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In the field of epidemiology, source attribution refers to a category of methods with the objec-

tive of reconstructing the transmission of an infectious disease from a specific source, such as a

population, individual, or location. For example, source attribution methods may be used to

trace the origin of a new pathogen that recently crossed from another host species into

humans, or from one geographic region to another. It may be used to determine the common

source of an outbreak of a foodborne infectious disease, such as a contaminated water supply.

Finally, source attribution may be used to estimate the probability that an infection was trans-

mitted from one specific individual to another, i.e., "who infected whom".

Source attribution can play an important role in public health surveillance and

management of infectious disease outbreaks. In practice, it tends to be a problem of statistical

inference, because transmission events are seldom observed directly and may have occurred in

the distant past. Thus, there is an unavoidable level of uncertainty when reconstructing trans-

mission events from residual evidence, such as the spatial distribution of the disease. As a

result, source attribution models often employ Bayesian methods that can accommodate sub-

stantial uncertainty in model parameters.

Molecular source attribution is a subfield of source attribution that uses the molecular char-

acteristics of the pathogen — most often its nucleic acid genome — to reconstruct transmis-

sion events. Many infectious diseases are routinely detected or characterized through genetic

sequencing, which can be faster than culturing isolates in a reference laboratory and can iden-

tify specific strains of the pathogen at substantially higher precision than laboratory assays,

such as antibody-based assays or drug susceptibility tests. On the other hand, analyzing the

genetic (or whole genome) sequence data requires specialized computational methods to fit

models of transmission. Consequently, molecular source attribution is a highly interdisciplin-

ary area of molecular epidemiology that incorporates concepts and skills from mathematical

statistics and modeling, microbiology, public health and computational biology.

There are generally two ways that molecular data are used for source attribution. First,

infections can be categorized into different "subtypes" that each corresponds to a unique

molecular variety, or a cluster of similar varieties. Source attribution can then be inferred from

the similarity of subtypes. Individual infections that belong to the same subtype are more likely

to be related epidemiologically, including direct source-recipient transmission, because they

have not substantially evolved away from their common ancestor. Similarly, we assume the

true source population will have frequencies of subtypes that are more similar to the recipient

population, relative to other potential sources. Second, molecular (genetic) sequences from

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010649 November 17, 2022 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Chao E, Chato C, Vender R, Olabode AS,

Ferreira R-C, Poon AFY (2022) Molecular source

attribution. PLoS Comput Biol 18(11): e1010649.

https://doi.org/10.1371/journal.pcbi.1010649

Editor: Daniel Mietchen, University of Virginia,

UNITED STATES

Published: November 17, 2022

Copyright: © 2022 Chao et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: EC, CC and AO were supported in part by

a grant from the Canadian Institutes of Health

Research (PJT-156178) to AFYP. The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: We have no competing

interests to declare.

Wikipedia version: https://en.wikipedia.org/wiki/

Molecular_Source_Attribution

https://orcid.org/0000-0003-3779-154X
https://en.wikipedia.org/wiki/Epidemiology
https://en.wikipedia.org/wiki/Transmission_(medicine
https://en.wikipedia.org/wiki/Infection
https://en.wikipedia.org/wiki/Zoonosis
https://en.wikipedia.org/wiki/Globalization_and_disease
https://en.wikipedia.org/wiki/1854_Broad_Street_cholera_outbreak
https://en.wikipedia.org/wiki/Public_health_surveillance
https://en.wikipedia.org/wiki/Outbreak_response
https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Bayesian_inference
https://en.wikipedia.org/wiki/Genome
https://en.wikipedia.org/wiki/DNA_sequencing
https://en.wikipedia.org/wiki/DNA_sequencing
https://en.wikipedia.org/wiki/Public_health_laboratory
https://en.wikipedia.org/wiki/ELISA
https://en.wikipedia.org/wiki/Antibiotic_sensitivity
https://en.wikipedia.org/wiki/Whole_genome_sequencing
https://en.wikipedia.org/wiki/Molecular_epidemiology
https://en.wikipedia.org/wiki/Mathematical_statistics
https://en.wikipedia.org/wiki/Mathematical_statistics
https://en.wikipedia.org/wiki/Microbiology
https://en.wikipedia.org/wiki/Public_health
https://en.wikipedia.org/wiki/Computational_biology
https://en.wikipedia.org/wiki/Transmission_(medicine
https://doi.org/10.1371/journal.pcbi.1010649
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010649&domain=pdf&date_stamp=2022-11-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010649&domain=pdf&date_stamp=2022-11-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010649&domain=pdf&date_stamp=2022-11-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010649&domain=pdf&date_stamp=2022-11-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010649&domain=pdf&date_stamp=2022-11-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010649&domain=pdf&date_stamp=2022-11-17
https://doi.org/10.1371/journal.pcbi.1010649
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Molecular_Source_Attribution
https://en.wikipedia.org/wiki/Molecular_Source_Attribution


different infections can be directly compared to reconstruct a phylogenetic tree, which repre-

sents how they are related by common ancestors. The resulting phylogeny can approximate

the transmission history, and a variety of methods have been developed to adjust for con-

founding factors.

Due to the associated stigma and the criminalization of transmission for specific infectious

diseases, molecular source attribution at the level of individuals can be a controversial use of

data that was originally collected in a healthcare setting, with potentially severe legal conse-

quences for individuals who become identified as putative sources. In these contexts, the devel-

opment and application of molecular source attribution techniques may involve trade-offs

between public health responsibilities and individual rights to data privacy.

Microbial subtyping

Microbial subtyping or strain typing is the use of laboratory methods to assign microbial sam-

ples to subtypes, which are predefined classifications based on distinct characteristics [1]. The

assignment of specimens to subtypes can provide a basis of source attribution, since we assume

that a pathogen undergoes minimal change when transmitted to an uninfected host. Therefore,

infections of the same subtype are implied to be epidemiologically related, i.e., linked by one or

more recent transmission events. The assumption that the pathogen is unchanged when trans-

mitted is generally reasonable if the rate of evolution for the pathogen is slower than the rate of

transmission, such that few mutations are observed on an epidemiological time scale [2]. For

example, suppose host A is infected by a pathogen that we have categorized as subtype 1. They

are more likely to have been infected by host B, who also carries the subtype 1 pathogen, than

host C who carries the subtype 2 pathogen (Fig 1). In other words, transmission from host B is

a more parsimonious explanation if there is a relatively small probability that the pathogen pop-

ulation in host C evolved from subtype 1 to subtype 2 after transmission to host A.

Today it is more common to use genetic sequencing to characterize the microbial sample at

the level of its nucleotide sequence by sequencing the whole genome or proportions thereof

[3]. However, other molecular methods such as restriction length fragment polymorphism [1]

have historically played an important role in microbial subtyping before genetic sequencing

became an affordable and ubiquitous technology in reference laboratories. Sequence-based

typing methods confer an advantage over other laboratory methods (such as serotyping or

pulsed-field gel electrophoresis [4]) because there is an enormous number of potential sub-

types that can be resolved at the level of the genetic sequence. Consider the above example

again; however, this time host A carries the same infection subtype as many other hosts. In this

case we would have no information to differentiate between these hosts as the potential source

of host A’s infection. Our ability to identify potential sources, therefore, depends on having a

sufficient number of different subtypes. However, defining too many subtypes in the popula-

tion makes it likely that every individual carries a unique subtype, especially for rapidly-evolv-

ing pathogens that can accumulate high levels of genetic diversity in a relatively short period of

time. Hence, there exists an intermediate level of subtype resolution that confers the greatest

amount of information for source attribution [5]. When source attribution is considered for a

pathogen with high diversity, such that most specimens have unique genetic sequences, it is

useful to group multiple unique sequences with a clustering method.

