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Amyloid and tau PET-positive cognitively 
unimpaired individuals are at high risk for 
future cognitive decline

A major unanswered question in the dementia field is whether 
cognitively unimpaired individuals who harbor both Alzheimer’s 
disease neuropathological hallmarks (that is, amyloid-β plaques and 
tau neurofibrillary tangles) can preserve their cognition over time or are 
destined to decline. In this large multicenter amyloid and tau positron 
emission tomography (PET) study (n = 1,325), we examined the risk for 
future progression to mild cognitive impairment and the rate of cognitive 
decline over time among cognitively unimpaired individuals who were 
amyloid PET-positive (A+) and tau PET-positive (T+) in the medial temporal 
lobe (A+TMTL

+) and/or in the temporal neocortex (A+TNEO-T
+) and compared 

them with A+T− and A−T− groups. Cox proportional-hazards models showed 
a substantially increased risk for progression to mild cognitive impairment 
in the A+TNEO-T

+ (hazard ratio (HR) = 19.2, 95% confidence interval (CI) = 10.9–
33.7), A+TMTL

+ (HR = 14.6, 95% CI = 8.1–26.4) and A+T− (HR = 2.4, 95% CI = 1.4–
4.3) groups versus the A−T− (reference) group. Both A+TMTL

+ (HR = 6.0, 95% 
CI = 3.4–10.6) and A+TNEO-T

+ (HR = 7.9, 95% CI = 4.7–13.5) groups also showed 
faster clinical progression to mild cognitive impairment than the A+T− group. 
Linear mixed-effect models indicated that the A+TNEO-T

+ (β = −0.056 ± 0.005, 
T = −11.55, P < 0.001), A+TMTL

+ (β = −0.024 ± 0.005, T = −4.72, P < 0.001) and 
A+T− (β = −0.008 ± 0.002, T = −3.46, P < 0.001) groups showed significantly 
faster longitudinal global cognitive decline compared to the A−T− (reference) 
group (all P < 0.001). Both A+TNEO-T

+ (P < 0.001) and A+TMTL
+ (P = 0.002) 

groups also progressed faster than the A+T− group. In summary, evidence 
of advanced Alzheimer’s disease pathological changes provided by a 
combination of abnormal amyloid and tau PET examinations is strongly 
associated with short-term (that is, 3–5 years) cognitive decline in cognitively 
unimpaired individuals and is therefore of high clinical relevance.

Alzheimer’s disease (AD) is neuropathologically characterized by the 
presence of amyloid-β (Αβ) plaques and tau neurofibrillary tangles. 
Although the two most well-established diagnostic criteria for AD both 
acknowledge the importance of Αβ and tau pathology in AD pathogen-
esis1, an important distinction is that the National Institute on Aging and 

Alzheimer’s Association (NIA-AA) criteria2 define AD by its biological 
features (that is, the presence of Αβ and tau pathology) irrespective 
of the clinical syndrome, whereas the International Working Group 
(IWG) criteria3 require the presence of objective cognitive impairment 
(mild cognitive impairment (MCI) or dementia) in conjunction with 
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PET and tau PET biomarker profiles as predictors of clinical progression 
among cognitively unimpaired individuals are lacking33.

In addition to addressing the differences between the NIA-AA 
and IWG criteria, early detection of AD pathological changes may be 
key for future interventions with disease-modifying treatments since 
these will most likely be cost-effective and show the most favorable 
benefit versus risk ratio when specifically targeting preclinical popula-
tions with AD that are most likely to experience substantial cognitive 
deterioration in the short term (that is, 3–5 years). Therefore, the aim 
of the current multicenter study was to examine clinical progression 
to MCI or dementia and assess cognitive decline in cognitively unim-
paired individuals with different Αβ (A) and tau (T) biomarker profiles 
as defined by PET at baseline. We divided A+T+ individuals into medial 
temporal lobe (MTL) only (A+TMTL

+) and temporal neocortical (A+TNEO-T
+) 

T+ groups to additionally investigate the impact of more advanced tau 
pathological changes on clinical progression.

Results
Participants
We included 1,325 cognitively unimpaired participants from 7 cohorts, 
of whom 843 (63.6%) were A−T−, 328 (24.8%) A+T−, 55 (4.2%) A+TMTL

+ 
and 65 (4.9%) A+TNEO-T

+ (see Table 1 and Supplementary Table 1 for 
a breakdown by cohort). All biomarker-positive groups were older 
and had lower baseline Mini-Mental State Examination (MMSE) 
scores compared to the A−T− group (all P < 0.001). There were no sex 
differences between groups. The average follow-up duration was 
41.8 ± 18.9 months. The A−T+ group was considerably smaller than 

positive AD biomarkers. Consequently, there is fundamental disagree-
ment between the criteria about the nomenclature for cognitively 
unimpaired individuals who harbor one or both AD hallmark neuro-
pathological features. For example, a cognitively unimpaired individual 
with positive Αβ (Α+) and tau (T+) biomarkers is classified as ‘preclinical 
AD’ by the NIA-AA criteria2, while the IWG criteria3 would label such an 
individual ‘at risk for progression to AD’ (Fig. 1).

