	cell	adhesion	molecule-	1/exostosin	like	glycosyl-
transferase- 2 (VCAM1/EXTL2) (discovery: odds ratio (ORT allele) = 0.82, p = 9.05 × 10−6 and 
replication: ORT allele = 0.89, p = 5.35 × 10−3)	and	rs943126	from	pantothenate	kinase	1	
(PANK1) (discovery: ORC allele = 0.85, p = 3.10 × 10−5 and replication: ORC allele = 0.89, 
p = 1.30 × 10−2).	Both	variants	regulate	gene	expression	of	genes	where	they	locate	and	
DNA	methylation	levels	of	nearby	genes	in	whole	blood.
Conclusions: This multi- ancestry study revealed novel suggestive regulatory loci for 
asthma	exacerbations	located	in	genomic	regions	participating	in	inflammation	and	host	
defense.

K E Y W O R D S
asthma	exacerbations,	EXTL2,	GWAS,	PANK1, single- nucleotide polymorphism
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1  |  INTRODUCTION

Asthma	is	a	common	chronic	inflammatory	airway	disorder	affect-
ing over 300 million people worldwide. The disparities in asthma 
prevalence	across	populations	reflect	a	complex	interplay	between	
environmental	 exposures	 (i.e.,	 air	 pollution	 and	 viral	 infections),	
behavioral and socioeconomic factors (i.e., treatment adherence 
and healthcare access), and genetic ancestry, which is inferred 
from whole- genome variation and tracks geographic and histori-
cal factors and the aforementioned factors influencing asthma 
prevalence.1,2

Asthma	 exacerbations	 are	 defined	 as	 worsening	 of	 respira-
tory	 symptoms	 requiring	 hospitalization,	 unscheduled/emergency	
asthma care, and/or use of systemic corticosteroids.3 Prevention of 
asthma	exacerbations	 is	a	major	public	health	priority	due	to	their	
associated	consequences	on	health	(i.e.,	decreased	quality	of	life,	ac-
celerated decline in lung function, or mortality), school attendance, 
work productivity, and healthcare costs.1,4,5 To date, the best predic-
tor	of	future	exacerbations	is	the	occurrence	of	one	in	the	previous	
year.6 Thus, identifying potential biomarkers to guide the reduction 
and	prevention	of	exacerbations	is	a	priority	for	therapeutics	devel-
opment and for precision medicine of asthma.

by a Medium- Term Research Fellowship 
by	the	European	Academy	of	Allergy	
and	Clinical	Immunology	(EAACI)	and	
a Long- Term Research Fellowship by 
the European Respiratory Society (ERS) 
(LTRF202101- 00861). UP and MG were 
supported by the Ministry of Education, 
Science and Sport of the Republic of 
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With	the	advent	of	high-	throughput	sequencing	and	genotyping	
technologies,	the	study	of	the	genetic	contributions	to	asthma	ex-
acerbations has shifted from hypothesis- driven, limited candidate- 
gene	 strategies	 to	 genome-	wide	 association	 studies	 (GWAS).7–	14 
Pharmacogenomics	 studies	 of	 asthma	 exacerbations	 as	 an	 out-
come of treatment response have identified five suggestive asso-
ciations	 for	 asthma	 exacerbations	 despite	 inhaled	 corticosteroids	
(CMTR1,9 APOBEC3B- APOBEC3C,8 and CACNA2D3- WNT5A11), or 
long- acting beta2- agonists (TBX3 and EPHA7).10 Beyond pharma-
cogenomics,	 other	 studies	 have	 focused	 on	 asthma	 exacerbations	
independently of treatment. In European- descent populations, 
CDHR3, CTNNA3, and HLA- DQB1 have been associated with se-
vere	 asthma	 exacerbations.7,13 More recently, the representation 
of	ethnically	diverse	populations	has	increased	in	GWAS	of	asthma	
exacerbations.	 A	 meta-	analysis	 of	 GWAS	 in	 Hispanic/Latino	 chil-
dren identified a single- nucleotide polymorphism (SNP) at FLJ22447 
that modulated KCNJ2- AS1	expression	 in	nasal	epithelium	through	
DNA	methylation.12	 In	Hispanic/Latinos	 and	African	Americans,	 a	
genome-	wide	significant	locus	for	asthma	with	exacerbations	regu-
lated LINC01913	lung	gene	expression	and	DNA	methylation	levels	
of the PKDCC gene in whole blood.14 However, none of those stud-
ies has approached the search for genetic determinants of asthma 
exacerbations	 independently	 of	 treatment	 from	 a	 multi-	ancestry	
framework.