Single and multi-locus typing

Before whole-genome sequencing was cost-effective, targeting a specific part of the pathogen

genome (a.k.a. single-locus typing) was an important step to facilitate microbial subtyping. For

example, the ribosomal gene 16S is a standard target for identifying bacteria, in part because it
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is present across all known species and contains a mixture of conserved and variable regions

[6]. Within a pathogen species, sequencing targets tended to be selected on the basis of their

length, ubiquity and exposure to diversifying selection, which may be dictated by the function

of the gene product for expressed regions. For example, so-called "housekeeping" or core genes

have indispensable biological functions, such as copying genetic material or building proteins.

These genes are often preferred candidates for microbial subtyping because they are less likely

to be absent from a given genome [7]. Gene presence/absence is particularly relevant for bacte-

ria where genetic material is frequently exchanged through horizontal gene transfer.

Targeting multiple regions (loci) of the pathogen genome confers greater precision to dis-

tinguish between lineages, since the chance to observe informative genetic differences between

infections is increased. This approach is referred to as multi-locus sequence typing (MLST)

[8]. Similar to single-locus typing, MLST requires the selection of specific loci to target for

sequencing. Moreover, for subtyping to be consistent across laboratories a reference database

must be maintained that maps sequences from single or multiple loci to a fixed notation of

allele numbers or designations [9].

Whole genome sequencing

Although single- and multiple-locus subtyping is still predominantly used for molecular

epidemiology, ongoing improvements in sequencing technologies and computing power

Fig 1. One-to-one versus cluster-based subtyping. Each set of circles along a line segment represents a molecular

sequence from an individual infection. Circles are coloured to differentiate sequences. (top) Under one-to-one

subtyping, every unique sequence represents a different subtype. This strategy is more common single-locus typing or

pathogens with a relatively slow rate of evolution, which limits the variation that accumulates over time. (bottom) With

cluster-based subtyping, multiple sequences are assigned to the same subtype. This strategy is favoured under multi-

locus or whole-genome sequencing or rapidly evolving pathogens, where every sampled infection may have a unique

sequence.

https://doi.org/10.1371/journal.pcbi.1010649.g001
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continue to lower the barrier to whole-genome sequencing. Next-generation sequencing

(NGS) technologies provide cost-effective methods to generate whole genome sequences from

a given sample by individually amplifying and sequencing templates in parallel using custom-

ized technologies such as sequencing-by-synthesis [10]. Shotgun sequencing applications of

NGS generate full-length genome sequences by shearing the nucleic acid extracted from the

sample into small fragments that are converted into a sequencing library, and then using a de
novo sequence assembler program the genome sequence is reconstituted from the sequence

fragments (short reads) [11]. Alternatively, short reads can be mapped to a reference genome

sequence that has been converted into an index for efficient lookup of exact substring matches.

This approach can be faster than de novo assembly, but relies on having a reference genome

that is sufficiently similar to the genome sequence of the sample. While NGS makes it feasible

to simultaneously generate full-length genome sequences from hundreds of pathogen samples

in a single run, it introduces a number of other challenges. For instance, NGS platforms tend

to have higher sequencing error rates than conventional sequencing, and regions of the

genome with long stretches of repetitive sequence can be difficult to reassemble.

Whole genome sequencing (WGS) can confer a significant advantage for source attribution

over single- or multiple-locus subtyping. Sequencing the entire genome is the maximal extent

of multi-locus typing, in that all possible loci are covered. Having whole genome sequences will

tend to make one-to-one subtyping (Fig 1) less useful, since most genomes will be unique by at

least one mutation for rapidly evolving pathogens. Consequently, applications of WGS for

source attribution at a population level will likely have to cluster similar genomes together [12].

The breadth of coverage offered by WGS is more advantageous for the epidemiology of bacte-

rial pathogens than viruses. Bacterial genomes tend to be longer, ranging from about 106 to 107

base pairs, whereas virus genomes seldom exceed 106 base pairs. In addition, bacteria tend to

evolve at a slower rate than viruses, so mutations tend to be distributed more sparsely throughout

a bacterial genome. For example, WGS data revealed differences between isolates of Burkholderia
pseudomallei from Australia and Cambodia that had otherwise appeared to be identical by multi-

locus subtyping due to convergent evolution [13]. WGS has also been utilized in several recent

studies to resolve transmission networks ofMycobacterium tuberculosis in greater detail, because

isolates with identical multi-locus subtypes (e.g., MIRU-VNTR profiles targeting 24 loci) were fre-

quently separated by large numbers of nucleotide differences in the full genome sequence, com-

prising roughly 4.3 million nucleotides encoding over 4,000 genes [14,15].

Genetic clustering

When applied to genetic sequences, a clustering method is a set of rules for assigning the

sequences to a smaller number of clusters such that members of the same cluster are more

genetically similar to each other than sequences in other clusters. Put another way, a clustering

method defines a partition on the set of genetic sequences using some similarity measure.

Clustering is inherently subjective and there are usually no formal guidelines for setting the

clustering criteria. Consequently, cluster definitions can vary substantially from one study to

the next. In addition, clustering is an intuitive process that can be accomplished by a wide vari-

ety of approaches; because of this flexibility, numerous different methods of genetic clustering

have been described in the literature [16].

Genetic clustering provides a way of dealing with sequences from rapidly evolving patho-

gens, or whole genome sequences from pathogens with less divergence. In either case, there

can be an enormous number of distinct genetic sequences in the data set. If each subtype must

correspond to a unique sequence variant, then one could potentially have to track an unwieldy

number of microbial subtypes for these pathogens when subtypes are defined on a one-to-one
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basis (Fig 1). The number of subtypes can be greatly reduced by expanding the definition of

microbial subtypes from individually unique sequence variants to clusters of similar sequences

[17]. For example, pairwise distance clustering is a nonparametric approach in which clusters

are assembled from pairs of sequences that fall within a threshold distance of each other. The

distance between sequences is computed by a genetic distance measure (a mathematical for-

mula that maps two sequences to a non-negative real number) that quantifies the evolutionary

divergence between the sequences under some model of molecular evolution.

Frequency-based attribution

When the potential sources are populations, not individuals, then we are comparing the fre-

quencies of subtypes in the respective populations. The most likely source population should

have a subtype frequency distribution that is the most similar to the reference population.