Aside from philosophical differences (for example, according 
to the IWG criteria the term AD should be restricted to symptomatic 
individuals), the discrepancy between the NIA-AA and IWG can be 
explained by at least two factors. First, according to the IWG criteria, 
currently available Αβ and tau biomarkers show ‘low predictive accu-
racy’ for development of cognitive symptoms. For Αβ biomarkers 
alone this may indeed be the case4,5, although PET studies with long 
follow-ups (approximately 10 years) indicate substantial Αβ-associated 
risk for cognitive decline6, dementia7 and death7. For tau biomarkers, 
however, the clinicopathological correlates are much stronger than 
for Αβ biomarkers8,9, even in asymptomatic individuals10,11. Second, 
most prognostic studies to date are based on cerebrospinal fluid (CSF) 
biomarkers of soluble phospho-tau levels, which is an early marker of 
AD pathology12,13. In contrast, the more recently introduced tau PET 
technique measures more advanced pathological changes since it 
captures insoluble tau aggregates14,15. Although tau PET positivity in the 
neocortex is relatively rare among cognitively unimpaired individuals 
(approximately 5–10%16–18), its presence is strongly associated with 
worse cross-sectional10,19–22 and longitudinal11,23–32 cognitive outcomes. 
However, large-scale longitudinal studies with combinations of amyloid 
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Fig. 1 | NIA-AA versus IWG criteria. Differences in the nomenclature of cognitively unimpaired individuals with (+) or without (−) in vivo biomarker evidence of Aβ 
(A) and tau (T) pathology in the NIA-AA versus IWG criteria for AD. Note that for the IWG criteria, the presumed ‘risk for progression’ level rises when both A and T 
biomarkers are positive.

Table 1 | Participant characteristics

A−T− A+T− A+TMTL
+ A+TNEO-T

+ P

n 843 328 55 65

Age, years 68.6 ± 9.6 75.5 ± 8.2 75.6 ± 6.6 76.4 ± 6.8 <0.001a

Sex, n (%) male 424 (50.3) 164 (50.0) 24 (43.6) 31 (47.7) 0.822

Education, years 14.7 ± 3.1 14.6 ± 3.1 13.7 ± 3.8 13.9 ± 3.5 0.02b

Follow-up duration, months 43.0 ± 18.9 40.1 ± 17.6 39.0 ± 16.5 36.4 ± 14.9 0.004c

Follow-up visits, number 4.1 ± 1.5 4.1 ± 1.4 4.0 ± 1.3 3.6 ± 1.2 0.07

MMSE, baseline score 29.0 ± 1.0 28.7 ± 1.3 28.3 ± 1.5 28.2 ± 1.3 <0.001d

Progression to MCI, n (%) 26 (8.9%) 26 (3.3%) 25 (49.0%) 32 (53.3%) <0.001

Progression to all-cause dementia, n (%) 4 (0.5%) 3 (1.0%) 2 (3.9%) 12 (20.0%) <0.001

P values from two-sided statistical tests were reported. ANOVAs were used for continuous variables and chi-squared tests were used for categorical variables. Post-hoc tests were adjusted 
using Bonferroni correction. aA+TNEO-T

+ and A+TMTL
+ and A+T− > A−T− b post-hoc tests revealed no significant group differences, cA−T− > A+TNEO-T

+, dA+TNEO-T
+, A+TMTL

+ and A+T− < A−T− and A+TNEO-T
+ < A+ T-.
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the other groups (n = 34; Extended Data Table 1), hence their results 
are only reported in Extended Data Fig. 1.