To improve our understanding on genetic and biological mecha-
nisms	of	asthma	exacerbations	across	multiple	populations,	we	con-
ducted	 the	 first	multi-	ancestry	meta-	analysis	 of	GWAS	of	 asthma	
exacerbations	 independently	 of	 treatment	 and	 attempted	 to	 vali-
date previous associations. Then, we conducted in silico and in vivo 
downstream analyses to assess the potential functional effects of 
the	associated	SNPs	over	DNA	methylation	and	gene	expression.

2  | METHODS

2.1  |  Studydesignandstudypopulations

We performed a two- stage study to identify genetic variants associ-
ated	with	asthma	exacerbations,	defined	as	a	binary	variable	based	on	
the	presence	of	emergency	care,	hospitalizations,	or	administration	
of systemic corticosteroids because of asthma. We also considered 
a	 definition	 of	 moderate	 exacerbations,3 comprising unscheduled 
general practitioner or pulmonary specialist visits and school ab-
sence, as no information on the former variables was available for 
some	studies.	A	period	of	6–	24	months	or	ever	was	considered	de-
pending on the data available for each study (Tables S1 and S2). In 
the discovery phase, we performed a multi- ancestry meta- analysis 
of	 GWAS	 of	 asthma	 exacerbations	 in	 9392	 patients	 with	 asthma	
from	12	studies,	including	4989	European-	descents	from	nine	stud-
ies, 2181 Hispanics/Latinos, 1250 Singaporean Chinese, and 972 
African	 Americans.	 We	 attempted	 to	 replicate	 the	 findings	 from	
the discovery phase in a total of 37,555 participants with asthma, 
including	36,477	Europeans	 from	seven	studies,	877	Latinos	 from	

two studies, and 201 Filipinos from one study (Table S2).	A	detailed	
description	of	each	study	is	available	in	the	Appendix	S1.	All	stud-
ies included were approved by their respective Institutional review 
boards, and written informed consent was provided by participants 
or	their	parents/caregivers.	All	methods	followed	the	Declaration	of	
Helsinki guidelines.

Assessment	of	genetic	ancestry	was	performed	using	principal	
component analysis. The Haplotype Reference Consortium (r1.1 
2016)15 was used as the reference imputation panel for most stud-
ies,	 except	 for	 Avon	 Longitudinal	 Study	 of	 Parents	 and	 Children	
(ALSPAC)	 and	 Singapore	 Cross	 Sectional	 Genetic	 Epidemiology	
Study (SCSGES), which used the phase 3 of the 1000 Genomes 
Project (1KGP).16 Genotyping and imputation procedures for the dis-
covery	and	replication	studies	are	detailed	in	the	Appendix	S1 and 
Tables S1 and S2.

2.2  | Associationanalysis

Association	between	genetic	variants	and	asthma	exacerbations	was	
tested	using	logistic	regression	models	including	age,	sex,	and	principal	
components	from	the	genotype	matrix	(if	needed	to	correct	for	popu-
lation stratification) (Table S1).	Analyses	were	conducted	separately	
for each study using PLINK 2.0,17	EPACTS	3.2.618 or rvtests 2.1.0.19 
Results	were	filtered	with	the	EasyQC	software20 to retain variants 
with	 a	 minor	 allele	 frequency	 (MAF)	 ≥	 1%	 and	 imputation	 quality	
R2	≥	.3,	absolute	value	of	the	beta	coefficient	<10, standard error of 
the	beta	included	in	the	interval	[0,10],	and	minor	allele	cut-	off	≥6.