Methods that employ this approach have been referred to as "frequency-based" or "frequency-

matching" models [18]. These subtypes are not necessarily derived from molecular data; for

instance, these methods were originally applied to microbial strains defined by non-genetic

antigenic or resistance profiling. For example, the "Dutch model" [19] was originally developed

to estimate the most likely source of a number of foodborne illnesses due to Salmonella by

comparing the relative frequencies of bacterial subtypes (based on phage typing) in different

commercial livestock populations (including poultry, swine and cattle) through routine sur-

veillance programs. For a given subtype, the expected number of human cases attributed to

each source is proportional to the relative frequencies of that subtype among sources:

lij ¼
pij
P

jpij
ni

where is pij the proportion of (non-human) cases in the j-th source population associated with

subtype i, and ni is the number of cases of subtype i in the recipient (human) population. For

instance, if the frequencies of subtype X among three potential sources was 0.8, 0.5 and 0.1,

respectively, then the expected number of cases (out of a total of 100) from the second source

is 0.5/(0.8+0.5+0.1)×100 = 35.7. This simple formula is a maximum likelihood estimator when

the total force of infection from each source into the human population is uniform, e.g., the

sources have equal population sizes.

Subsequently, this model was extended by Hald and colleagues [20] to account for variation

among sources and subtypes using Bayesian inference methods. This extension, typically

referred to as the Hald model, has become a standard model in source attribution for food-

borne illnesses. The observed numbers of each subtype in the human population was assumed

to be a Poisson distributed outcome with a mean for the i-th subtype, after adjusting for cases

related to travel and outbreaks:

li ¼
X

i

lij ¼
X

i

qiMjajpij

where is the marginal effect of the i-th subtype (e.g., elevated infectiousness of a bacterial vari-

ant), is the observed total amount (mass) of the j-th food source, is the marginal effect of the j-
th food source, and is the same observed case proportion as the original "Dutch" model. This

model is visualized in Fig 2.

Bayesian inference

The addition of a large number of parameters to the "Dutch" model by Hald and colleagues

yielded a more realistic model. However, it was too complex to solve for exact maximum
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likelihood estimates, in contrast to the original model. Many of the parameters could not be

directly measured, such as the relative transmission risk associated with a specific food source.

Consequently, Hald and colleagues adopted a Bayesian approach to estimate the model param-

eters. A similar approach has also been used to reconstruct the contribution of different envi-

ronmental and livestock reservoirs of the bacteria Campylobacter jejuni to an outbreak of food

poisoning in England [21], where the migration of different subtypes among reservoirs was

jointly estimated by Bayesian methods.

Although Bayesian inference is discussed extensively elsewhere, it plays an important role

in computationally-intensive methods of source attribution, so we provide a brief description

here. In the context of Bayesian inference every parameter is described by a probability

distribution that represents our belief about its true value. Thus, the statistical principle that

underlies Bayesian inference (i.e., Bayes’ rule) can be expressed in terms of the model parame-

ters (θ) and the data (D):

PðyjDÞ / PðDjyÞPðyÞ

where P(θ|D), P(D|θ) and P(θ) are known as the posterior, sampling (likelihood), and prior

distributions, respectively. A simple way to think about Bayesian inference is that our prior

belief about the parameters is "updated" once we have seen the data. As a result, our posterior

belief becomes a compromise between our prior belief and the data. To update our belief, we

need to have a sampling distribution or model that describes the probability of different out-

comes of an experiment. We also require a prior distribution that represents our belief in a sta-

tistical form. While modern computation allows almost any probability distribution to be

used, the uniform distribution is commonly used because it assigns the same probability to

every value within some range. After incorporating new information from the data, our

updated belief about the model parameters is represented by the posterior distribution. This

Fig 2. Summary of Hald model parameters. Arbitrary numbers are provided for observed quantities, such as the

proportion of infections due to subtype 1 in source population 2 (p12). The marginal effect associated with source

population 2 (a2) is represented by an open rectangle (solid line); while the total size of this source populationM2 is

observed, a2 must be estimated by regression. Similarly, the marginal effect associated with subtype 3 (q3), indicated by

a rectangular shaded region) is simultaneously estimated by regression.

https://doi.org/10.1371/journal.pcbi.1010649.g002
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use of distributions to represent our belief distinguishes Bayesian inference from maximum

likelihood, which results in a single combination of parameter values as a point estimate.

Hald and colleagues used uniform prior distributions for many of their parameters to

express the prior belief that the true value fell within a continuous range with specific upper

and lower limits. They constrained some parameters to take the same numerical value as oth-

ers. For example, the effects of domestic and imported supplies of the same food source were

linked in this manner. This assumption expressed a strong belief that a given food source car-

ried the same transmission risk irrespective of its origin, and simplified the model so that it

was more feasible to fit the data. Other parameters were set to a fixed reference value to further

simplify the model.

Hald and colleagues employed a Poisson model to describe the probability of observing the

number (Y) of rare transmission events that occur at a rate λ. As described above, the rate of

cases due to a specific bacterial subtype was the sum of transmission rates across all potential

sources. The Hald model was more realistic than the "Dutch" model because it allowed trans-

mission rates to vary between subtypes and food sources. However, it was not feasible to

directly measure these different rates — these parameters needed to be estimated from the

data.

Comparative methods

Instead of comparing the frequencies of subtypes to reconstruct the transmission of pathogens

between populations, many source attribution methods compare the pathogen sequences at

the level of individual hosts. One way of comparing sequences is to calculate some measure of

genetic distance or similarity, a concept that we introduced earlier on the topic of pooling

sequences into composite subtypes. For example, infections that are grouped into clusters are

assumed to be related through one or more recent and rapid transmission events. Short genetic

distances imply that limited time has passed for mutations to accumulate in lineages descend-

ing from their common ancestor. Consequently, these clusters are often referred to as "trans-

mission clusters". Other studies have used genetic distances that exceed some threshold to rule

out host individuals as potential sources of transmission [14,22]. Although this application of

clustering is related to source attribution, it is not possible to infer the direction of transmis-

sion solely from the genetic distance between infections. Furthermore, the genetic distance

separating infections is not solely determined by the rate of transmission; for example, they are

strongly influenced by how infections are sampled from the population [16,23].

Sequences can also be compared in the context of their shared evolutionary history. A

phylogenetic tree or phylogeny is a hypothesis about the common ancestry of species or popu-

lations. In the context of molecular epidemiology, phylogenies are used to relate infections in

different hosts and are usually reconstructed from genetic sequences of each pathogen popula-

tion. To reconstruct the phylogeny, the sequences must cover the same parts of the pathogen

genome; for example, sequences that represent multiple copies of the same gene from different

infections. It is this residual similarity (homology) between diverging populations that implies

recent common ancestry. A molecular phylogeny comprises "tips" or "leaves" that represent

different genetic sequences that are connected by branches to a series of common ancestors

that eventually converge to a "root". The composition of the ancestral sequence at the root, the

order of branching events, and the relative amount of change along each branch are all quanti-

ties that must be extrapolated from the observed sequences at the tips. There are multiple

approaches to reconstruct a phylogenetic tree from genetic sequence variation [24]. For exam-

ple, distance-based methods use a hierarchical clustering method to build up a tree based on

the observed genetic distances.
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Phylogenetic uncertainty

A common simplifying assumption in phylogenetic investigations is that the phylogenetic tree

reconstructed from the data is the "true" tree — that is, an accurate representation of the com-

mon ancestry relating the sampled infections. For instance, a single tree is often used as the

input for comparative methods to detect the signature of natural selection in protein-coding

sequences. On the other hand, if the phylogeny is handled as an uncertain estimate derived

from the data (including the sequence alignment), then the analysis becomes a hierarchical

model in which the problem of phylogenetic reconstruction is nested within the problem of

estimating the other model parameters that are conditional on the phylogeny (Fig 3). Sampling

both the phylogeny and other model parameters from their joint posterior distribution using

methods such as Markov chain Monte Carlo (MCMC) should confer more accurate parameter

estimates. However, the greatly expanded model space also makes it more difficult for MCMC

Fig 3. Some challenges equating phylogeny with transmission history. The solid lines represent the phylogenetic

relationship between infections that have been sampled from two or three different hosts. Shaded regions correspond

to the location of virus lineages in different hosts, as indicated by colour. The transmission of a lineage from one host

to another is represented by a gap between shaded regions and highlighted with a red arrow. (A) Although hosts 1 and

2 are closely related, the phylogeny does not indicate whether the infection was transmitted from host 2 to 1 (as

shown), or vice versa. The transmission event may be located anywhere along the two branches connecting the hosts.

(B) An infection may have been transmitted through any number of unsampled hosts before reaching the host that was

sampled. (C) An unsampled host may be the source of infections transmitted to both hosts 1 and 2. (D) If pathogens

establish a large diverse population within each host, the branches of the phylogeny may occur in a different order than

the transmission history; as shown, hosts 1 and 3 are more closely related in the transmission history, but not in the

phylogeny.

https://doi.org/10.1371/journal.pcbi.1010649.g003
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samples to converge to the posterior distribution. Such hierarchical methods are often imple-

mented in the software package BEAST2 [25] (Bayesian Evolutionary Analysis by Sampling

Trees), which provides generic routines for MCMC sampling from tree space, and calculates

the likelihood of a time-scaled phylogenetic tree given sequence data and sample collection

dates.

There are a number of sources of phylogenetic uncertainty. For instance, the common

ancestry of lineages can be difficult to reconstruct if there has been little to no evolution along

the respective branches. This can occur when the rate of evolution is substantially slower than

the time scale of transmission, such that mutations are unlikely to accumulate between the

start of one infection and its transmission to the next host (i.e., the generation time). It can

also arise when existing divergence is not captured due to incomplete sequencing of the

respective genomes. Furthermore, reconstructing the common ancestry of lineages is progres-

sively more uncertain as we move deeper into the tree, forcing us to extrapolate the ancestral

states at greater distances from the observed data.

Alignment

Reconstructing phylogenies from molecular sequences generally requires a multiple

sequence alignment, a table in which homologous residues in different sequences occupy

the same position. Although alignments are often treated as observed data known without

ambiguity, the process of aligning sequences is also uncertain and can become more diffi-

cult with the rapid accumulation of sequence insertions and deletions among diverging

pathogen lineages. While there are Bayesian methods that address uncertainty in alignment

by joint sampling of the alignment along with the phylogeny [26], this approach is computa-

tionally complex and is seldom used in the context of source attribution. Furthermore,

sequences are themselves uncertain estimates of the genetic composition of individual path-

ogens or infecting populations, and next-generation sequencing technologies tend to have

substantially higher error rates than conventional Sanger sequencing [27], and analysis

pipelines must be carefully validated to reduce the effects of sample cross-contamination

and adapter contamination.

Recombination

Genetic recombination is the exchange of genetic material between individual genomes. For

pathogens, recombination can occur when a cell is infected by multiple copies of the pathogen.

If some hosts were infected multiple times by two or more divergent variants from different

sources (i.e., superinfection), then recombination can produce mosaic genomes that compli-

cate the reconstruction of an accurate phylogeny [28]. In other words, different segments of a

recombinant genome may be related to other genomes through discordant phylogenies in

such a way that cannot be accurately represented by a single tree. In practice, it is common to

screen for recombinant sequences and discard them before reconstructing a phylogeny from

an alignment that is assumed to be free of recombination [29].

Inferring transmission history from the phylogeny

The basic premise in applying phylogenetics to source attribution is that the shape of the phy-

logenetic tree approximates the transmission history [30], which can also be represented by a

tree where each split into two branches represents the transmission of an infection from one

host to another. In conjunction with reconstructing the transmission tree from other sources

of information, such as contact tracing, reconstructing a phylogenetic tree can serve as a useful,

additional information source especially when genetic sequences are already available. Because
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of the visual and conceptual similarity between phylogenetic and transmission trees, it is a

common assumption that the branching points (splits) of the phylogeny represent transmis-

sion events. However, this assumption will often be inaccurate. A transmission event may have

occurred at any point along the two branches that separate one sampled infection from the

other in the virus phylogeny (Fig 3A). The transmission tree only constrains the shape of the

phylogenetic tree. Thus, even if we can reconstruct the phylogenetic tree without error, there

are several reasons why it will not be an accurate representation of the transmission tree,

including incomplete sampling, pathogen evolution within hosts, and secondary infection of

the same host.

Incomplete sampling

Equating the phylogenetic tree with the transmission history implicitly assumes that genetic

sequences have been obtained from every infected host in the epidemic. In practice, only a

fraction of infected hosts is represented in the sequence data. The existence of an unknown

and inevitably substantial number of unsampled infected hosts is a major challenge for source

attribution. Even if the phylogenetic tree indicates that two infections are most closely related

than any other sampled infection, one cannot rule out the existence of one or more unsampled

hosts whom are intermediate links in the "transmission chain" separating the known hosts

(Fig 3B). Similarly, an unsampled infection may have been the source population for both

observed infections at the tips of the tree (Fig 3C). By itself, the phylogenetic tree does not

explicitly discriminate among these alternative transmission scenarios.

Evolution within hosts

The shape of the phylogenetic tree may diverge from the underlying transmission history

because of the evolution of diverse populations of the pathogen within each host. Individual

copies of the pathogen genome that are transmitted to the next host are, by definition, no lon-

ger in the source population. A split exists in the phylogenetic tree that represents the common

ancestor between the transmitted lineages and the other lineages that have remained and per-

sisted in the source population. If we follow both sets of lineages back in time, the time of the

transmission event is themost recent possible time that they could converge to a common

ancestor. Put another way, this event represents one extreme of a continuous range where the

common ancestor is located further back in time.

This process is often modelled by Kingman’s coalescent [31], which describes the number

of generations we expect to follow randomly selected lineages back in time until we encounter

a common ancestor. The expected time until two lineages converge to a common ancestor,

known as a coalescence event, is proportional to the effective population size, which deter-

mines the number of possible ancestors. Put another way, two randomly selected people in a

large city are less likely to have a great-grandparent in common than two people in a small

rural community.