In the discovery phase, genetic variants that were available 
in	 at	 least	 two	 ethnic-	specific	 studies	 were	 meta-	analyzed	 with	
METASOFT,21	using	fixed-	effects	or	random-	effects	models	based	
on	the	heterogeneity	among	studies	(measured	by	the	Cochran’s	Q 
test p- value). Ethnic- specific results were then combined in a multi- 
ancestry meta- analysis. Independent variants (r2	≤	.8)	with	sugges-
tive association22 at p	≤	5	× 10−5 within 1 Megabase were identified 
with	 GCTA-	COJO	 v1.93.223 using the 1KGP reference.16 These 
variants were evaluated in the replication stage, following the same 
procedures as in the discovery phase. Evidence of replication was 

Key Message

A	large	multi-	ancestry	meta-	analysis	of	GWAS	of	asthma	
exacerbations	 revealed	 two	 novel	 susceptibility	 loci	 lo-
cated close to PANK1 and at the intergenic region of 
VCAM1 and EXTL2. These loci decreased PANK1 and 
EXTL2	gene	expression	in	whole	blood,	respectively.	Both	
genetic	 variants	 were	 associated	 with	 DNA	 methylation	
levels at CpG sites nearby. Our results identified two gene 
targets	 for	 asthma	 exacerbations	 that	 should	 be	 further	
explored	to	assess	their	specific	role	in	asthma.
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considered if the variants showed consistent direction of effects 
with the discovery stage at p	≤	.05.

2.3  | Assessmentofsharedgeneticbasisofasthma
exacerbations with other traits

To identify groups of genes previously associated with other traits, 
we	used	 a	Gene-	Set	Enrichment	Analysis	 (GSEA),	 as	 implemented	
in	FUMA	GWAS24 via the GENE2FUNC	algorithm,	and	queried	 the	
GWAS	catalog.25 SNPs with p	≤	1	× 10−4 in the discovery phase of 
the	meta-	analysis	of	GWAS	were	mapped	to	the	closest	gene	using	
the UCSC Table Browser tool.26	A	false	discovery	rate	(FDR)	of	5%	
was used to declare significance.

To estimate the pairwise genome- wide genetic correlations (Rg) 
between	asthma	exacerbations	and	other	 traits,	we	compared	our	
findings	 with	 publicly	 available	 GWAS	 summary	 statistics	 via	 LD	
score regression using LDHub.27	As	most	of	the	GWAS	have	been	
conducted in European populations, the analysis was restricted to 
predominantly	 European-	descent	 individuals	 to	maximize	 the	 sta-
tistical	 power.	 A	 Bonferroni-	corrected	 significance	 threshold	 of	
p < .05/711 traits =	6.48	× 10−5 was applied.

2.4  |  Sensitivityanalysis

To assess the robustness of the genetic associations, we conducted 
sensitivity analyses for the time- dependent probability occurrence 
of	 exacerbations,	 the	 effect	 of	 Body	 Mass	 Index	 (BMI),	 obesity,	
asthma severity, and age group. Moreover, we evaluated the asso-
ciation of the variants with asthma susceptibility, as detailed in the 
Appendix	S1. Studies from the discovery stage that had covariate 
data available were considered.

2.5  | Methylationprofilingandqualitycontrol

Whole	 blood	 DNA	 methylation	 from	 Hispanics/Latinos	 and	 African	
Americans	 was	 profiled	 using	 the	 Infinium	 HumanMethylation450	
BeadChip or the Infinium Methylation EPIC BeadChip arrays. Briefly, 
low-	quality	probes	and	samples,	outliers	of	DNA	methylation,	and	sam-
ples	with	sex	mismatch	or	mixed	genotype	distributions	on	the	control	
SNP	probes	were	excluded.	Standard	background	correction,	dye-	bias	
correction,	 inter-	array	 normalization,	 and	 probe-	type	 bias	 adjustment	
were performed, and beta values were transformed to M- values for bet-
ter	statistical	performance.	Quality	control	is	detailed	in	the	Appendix	S1.

2.6  |  FunctionalassessmentofassociatedSNPs

DNA	 methylation	 quantitative	 trait	 loci	 (meQTL)	 analyses	 were	
conducted	 using	 fastQTL28 for CpG sites within 1 Mb of SNPs 
with	MAF	≥	0.01	in	at	least	10	samples,	separately	in	139	Mexican	