Longer coalescence times in a large, diverse within-host pathogen populations are a signifi-

cant challenge for source attribution, because it uncouples the virus phylogeny from the trans-

mission tree. For example, if a host has transmitted their infection to two others, then there

can be as many as three sets of lineages whose ancestry can be traced in the source population

in that host (Fig 3D). As a result, there is some chance that the branching order in the virus

phylogeny implies a different order of transmission events if we interpret the phylogeny as

equivalent to a transmission tree. For example, in Fig 3D hosts 1 and 3 are more closely related

in the transmission history, but not in the phylogeny.
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Clearance and secondary infection

Many infections can be spontaneously cleared by the host’s immune system. If a host that has

cleared a previously diagnosed infection becomes re-infected from another source, then it is

possible for the same host to be represented by different infections in the phylogenetic and

transmission trees, respectively. In addition, some individuals may become infected from mul-

tiple different sources. For example, roughly one-third of infections by hepatitis C virus are

spontaneously cleared within the first six months of infection [32]. This previous exposure,

however, does not confer immunity to re-infection by the same virus [33]. In addition, co-

infection by multiple strains of hepatitis C virus that persist simultaneously within the same

host can occur relatively frequently in populations with a high rate of transmission, such as

people who inject drugs using shared equipment (ranging from 14% to 39%) [34]. The persis-

tence of strains from additional exposures may be missed by conventional genetic sequencing

techniques if they are present at a low frequencies within the host, necessitating the use of

"next-generation" sequencing technologies. For these reasons, the epidemiological linkage of

hepatitis C virus infections through genetic similarity may be a transient phenomenon, leading

some investigators to recommend using multiple virus sequences sampled from different time

points of each infection for molecular epidemiology applications [29].

Ancestral host-state reconstruction

Ancestral reconstruction is the application of a model of evolution to a phylogenetic tree to

reconstruct character states, such as nucleotide sequences or phenotypes, at the different

ancestral nodes of the tree down to the root [35]. In the context of source attribution, ancestral

reconstruction is frequently used to estimate the geographic location of pathogen lineages as

they are carried from one region to another by their hosts. Drawing this analogy between char-

acter evolution and the spatial migration of individuals or populations is known as

phylogeography [36], where the geographic location of an ancestral population is recon-

structed from the current locations of its sampled descendants under some model of

migration.

Migration models generally fall into two categories of discrete-state and continuous-state

models. Discrete-state or island migration models assume that a given lineage is in one of a

finite number of locations, and that it changes location at a constant rate over time according

to a continuous-time Markov process, analogous to the models used for molecular evolution.

Ancestral reconstruction with a discrete-state migration model has also been utilized to recon-

struct the early spread of HIV-1 in association with development of transport networks and

increasing population density in central Africa [37]. Discrete models can also be applied to the

population-level source attribution of zoonotic transmissions by reconstructing different host

species as ancestral character states. For example, a discrete trait model of evolution was used

to reconstruct the ancestral host species in a phylogeny relating Staphylococcus aureus speci-

mens from humans and domesticated animals [38]. Similarly, Faria and colleagues [39] ana-

lyzed the cross-species transmission of rabies virus as a discrete diffusion process along the

virus phylogeny, with rates influenced by the evolutionary relatedness and geographic range

overlap of the respective host species.

Continuous-state migration models are more similar to models of Brownian motion in that

a lineage may occupy any point within a defined space. Although continuous models can be

more realistic than discrete migration models, they may also be more challenging to fit to data.

Taken literally, a continuous model requires precise geolocation data for every infection sam-

pled from the population. In many applications, however, these metadata are not available; for

example, some studies approximate the true spatial distribution of sampled infections by the
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centroids of their respective regions [40]. This can become problematic if the regions vary sub-

stantially in area, and host populations are seldom uniformly distributed within regions.

Paraphyly

Paraphyly is a term that originates from the study of cladistics, an evolutionary approach to

systematics that groups organisms on the basis of their common ancestry. A group of infec-

tions is paraphyletic if the group includes the most recent common ancestor, but does not

include all its descendants. In other words, one group is nested within an ancestral group. For

example, birds are descended from a common ancestor that in turn shares a common ancestor

with all reptiles; thus, birds are nested within the phylogeny of reptiles, making the latter a

paraphyletic group. Thus, paraphyly is evidence of evolutionary precedence: the ancestor of all

birds was a reptile. In the context of source attribution, paraphyly can be used as evidence that

one infection preceded another. It does not provide evidence that the infection was directly

transmitted from one individual to another, in part because of incomplete sampling.

The application of paraphyly for source attribution requires that the phylogenetic tree

relates multiple copies of the pathogen from both the putative source and recipient hosts. To

elaborate, phylogenetic trees relating different infections are often reconstructed from popula-

tion-based sequences (direct sequencing of the PCR amplification product), where each

sequence represents the consensus of the individual pathogen genomes sampled from the

infected host. If copies of the pathogen genome are sequenced individually by limiting dilution

protocols or next-generation sequencing, then one can reconstruct a tree that represents the

genealogy of individual pathogen lineages, rather than the phylogeny of pathogen populations.

If sequences from host A form a monophyletic clade (in which members comprise the com-

plete set of descendants from a common ancestor) that has a nested paraphyletic clade of

sequences from host B, then the tree is consistent with the direction of transmission having

originated from host A [41]. Directionality does not imply that host A directly transmitted

their infection to host B, because the pathogen may have been transmitted through an

unknown number of intermediate unsampled hosts before establishing an infection in host B.

Node support

The statistical confidence in directionality of transmission from a given tree is usually quanti-

fied by the support value associated with the node that is ancestral to the nested monophyletic

clade. The support of node X is the estimated probability that if we repeated the phylogenetic

reconstruction on an equivalent data set, the new tree would contain exactly the same clade

comprising exclusively of all descendants of node X in the original tree. In other words, it

quantifies the reproducibility of that node given the data. It should not be interpreted as the

probability that the clade below node X appears in the "true" tree [42]. There are generally

three approaches to estimating node support:

1. Bootstrapping. Felsenstein adapted the concept of nonparametric bootstrapping) to the

problem of phylogenetic reconstruction by maximum likelihood [43]. Bootstrapping provides

a way to characterize the sampling variation associated with the data without having to collect

additional, equivalent samples. To start, one generates a new data set by sampling an equiva-

lent number of nucleotide or amino acid positions at random with replacement from the

multiple sequence alignment - this new data set is referred to as a "bootstrap sample". A tree is

reconstructed from the bootstrap sample using the same method as the original tree. Since we

are sampling sets of homologous characters (columns) from the alignment, the information

on the evolutionary history contained at that position is intact. We record the presence or

absence of clades from the original tree in the new tree, and then repeat the entire process

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010649 November 17, 2022 12 / 26

https://en.wikipedia.org/wiki/Centroid
https://en.wikipedia.org/wiki/Cladistics
https://en.wikipedia.org/wiki/Systematics
https://en.wikipedia.org/wiki/Paraphyly
https://en.wikipedia.org/wiki/Bird
https://en.wikipedia.org/wiki/Reptile
http://topicpageswiki.plos.org/w/index.php?title=Source_attribution%23Incomplete_sampling
https://en.wikipedia.org/wiki/Dilution_cloning
https://en.wikipedia.org/wiki/Dilution_cloning
https://en.wikipedia.org/wiki/Massive_parallel_sequencing
https://en.wikipedia.org/wiki/Genealogy
https://en.wikipedia.org/wiki/Monophyly
https://en.wikipedia.org/wiki/Joseph_Felsenstein
https://en.wikipedia.org/wiki/Bootstrapping_(statistics
https://en.wikipedia.org/wiki/Sampling_error
https://en.wikipedia.org/wiki/Simple_random_sample
https://en.wikipedia.org/wiki/Multiple_sequence_alignment
https://doi.org/10.1371/journal.pcbi.1010649


until a target number of replicate trees have been processed. The frequency at which a given

clade is observed in the bootstrap sample of trees quantifies the reproducibility of that node in

the original tree.