Americans	 and	 241	 Puerto	 Ricans	 from	 Genes-	Environments	 &	
Admixture	in	Latino	Americans	(GALA	II)	and	215	African	Americans	
from	the	Study	of	African	Americans,	Asthma,	Genes	&	Environments	
(SAGE)	studies.	Linear	regression	models	were	corrected	for	asthma	
exacerbations	status,	age,	sex,	genetic	ancestry,	ReFACTor	compo-
nents	as	a	proxy	of	cell	heterogeneity,	and	methylation	batch	(when	
appropriate).	 The	 results	 from	 Mexican	 Americans	 and	 Puerto	
Ricans assayed with different methylation arrays were then meta- 
analyzed	 for	 each	 sub-	ethnic	 group	with	METASOFT.21 SNP- CpG 
pairs were considered significant at Storey q- value <.05. In silico 
evidence	of	 functional	effects	of	variants	on	gene	expression	and	
DNA	methylation	was	assessed	using	QTLbase,29 Genotype- Tissue 
Expression	 (GTEx)	 v8	 Portal,30 PhenoScanner v231 and eFORGE-
 TF.32 Long- distance chromatin interactions were determined using 
the ChiCP tool.33

2.7  | Validationofpreviousassociations

A	literature	search	for	all	studies	reporting	genetic	loci	significantly	
associated	with	asthma	exacerbations	was	conducted,	as	described	
in	the	Appendix	S1.	Association	results	in	the	discovery	stage	were	
extracted	and	significance	threshold	was	defined	as	p = .05/ number 
of tested SNPs to adjust for multiple testing.

3  |  RESULTS

3.1  |  Characteristicsofthepatients

In	 the	 discovery	 phase,	 we	 analyzed	 2781	 exacerbators	 and	
6611	 non-	exacerbators;	 53.1%	 were	 predominantly	 Europeans,	
23.2%	Hispanics/Latinos,	 13.3%	 Singaporean	 Chinese,	 and	 10.3%	
African	 Americans.	 The	 percentage	 of	 exacerbators	 ranged	 from	
9.1%	 to	 65.2%	 in	 Europeans,	 and	 reached	 58.8%	 in	 Hispanics/
Latinos,	46.1%	in	African		Americans,	and	3.4%	in	Singaporeans.	The	
replication	phase	included	37,555	individuals	with	asthma	(3030	ex-
acerbators	and	34,525	non-	exacerbators)	where	most	participants	
were	of	European	 	descent	 (97.1%),	 followed	by	Latinos	 (2.3%)	and	
Filipinos	(0.5%).	The	percentage	of	exacerbators	ranged	from	4.8%	
to	65.2%	in	Europeans,	reached	approximately	43%	in	Latinos,	and	
1.3%	in	Filipinos	(Tables	S1 and S2).	Regarding	sex,	51.7%	and	42.9%	
were male participants in the discovery and replication phases, 
respectively.

3.2  | Discoveryphase

The	quantile–	quantile	plots	did	not	show	major	genomic	inflation	due	
to population stratification in each individual study (Figure S1), the 
combined results from individuals of European- descent (Figure S2), 
or the multi- ancestry meta- analysis (Figure S3). In the multi- ancestry 
meta-	analysis	of	9,634,748	variants,	447	SNPs	exhibited	suggestive	
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association (Table S3). The most significant association was the in-
tronic SNP rs6888198 within the cadherin- 12 (CDH12) gene at chro-
mosome	5p14.3	(odds	ratio	[OR]	for	C	allele:	1.37,	95%	confidence	
interval	[CI]:	1.23–	1.54,	p = 1.95 × 10−8) (Figure 1, Figure S4).

3.3  |  Replicationphase

Fifteen of the 126 independent variants identified in the discovery 
phase were not available for replication as they were mostly present 
in	African	 	Americans	and	Hispanics/Latinos	 (Table	S3). Two of the 
106 variants present in more than one ethnic group were consist-
ently	 associated	with	asthma	exacerbations	 (Table 1): rs12091010 
[VCAM1/EXTL2, OR for T allele: 0.89 (0.82– 0.97), p = 5.35 × 10−3]	
(Figure 2)	and	rs943126	[PANK1, OR for C allele: 0.92 (0.86– 0.98), 
p = 1.30 × 10−2]	(Figure 3). In the meta- analysis across both phases, 
these variants reached an association p-	value	 of	 4.23	× 10−7 and 
4.93	× 10−6, respectively. From five variants that were present only 
in	 non-	Europeans	 in	 the	 replication	 stage,	 none	exhibited	p < .05 
in any other population group (Table S4). Even though rs6888198 
reached genome- wide significance in the discovery and showed 
consistent effects among Europeans in the replication phase, this 
SNP had opposite effects in Latinos and Filipinos, which resulted 
in the lack of replication in the multi- ancestry replication phase 
(Table 1, Figure S5).

3.4  | Gene-setenrichmentandgenome-wide
genetic correlation analysis

Enrichment analysis of associations from the multi- ancestry discov-
ery	 GWAS	 including	 959	 SNPs	 associated	with	 asthma	 exacerba-
tions at p	≤	1	× 10−4 revealed significant enrichment in several traits, 
including treatment response (min p = 2.77 × 10−6), neurological 
conditions (min p =	4.62	× 10−5), obesity (min p = 6.52 × 10−5), or 
waist- to- hip ratio (min p = 1.88 × 10−7) (Table S5).

A	total	of	16	traits	exhibited	genetic	correlation	with	asthma	ex-
acerbations at p < .05 (Table S6),	including	wheeze	or	whistling	in	the	
last year (Rg =	0.47,	p = 1.01 × 10−2), emphysema/chronic bronchitis 

(Rg = 0.55, p = 3.89 × 10−2), asthma (Rg = 0.32, p = 3.99 × 10−2), and 
BMI (Rg = 0.19, p =	4.76	× 10−2). However, the associations did not 
remain significant after Bonferroni correction.

3.5  |  Sensitivityanalysis

To assess the robustness of associations that replicated across 
stages	to	the	time-	dependent	probability	of	occurrence	of	exacer-
bations, stratified analyses were performed in European- descents 
from	 the	 discovery	 stage	 that	 reported	 exacerbations	 for	 6	 vs.	
12 months. Consistent effects per period were observed across pe-
riods (Table 2).

As	 the	 post-	GWAS	 analyses	 revealed	 significant	 enrichment/
correlation at p < .05 with fat mass/distribution, the association 
of	 rs12091010	and	 rs943126	after	additional	adjustment	by	BMI/
obesity	was	examined	in	individuals	from	the	discovery	phase	with	
BMI data available. Moreover, the effect of asthma severity alone 
or	 combined	with	BMI/obesity	 on	 the	 genetic	 association	 exacer-
bations	was	evaluated.	The	effects	sizes	of	the	genetic	association	
after additional adjustment by these variables remained consistent 
with the effects reported in the discovery stage (Table S7).

We	next	investigated	if	the	observed	effects	could	differ	across	
age	 groups	 in	 those	 studies	 that	 analyzed	 exclusively	 children	 or	
adults,	but	 the	effect	sizes	 remained	consistent	across	age	groups	
(Table S8). Moreover, we assessed if the effects could be driven by 
the	underlying	asthma	syndrome,	rather	than	asthma	exacerbations,	
and no significant association with asthma was found in results from 
the UK Biobank or the Michigan Genomics Initiative (Table S9).

3.6  |  Functionalexplorationofvariantsassociated
with asthma exacerbations

We	next	 assessed	 the	 association	between	DNA	methylation	 lev-
els in whole blood at 525 and 538 CpG sites with rs12091010 
and	 rs943126,	 respectively.	A	 total	of	7	and	1	SNP-	CpG	pairs	 for	
rs943126	 and	 rs12091010	 exhibited	 Storey	 q < .05, respectively 
(Table 3 and Table S10). Two of these replicated consistently in 

F I G U R E  1 Manhattan	plot	of	the	results	of	the	discovery	stage	of	the	multi-	ancestry	meta-	analysis	of	GWAS	of	asthma	exacerbations	
(represented as - log10 p- value on the y-	axis)	along	the	chromosome	position	of	the	variants	analyzed	(x-	axis).	The	suggestive	(p = 5 × 10−5) 
and genome- wide (p = 5 × 10−8) significance thresholds are indicated by the black line and dark gray lines
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Europeans	 for	 rs943126	 (cg25770176	 and	 cg00475140).	 In silico 
analyses revealed 10 SNP- CpGs pairs, 3 of which showed consistent 
effects	in	Hispanics/Latinos	and	African	Americans	at	Storey	q < .05 
(Tables S11 and S12)	including	the	previous	two	pairs	and	rs943126-
	cg03948048.	 The	 eight	 significant	 CpG	 sites	 in	 minority	 children	
showed significant enrichment (q < .001) in transcription factor (TF) 
motifs in lung (Table S13). Besides, the T allele of rs12091010 was 
associated with decreased EXTL2	 expression	 in	whole	blood	 from	
Europeans, according to PhenoScanner.31	The	C	allele	of	rs943126	
was	associated	with	increased	expression	of	PANK1 in whole blood 
from Europeans (Table S14). Both variants showed evidence of long- 
range chromatin interaction with several genes in lymphoblastoid 
cells, including VCAM1 and EXTL2 for rs12091010 and PANK1 for 
rs943126	(Table	S15).