Non-parametric bootstrapping is a time-consuming process that scales linearly with the

number of replicates, since every bootstrap sample is processed by the same method as the

original tree, and post-processing steps are required to enumerate clades. The precision of esti-

mating the node support values increases with the number of bootstrap replicates. For

instance, it is not possible to obtain a node support of 99% if fewer than 100 bootstrap samples

have been processed. Consequently, it is now more common to use faster approximate meth-

ods to estimate the support values associated with different nodes of the tree (for instance, see

approximate likelihood-ratio testing below).

2. Bayesian sampling. Instead of using bootstrapping to resample the data, one can quantify

node support by examining the uncertainty in reconstructing the phylogeny from the given

data. Bayesian sampling methods such as Markov chain Monte Carlo (see Hald model) are

designed to generate a random sample of parameters from the posterior distribution given the

model and data. In this case, the tree is a collection of parameters. A Bayesian estimate of node

support can be extracted from this sample of trees by counting the number of trees in which

the monophyletic clade that descends from that specific node appears [44]. Bayesian sampling

is computationally demanding because the space of all possible trees is enormous, making con-

vergence difficult or not feasible to attain for large data sets [45].

3. Approximate likelihood-ratio testing. Unlike Bayesian sampling, this method is performed

on a single estimate of the tree based on maximum likelihood, where the likelihood is the prob-

ability of the observed data given the tree and model of evolution. The likelihood ratio test

(LRT) is a method for selecting between two models or hypotheses, where the ratio of their

likelihoods is a test statistic that is mapped to a null distribution to assess statistical signifi-

cance. In this application, the alternative hypothesis is that a branch in the reconstructed tree

has a length of zero, which would imply that the descendant clade cannot be distinguished

from its background [46]. This makes the LRT a localized analysis: it evaluates the support of a

node when the rest of the tree is assumed to be true. On the other hand, this narrow scope

makes the approximate LRT method computationally efficient in comparison to Bayesian

sampling and bootstrap sampling. In addition to the LRT method, there are several other

methods for fast approximation of bootstrap support and this remains an active area of

research [47].

Background sequences

The interpretation of monophyletic and paraphyletic clades is contingent on whether a suffi-

cient number of infections have been sampled from the host population. Sequences from one

host can only become paraphyletic relative to sequences from a second host if the tree contains

additional sequences from at least one other host in the population. As noted above, there may

be unsampled host individuals in a "transmission chain" connecting the putative source to the

recipient host (Fig 3B). The incorporation of background sequences from additional hosts in

the population is similar to the problem of rooting a phylogeny using an outgroup), where the

root represents the earliest point in time in the tree. The location of this "root" in the section of

the tree relating the sequences from the two hosts determines which host is interpreted to be

the potential source.

There are no formal guidelines for selecting background sequences. Typically, one incorpo-

rates sequences that were collected in the same geographic region as the two hosts under inves-

tigation. These local sequences are sometimes augmented with additional sequences that are
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retrieved from public databases based on their genetic similarity (e.g., BLAST)), which were

not necessarily collected from the same region. Generally, the background data comprise con-

sensus (bulk) sequences where each host is represented by a single sequence, unlike the puta-

tive source and recipient hosts from whom multiple clonal sequences have been sampled.

Because clonal sequencing is more labor-intensive, such data are usually not available to use as

background sequences. The incorporation of different types of sequences (clonal and bulk)

into the same phylogeny may bias the interpretation of results, because it is not possible for

sequences to be nested within the consensus sequence from a single background host.

Phylodynamic methods

In general, phylodynamics is a subdiscipline of molecular epidemiology and phylogenetics that

concerns the reconstruction of epidemiological processes, such as the rapid expansion of an

epidemic or the emergence of herd immunity in the host population, from the shape of the

phylogenetic tree relating infections sampled from the population [48]. A phylodynamic

method uses tree shape as the primary data source to parameterize models representing the

biological processes that influenced the evolutionary relationships among the observed infec-

tions. This process should not be confused with fitting models of evolution (such as a

nucleotide substitution model or molecular clock model) to reconstruct the shape of the tree

from the observed characteristics of related populations (infections), which originates from

the field of phylogenetics. The relatively rapid evolution of viruses and bacteria makes it feasi-

ble to reconstruct the recent dynamics of an epidemic from the shape of the phylogeny recon-

structed from infections sampled in the present.

The use of phylodynamic methods for source attribution involve reconstruction of the

transmission tree, which cannot be directly observed, from its residual effect on the shape of

the phylogenetic tree. Although there are established methods for reconstructing phylogenetic

trees from the genetic divergence among pathogen populations sampled from different host

individuals, there are several reasons why the phylogeny may be a poor approximation of the

transmission tree (Fig 3). In this context, phylodynamic methods attempt to reconcile the dis-

cordance between the phylogeny and the transmission tree by modeling one or more of the

processes responsible for this discordance, and fitting these models to the data (Fig 4).

Given the complexity of phylodynamic models, these methods predominantly use Bayesian

inference to sample transmission trees from the posterior distribution, where the transmission

tree is an explicit model of "who infected whom". Although these methods can estimate the

probability of a direct transmission from one individual to another, this probability is condi-

tional on how well the model (selected from a number of possible models) approximates real-

ity. Below we describe models that have been implemented to incorporate, but not eliminate,

the additional uncertainty caused by the various assumptions required when using the phylo-

genetic tree as an approximation of the transmission history.

Demographic and transmission models

A basic simplifying assumption is that every infection in the epidemic is represented by at least

one genetic sequence in the data set [49–51] (complete sampling). Although complete sam-

pling may be feasible in circumstances such as an outbreak of disease transmission among

farms in a defined geographic region [52], it is generally not possible to rule out unsampled

sources in other contexts. This is especially true for infectious diseases that are stigmatized

and/or associated with marginalized populations [53], that have a long asymptomatic period

[54], or in the context of a generalized epidemic where disease prevalence may substantially

exceed the local capacity for sample collection and genetic sequencing.
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Several methods attempt to address the presence of unsampled hosts by modeling the

growth of the epidemic over time, which predicts the total number of infected hosts at any

given time. Put another way, the probability that an infection was transmitted from an

unsampled source is determined in part by the total size of the infected population at the time

of transmission. These models of epidemic growth are sometimes referred to as demographic

models because some are derived from population growth models such as the exponential and

logistic growth models. Alternatively, the number of infections can be modeled by a

compartmental model that describes the rate that individual hosts switch from susceptible to

infected states, and can be extended to incorporate additional states such as recovery from

infection or different stages of infection [50,55]. An important distinction between population

growth and compartmental models is that the number of uninfected susceptible hosts is

tracked explicitly in the latter.

A phylodynamic analysis attempts to parameterize the growth model by using the phylog-

eny as either a direct proxy of the transmission tree, or to account for the discordance between

these trees due to within-host diversity using a population genetic model, such as the

coalescent (Fig 4). Bayesian methods make it feasible to supplement this task with other data

sources, such as the reported case incidence and/or prevalence over time [56]. The transmis-

sion process can be mapped to the size of the infected population using either a coalescent

(reverse-time) model or a forward-time model such as birth-death or branching processes.

Thus, the coalescent model has two different applications in phylodynamics. First, it can be

used to address the confounding effect of diverse pathogen populations within hosts, by explic-

itly modeling the common ancestry of individual pathogens [31]. Second, the coalescent can

be adapted to model the spread of infections back in time [57], drawing an analogy between

the common ancestry of individuals within hosts and the transmission of infections among

Fig 4. Components of a phylodynamic source attribution analysis. This diagram summarizes the structure of a

phylodynamic analysis as a hierarchical Bayesian model. Rectangular nodes represent data sources (sequence

alignment, sample collection times), and nodes with rounded corners represent parameter estimates (fitted models)

that can in turn be used as data inputs for a subsequent model. Each arrow represents a model inference step that

generates samples from the posterior distribution defined by the data and the model. The model associated with each

step is represented by a circular node; each model comprises a number of prior beliefs. This schematic displays

multiple model nodes to emphasize the existence of other models with different assumptions and prior beliefs that are

not necessarily evaluated on the data.

https://doi.org/10.1371/journal.pcbi.1010649.g004
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hosts. This parallel has also been explored by phylodynamic models based on the structured

coalescent [58], where the population can be partitioned into two or more subpopulations

(demes)). Each deme represents an infected host individual. Due to limited migration of path-

ogen lineages between demes, two pathogen lineages sampled at random are more likely to

share a recent common ancestor if they belong to the same deme.

Birth-death models describe the proliferation of infections forward in time, where a "birth"

event represents the transmission of an infection to an uninfected susceptible host, and a

"death" event can represent either the diagnosis and treatment of an infection, or its spontane-

ous clearance by the host [59]. This class of models was originally formulated to describe the

proliferation of species through speciation and extinction [60]. Similarly, branching processes

model the growth of an epidemic forward in time where the number of transmissions from

each infected host ("offspring") is described by a discrete probability distribution over non-

negative integers, such as the negative binomial distribution [61]. Branching process models

tend to use the simplifying assumption that this offspring distribution remains constant over

time, making this class of models more appropriate for the initial stage of an epidemic where

most of the population is uninfected.

Within-host diversity

As noted above, the diversification of pathogen populations within each host results in a dis-

cordance between the shapes of the pathogen phylogeny and the transmission tree.

Phylodynamic methods that treat the phylogeny as equivalent to the transmission tree assume

implicitly that the population within each host is small enough to be approximated by a single

lineage [48,52,62]. If the within-host population is diverse, then a transmission event will tend

to underestimate the time since two lineages split from their common ancestor (Fig 3A); this

phenomenon is analogous to the incomplete lineage sorting affecting gene trees relative to the

species tree [63]. The resulting discordance between the phylogenetic and transmission trees

makes it more difficult to reconstruct the latter from the observed data. Moreover, the effect of

within-host diversity becomes even greater if there are incomplete transmission bottlenecks —

where a new infection is established by more than one lineage transmitted from the source

population — because the common ancestor of pathogen lineages may be located in previous

hosts further back in time [58].

Controversies

Source attribution is an inherently controversial application of molecular epidemiology

because it identifies a specific population or individual as being responsible for the onward

transmission of an infectious disease. Because molecular source attribution increasingly

requires the specialized and computationally-intensive analysis of complex data, the underly-

ing model assumptions and level of uncertainty in these analyses are often not made accessible

to principal stakeholders, including the key affected populations and community advocates.

Molecular forensics and HIV-1 transmission

Outside of a public health context, the concept of source attribution has significant legal and

ethical implications for people living with HIV to potentially become prosecuted for transmit-

ting their infection to another person. The transmission of HIV-1 without disclosing one’s

infection status is a criminally prosecutable offense in many countries [64], including the

United States. For example, defendants in HIV transmission cases in Canada have been

charged with aggravated sexual assault, with a "maximum penalty of life imprisonment and
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mandatory lifetime registration as a sex offender" [65]. Molecular source attribution methods

have been utilized as forensic evidence in such criminal cases.

Forensic applications of phylogenetic clustering

One of the earliest and well-known examples of an HIV-1 transmission case was the investiga-

tion of the so-called "Florida dentist", where an HIV-positive dentist was accused of transmit-

ting his infection to a patient. Although genetic clustering — specifically, clustering in the

context of a phylogeny — was applied to these data to demonstrate that HIV-1 particles sam-

pled from the dentist were genetically similar to those sampled from the patient [66], clustering

alone is not sufficient for source attribution. Clusters can only provide evidence that infections

are unlikely to be epidemiologically linked because they are too dissimilar relative to other

infections in the population [67]. For example, similar phylogenetic methods were used in a

subsequent case to demonstrate that the HIV-1 sequence obtained from the patient was far

more similar to the sequence from their sexual partner than the sequence from a third party

under investigation [68].

Clustering provides no information on the directionality of transmission (e.g., whether the

infection was transmitted from individual A to individual B, or from B to A; Fig 3), nor can it

rule out the possibility that one or more other unknown persons (from whom no virus

sequences have been obtained) were involved in the transmission history. Despite these

known limitations of clustering, statements on the genetic similarity of infections continue to

appear in court cases [69]. On the other hand, clustering can have population-level benefits by

enabling public health agencies to rapidly detect elevated rates of transmission in a population,

and thereby optimize the allocation of prevention efforts [70]. The expansion of public health

applications of clustering [71] has raised concerns among people living with HIV that this use

of personal health data might also expose them to a greater risk of criminal prosecution for

transmission [72,73].

Forensic applications of paraphyly methods

Source attribution methods based on paraphyly have been used in the prosecution of individu-

als for HIV-1 transmission. One of the earliest examples was published in 2002, where a physi-

cian was accused of intentionally injecting blood from one patient (P) who was HIV-1 positive

into another patient (V) who had previous been in a relationship with the physician [74]. This

study used maximum likelihood methods to reconstruct a phylogenetic tree relating HIV-1

sequences from both patients. Paraphyly of sequences from P implying either direct or indirect

transmission to V was reported for the phylogeny reconstructed from RT sequences (Fig 5).

However, a second tree reconstructed from the more diverse HIV-1 envelope (env) sequences

from the same group was inconclusive on the direction of transmission - only that the env
sequences from patients P and V clustered respectively into two monophyletic groups that

were jointly distinct from the background.