3.7  | Validationofpreviousassociations

We	 next	 examined	 47	 previous	 genetic	 loci	 for	 asthma	 exacerb
ations7,8,12,13,34–	36 and moderate- to- severe asthma37 for associa-
tion	 with	 asthma	 exacerbations	 in	 the	 discovery	 phase.	 A	 total	
of 5 variants had p < .05 in Europeans, 2 in Hispanics/Latinos, 5 
in	African	Americans,	 and	1	 in	Singaporean	Chinese	 (Table	S16). 
These	were	 in	 loci	 previously	 associated	with	 asthma	 exacerba-
tions (GSDMB, RAD50, HLA- DQB1, ADAM33, VDR, and CDHR3) 
or moderate- to- severe asthma (IKZF3, TSLP, MUC5AC, C11orf30, 
SMAD3, and WDR36).	 However,	 none	 of	 the	 SNPs	 exceeded	
the stringent Bonferroni- corrected threshold for significance 
(p =	.05/47	= 1.06 × 10−3).

4  | DISCUSSION

To our knowledge, this is the first multi- ancestry meta- analysis of 
GWAS	of	asthma	exacerbations	independently	of	treatment	includ-
ing	European,	Hispanic/Latino,	Asian,	and	African		American	patients	
with	 asthma.	 In	 our	 combined	 analysis	 of	 46,947	 individuals	with	
asthma, two regulatory SNPs were significantly and consistently as-
sociated	with	asthma	exacerbations	in	most	of	the	studies	included	
in the discovery and replication phases, independently of the type of 
exacerbation	and	the	time	period	for	which	the	exacerbation	status	
was assessed. The SNP rs120910109 was located in the intergenic 
region of the VCAM1/EXTL2	genes,	whereas	rs943126	was	harbored	
within intron 1 of PANK1.

VCAM1	 encodes	 a	 surface	 protein	 predominantly	 expressed	
in endothelial cells that modulates leukocyte adhesion and trans- 
endothelial migration in response to pro- inflammatory cytokines, and 
lipopolysaccharide (LPS) among other factors.38,39	VCAM1	is	involved	
in cancer progression and several immunological disorders, including 
asthma.38	In	the	ovalbumin	mice	model,	anti-	VCAM1	reduced	airway	
hyperresponsiveness and eosinophilic inflammation.40 On the other 
hand, EXTL2	 encodes	 an	 enzyme	 that	 controls	 glycosaminoglycan	
(GAG)	biosynthesis	via	 transference	of	N-	acetylgalactosamine	and	TA
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F I G U R E  2 Forest	plot	of	the	
association results for rs12091010 
(VCAM1/EXTL2) in the meta- analysis of 
GWAS	of	asthma	exacerbations.	ALSPAC	
(discovery), SCSGES (discovery), and 
the	subset	of	samples	from	BREATHE	
genotyped with the Illumina Infinium 
CoreExome-	24	BeadChip	(replication)	
had no genotyped or imputed data for 
rs12091010