The use of paraphyly for source attribution was stimulated with the onset of next-genera-

tion sequencing, which made it more cost-effective to rapidly sequence large numbers of indi-

vidual viruses from multiple host individuals. More recent work [41] has also developed a

formalized framework for interpreting the distribution of sequences in the phylogeny as being

consistent with a direction of transmission. Several studies have since applied this framework

to re-analyze or develop forensic evidence for HIV transmission cases in Serbia [75], Taiwan

[76], China [77] and Portugal [78]. The growing number of such studies has led to controversy

on the ethical and legal implications of this type of phylogenetic analysis for HIV-1 [79].
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The accuracy of classifying a group of sequences in a phylogeny into monophyletic or para-

phyletic groups is highly contingent on the accuracy of tree reconstruction. As described

above (see Paraphyly), our statistical confidence of a specific clade in the tree is quantified by

the estimated probability that the same clade would be obtained if the tree reconstruction was

repeated on an equivalent data set. This support value is not the probability that the clade

Fig 5. Reproduction of phylogenetic tree from Metzker study. This unrooted tree was reconstructed by maximum

likelihood from published HIV-1 RT sequences from Metzker et al. [78] and supplemented with additional sequences

from Genbank. Tips representing sequences are coloured by source (see legend), and branches are coloured by

bootstrap support (darker shades indicate higher support). The branch (labelled ’�’) separating sequences from both

patients P and V from the "background" sequences, including the original LA (Louisiana) control sequences from the

study, had a support of 95%. The branch (labelled ’��’) cited by the study as evidence that sequences from patient V

were nested within a paraphyletic group of sequences from patient P had a support of 100%.

https://doi.org/10.1371/journal.pcbi.1010649.g005
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appears in the "true" tree because this quantity is conditional on the data at hand - however, it

is often misinterpreted this way [80]. If the branch separating a nested monophyletic clade of

sequences from host A from the paraphyletic group of sequences from host B has a low sup-

port value, then the conventional procedure would be to remove that branch from the tree.

This would have the result of collapsing the monophyletic and paraphyletic clades so that the

tree is inconclusive about either direction of transmission. However, this procedure has not

been consistently used in source attribution investigations. For example, the trees displayed in

the 2020 study in Taiwan [76] do not support transmission from the defendent to the plaintiff

when branches with low support (<80%) are collapsed. Moreover, the result can vary with the

region of the virus genome targeted for sequencing [81].

The use of paraphyly to infer the direction of transmission was recently evaluated on a pro-

spective cohort of HIV serodiscordant couples (where one partner was HIV positive at the

start of the study) [82]. Applying the paraphyly method to next-generation sequence data gen-

erated from samples obtained from 33 pairs where the HIV negative partner became infected

over the course of the study, the authors found that the direction of transmission was incor-

rectly reconstructed in about 13% to 21% of cases, depending on which sequences were ana-

lyzed. However, a follow-up study involving many of the same authors [83] used a more

comprehensive sequencing method to cover the full virus genome in depth from all host indi-

viduals, lowering the percentage of misclassified cases to 3.1%.

Forensic applications of phylodynamics

A common feature of both clustering and paraphyly methods is that neither approach explic-

itly tests the hypothesis that an infection was directly transmitted from a specific source popu-

lation or individual to the recipient. Phylodynamic methods attempt to overcome the

discordance between the pathogen phylogeny and the underlying transmission history by

modeling the processes that contribute to this discordance, such as the evolution of pathogen

populations within each host. The development of phylodynamic methods for source attribu-

tion has been a rapidly expanding area, with a large number of published studies and associ-

ated software released since 2014 (see Software). Because these methods have tended to be

applied to other infectious diseases including influenza A virus [84], foot-and-mouth disease

virus [85] andMycobacterium tuberculosis [50], they have so far avoided the ethical issues of

stigma and criminalization associated with HIV-1. However, applications of phylodynamic

source attribution to HIV-1 have begun to appear in the literature. For example, in a study

based in Alberta, Canada [86], the investigators used a phylodynamic method (TransPhylo

[61]) to reconstruct transmission events among patients receiving treatment at their clinic

from HIV-1 sequence data. Although the program TransPhylo attempts, by default, to estimate

the proportion of infections that are unsampled, the investigators fixed this proportion to 1%.

By so doing, their analysis carried the unrealistic assumption that nearly every person living

with HIV-1 in their regional epidemic (comprising at least 1,800 people) was represented in

their data set of 139 sequences.

2010 cholera outbreak in Haiti

In the aftermath of a magnitude 7.0 earthquake that struck Haiti in 2010, there was a large-

scale outbreak of cholera, a gastrointestinal infection caused by the bacterium Vibrio cholerae.
Nearly 800,000 Haitians became infected and nearly 10,000 died in one of the most significant

outbreaks of cholera in modern history. Initial microbial subtyping using pulsed-field gel

electrophoresis indicated that the outbreak was most genetically similar to cholera strains sam-

pled in South Asia [87]. In order to more comprehensively map the plausible source of
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infection, cholera strains from Southern Asia and South America were compared to the strains

sampled from the Haitian outbreak. Whole genome sequences taken from cases in Haiti

shared more sites in common with the sequences taken from South Asia (i.e., Nepal and Ban-

gladesh) than those in geographic areas more immediate to Haiti [88]. Direct comparisons

were also made between the cholera strains taken from three Nepalese soldiers and three Hai-

tian locals, which were nearly identical in genome sequence, forming a phylogenetic cluster

[89]. Based on the evidence gathered by phylogenetic source attribution studies, the role of

Nepalese soldiers who were part of the United Nations Stabilization Mission to Haiti (MINUS-

TAH) in this outbreak was officially recognized by the United Nations in 2016 [90].

2019/2020 novel coronavirus outbreak

In December 2019, an outbreak of 27 cases of viral pneumonia was reported in association

with a seafood market in Wuhan, China. Known respiratory viruses including influenza A

virus, respiratory syncytial virus and SARS coronavirus were soon ruled out by laboratory test-

ing. On January 10, 2020, the genome sequence of the novel coronavirus, most closely related

to bat SARS-coronaviruses, was released into the public domain. Despite unprecedented quar-

antine measures, the virus (eventually named SARS-CoV-2) spread to other countries includ-

ing the United States, with global prevalence exceeding 556 million confirmed cases as of July

15, 2022 [91].

This outbreak spurred an unprecedented level of epidemiological and genomic data sharing

and real-time analysis, which was often communicated by social media prior to peer review.

Much of this knowledge translation was mediated through the open-source project Nextstrain

[92] that performs phylogenetic analyses on pathogen sequence data as they become available

on public and access-restricted databases, and uses the results to update web documents in real

time. On March 4, 2020, Nextstrain developers released a phylogeny in which a SARS-CoV-2

genome that was isolated from a German patient occupied an ancestral position relative to a

monophyletic clade of sequences sampled from Europe and Mexico. Users of the Twitter social

media platform soon commented on the related post from Nextstrain that onward transmis-

sion from the German individual seemed to have "led directly to some fraction of the wide-

spread outbreak circulating in Europe today" [93]. These comments were soon followed by

criticism from other users that attributing the outbreak in Europe to the German patient as the

source individual was drawing conclusions about the directionality of transmission from an

incompletely sampled tree [94]. In other words, the tree was reconstructed from a highly

incomplete sample of cases from the ongoing outbreak, and the addition of other sequences

had a substantial probability of modifying the inferred relationship between the German

sequence and the clade in question. Nevertheless, the interpretation attributing the European

outbreak to a German source propagated through social media, causing some users to call on

Germany to apologize [95].

Software

There are numerous computational tools for source attribution that have been published, par-

ticularly for phylodynamic methods. Table 1 provides a non-exhaustive listing of some of the

software in the public domain. Several of these programs are implemented within the Bayesian

software package BEAST [25], including SCOTTI, BadTrIP, and beastlier. This listing does not

include clustering methods, which are not designed for the purpose of source attribution, but

may be used to develop microbial subtype definitions — clustering methods have previously

been reviewed in molecular epidemiology literature [16,96].
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