F I G U R E  3 Forest	plot	of	the	
association	results	for	rs943126	(PANK1) 
in	the	meta-	analysis	of	GWAS	of	asthma	
exacerbations.	The	subset	of	samples	
from	BREATHE	genotyped	with	the	
Illumina	Infinium	CoreExome-	24	BeadChip	
(replication) had no available genotyped or 
imputed	data	for	rs943126
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N- acetylglucosamine to the glycosaminoglycan- protein linkage re-
gion.41 Decreased EXTL2	 causes	 an	 over-	accumulation	 of	 GAGs42 
that can promote inflammation in injured areas.43,44 Moreover, 
in bone marrow- derived macrophages from EXTL2−/− mice, there 
is overproduction of key molecules involved in inflammation and 
extracellular	 matrix	 remodeling,	 including	 tumor	 necrosis	 factor	
α (TNFα)	 and	several	matrix	metalloproteinases.43 In a scenario of 
overaccumulation	of	GAGs	under	the	loss	of	EXTL2 in macrophages, 
GAGs	act	as	 inflammatory	mediators	with	strong	Toll-	like	receptor	
4	 (TLR4)	agonist	capacity.44 Interestingly, genetic variation in both 
VCAM1 and EXTL2 is associated with blood cell counts and multiple 
sclerosis,	according	to	the	GWAS	catalog.25

PANK1	 catalyzes	 coenzyme	 A	 biosynthesis,	 regulated	 by	 the	
transcription	 factor	 peroxisome	 proliferator-	activating	 receptor	 α 
(PPAR-	α),45 a key anti- inflammatory factor in asthma.46	A	decrease	
in	PPAR-	α	expression	is	accompanied	by	a	decrease	in	the	expres-
sion	of	PANK1	and	miR-	107,	which	 is	encoded	within	 the	 intron	5	
of PANK1.	TLR4	can	also	downregulate	miR-	107.	In	turn,	this	 leads	
to	a	higher	cyclin-	dependent	kinase	6	 (CDK6)	expression	and	sub-
sequently	 increases	 the	 adhesion	 of	 macrophages	 in	 response	 to	
LPS.45 Bioproducts from bacterial infections, such as LPS, can trig-
ger an inflammatory response and increase airway hyperrespon-
siveness	and	 risk	of	asthma	exacerbations.47,48 Moreover, p53 can 
regulate	cell	cycle	progression	via	upregulation	of	PANK1	after	DNA	
damage49 and metabolism.50

To	prioritize	gene	 targets,	we	assessed	 the	 functional	capacity	
of relevant SNPs.51	 Both	 rs12091010	 and	 rs943126	 exhibited	 an	
association	with	DNA	methylation	 at	 several	 nearby	 CpG	 sites	 in	
whole	 blood	 from	 African	 Americans	 and	 Hispanics/Latinos	 with	
asthma.	 Additionally,	 the	 SNPs	 rs12091010	 and	 rs943126	 were	
associated with EXTL2 and PANK1	gene	expression	in	whole	blood	
from Europeans. Specifically, the T allele of rs12091010, located at 
6	kb	downstream	of	the	3′	UTR	of	VCAM1 and 150 kb upstream of 
the transcription start site of EXTL2, was associated with lower odds 
of	having	asthma	exacerbations	and	decreased	EXTL2	expression31 
The	T	 allele	 is	more	 common	 among	 Latinos/Admixed	Americans,	
followed	 by	 Europeans,	 Africans,	 and	 East	 Asians	 (Figure	 S6). 
The	T	 allele	 of	 rs943126	 at	PANK1, which is less common among 
Europeans than the rest of populations (Figure S7), was associated 
with	a	higher	risk	of	asthma	exacerbations	 in	the	combined	analy-
sis of the discovery and replication phases and with decreased gene 
expression	of	PANK1 in whole blood from Europeans according to 
PhenoScanner.31	However,	 these	eQTL	effects	were	not	validated	
in	the	GTEx	data.30

In the discovery phase, the most significant association was 
located at the intronic SNP rs6888198 (CDH12), but no evidence 
of replication was found in the second stage (p > .05) despite the 
consistency of the direction of the effect across study phases. 
Interestingly,	 rs6888198	 showed	 variable	 MAF	 among	 popula-
tions,	with	the	largest	MAF	among	Africans	and	Latinos	(Figure	S8). 
CDH12 has been associated with angiogenesis and progression of 
several types of cancers.52–	54 Specifically, in colorectal cancer, it 
has been suggested that CDH12 increases cancer cell migration by 

promoting epithelial- mesenchymal transition via activation of the 
Snail transcription factor pathway. CDH12	 expression	 is	 positively	
modulated by the chemotactic factor CCL2,53,54 whose levels in-
creases in blood and airway smooth muscle from asthma patients 
compared to healthy controls.55

We also attempted to assess previously associated loci for asthma 
exacerbations	 or	 moderate-	to-	severe	 asthma	 for	 association	 with	
asthma	 exacerbations	 in	 multiple	 ethnic	 groups.	 Although	 several	
variants showed association at p < .05, none surpassed the stringent 
Bonferroni correction, which could be due to differences in study 
design, phenotype definition, ethnicity, and clinical characteristics, 
among others. Of note, none of the previous findings was initially de-
scribed	in	Asian	or	African	populations,	which	highlights	the	need	to	
increase	ethnic	diversity	in	genomic	studies	of	asthma	exacerbations.

Our study has several limitations. First, the VCAM1/EXTL2 and 
PANK1 loci did not surpass a stringent Bonferroni threshold of 
4.7	× 10−4 (p = .05/106 variants) in the replication stage nor the 
genome- wide significance in the combined analysis from all studies. 
Second,	these	loci	exhibited	modest	effects	sizes,	which	could	im-
pact the clinical relevance of these loci. Third, the history of asthma 
exacerbations	was	based	on	retrospective	questionnaires	in	all	co-
horts	but	COMPASS,	a	randomized,	prospective	clinical	trial.	Fourth,	
to	bring	together	large	sample	sizes	necessary	to	map	susceptibility	
variants,	we	considered	studies	where	asthma	exacerbations	were	
reported	for	the	previous	6	to	24	months	or	ever,	which	may	have	in-
troduced some heterogeneity in the phenotype. Moreover, the repli-
cation stage comprised mostly European individuals, which hindered 
our capability to replicate associations driven in the discovery stage 
by	non-	Europeans.	Despite	these	limitations,	our	findings	exhibited	
consistent effects for the VCAM1/EXTL2 and PANK1 loci indepen-
dent	of	the	time	period	assessed.	Future	studies	in	adequately	pow-
ered	 and	 phenotypically	 harmonized	 cohorts	 should	 untangle	 the	
role	of	these	loci	in	the	time-	to-	first	exacerbation,	the	annual	num-
ber	 of	 exacerbations,	 or	 the	 temporal	 distance	 among	events,	 ex-
plore other epigenetic mechanisms known to be involved in asthma 
(e.g.,	 histone	modifications	 or	miRNAs),56 and the biological func-
tion	of	these	genes.	Moreover,	although	asthma	exacerbation	risk	is	
influenced	by	sex	in	an	age-	dependent	manner,57 and our analyses 
were	corrected	for	sex,	future	genome-	wide	gene-	by-	sex	interaction	
scans	may	reveal	the	influence	of	sex	on	the	genetic	susceptibility	to	
exacerbations.	On	 the	other	 hand,	we	 acknowledge	 several	 study	
strengths.	First,	we	leveraged	clinical	and	genetic	data	from	46,947	
asthma patients from different ethnicities from 18 independent 
studies.	Our	study	had	statistical	power	≥80%	to	detect	associations	
with	MAF	>	17%	and	relative	risk	(RR)	>1.20 in the discovery stage 
and	for	variants	with	MAF	≥	1%,	and	was	powered	at	80%	to	detect	
associations	with	larger	effect	sizes	(RR	≥	1.85).	Second,	we	identi-
fied	novel,	biologically	plausible	genetic	factors	of	asthma	exacerba-
tions demonstrated by transcriptomics and epigenomics studies and 
evidence for prior literature. Moreover, we accounted for blood cell- 
type	heterogeneity	to	overcome	the	limitations	of	analyzing	mixed	
cell types tissues.56,58 Third, we evaluated previous genetic signals 
from	asthma	exacerbations	in	populations	from	several	ancestries.
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We	 identified	 suggestive	 loci	 for	 asthma	 exacerbations	 with	
consistent genetic effects across individuals from varying ances-
tral backgrounds using a multi- ancestry approach. We also demon-
strated	that	these	loci	are	biologically	functional	and	regulate	RNA	
expression	 and	 adjacent	 CpG	 site	 DNA	methylation	 as	meQTL	 in	
whole blood cells. Our findings highlight VCAM1, EXTL2, and PANK1 
as	 functional	 loci	 for	 asthma	 exacerbations	 applicable	 to	 people	
across different ancestral backgrounds, warranting future inves-
tigation of these novel genomic mechanisms underlying asthma 
exacerbations.
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