Clinical progression to MCI
During the clinical follow-up, 26 out of 781 (3.3%) of A−T−, 26 out of 292 
(8.9%) of A+T−, 25 out of 51 (49.0%) of A+TMTL

+ and 32 out of 60 (53.3%) of 
A+TNEO-T

+ participants progressed to MCI or dementia. Among A+TNEO-T
+ 

individuals, the progressors (27.8 ± 1.5) had worse baseline MMSE 
scores compared to stable individuals (28.6 ± 1.0, P = 0.02; Extended 
Data Table 2) and tended to have higher tau PET retention at baseline 
(Supplementary Fig. 1), suggesting that progressors were already in 
a slightly more advanced disease stage at the start of this study. Cox 
proportional-hazards models, adjusted for age, sex, education and 
cohort, showed an increased risk for future progression to MCI in the 
A+TNEO-T

+ (HR = 19.2, 95% CI = 10.9–33.7, P < 0.001), A+TMTL
+ (HR = 14.6, 95% 

CI = 8.1–26.4, P < 0.001) and A+T− (HR = 2.4, 95% CI = 1.4–4.3, P = 0.002) 

groups compared to the A−T− (reference) group (Fig. 2a,b). Both A+TMTL
+ 

(HR = 6.0, 95% CI = 3.4–10.6, P < 0.001) and A+TNEO-T
+ (HR = 7.9, 95% 

CI = 4.7–13.5, P < 0.001) groups also showed faster clinical progression 
to MCI than the A+T− group (Fig. 2c). Pairwise log-rank tests showed that 
the A+TMTL

+ and A+TNEO-T
+ groups did not differ from each other (P = 0.19). 

Fifty percent of the A+TNEO-T
+ and A+TMTL

+ groups had progressed to MCI 
after 42.8 and 43.6 months, respectively.

Clinical progression to all-cause dementia
During clinical follow-up, 21 participants progressed to all-cause demen-
tia: 4 out of 781 (0.5%) in A−T−, 3 out of 292 (1.0%) in A+T−, 2 out of 51 (3.9%) 
in A+TMTL

+ and 12 out of 60 (20%) in A+TNEO-T
+. Of those, 14 progressed to 

clinically defined AD-type dementia and 7 to non-AD dementias (see 
Extended Data Table 3 for dementia type). Cox proportional-hazards 
models, adjusted for age, sex, education and cohort, demonstrated 
an increased risk for future progression to all-cause dementia in the 
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Fig. 2 | Progression to MCI or all-cause dementia in the different AT 
biomarker profiles. a,d, Survival curves for progression to MCI (a) or all-cause 
dementia (d) in the different AT biomarker profiles (A−T+: n = 292; A+TMTL

+: 
n = 51; A+TNEO-T

+: n = 60) with the A−T− group (n = 781) as the reference, including 
a table of total number of participants available at each time point. The dashed 
line in a indicates the time point at which 50% of a group had progressed to 
MCI. b,e, Forest plots showing the HRs and 95% CIs derived from the survival 

analyses shown in a (b) and d(e), from Cox regression models including age, sex, 
education and cohort as covariates. c,f, Forest plots showing the HRs and 95% CIs 
derived from Cox regression models including age, sex, education and cohort 
as covariates but now using the A+T− group as the reference with the outcome 
being progression to MCI (c) and progression to all-cause dementia (f). Statistics 
from two-sided tests without adjustment for multiple comparisons are reported. 
*P < 0.01, **P < 0.001.
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A+TNEO-T
+ (HR = 41.3, 95% CI = 16.7–101.9, P < 0.001) and A+TMTL

+ (HR = 6.2, 
95% CI = 1.4–26.8, P = 0.01) groups compared to the A−T− (reference) 
group (Fig. 2d,e). There was no difference between the A+T− and the 
A−T− group (HR = 1.6, 95% CI = 0.5–5.4, P = 0.53). The A+TNEO-T

+ (HR = 26.7, 
95% CI = 10.4–68.1, P < 0.001) group showed faster clinical progression 
to all-cause dementia than the A+T− group, while there was no significant 
difference between the A+TMTL

+ (HR = 3.8, 95% CI = 0.9–16.2, P = 0.08) 
and the A+T− group (Fig. 2f). Pairwise log-rank tests showed that the 
A+TNEO-T

+ group progressed significantly faster to all-cause dementia 
than the A+TMTL

+ group (P = 0.01). Similar results were found when using 
progression to AD-type dementia (11 A+TNEO-T

+, 2 A+TMTL
+ and 1 A+T−) as 

outcome instead of all-cause dementia (Extended Data Fig. 2).

Cognitive trajectories
Linear mixed-effect models adjusting for age, sex, education and 
cohort indicated that the A+TNEO-T

+ (standardized β (stdβ) of inter-
action with time in months ± s.e. = −0.020 ± 0.002, T = −10.14, 
P < 0.001), A+TMTL

+ (stdβ = −0.017 ± 0.002, T = −8.84, P < 0.001) and 
A+T− (stdβ = −0.005 ± 0.001, T = −5.26, P < 0.001) groups showed faster 
decline over time on the modified preclinical Alzheimer cognitive 
composite 5 (mPACC5 (ref.34)) compared to the A−T− (reference) group 
(Fig. 3a). Additionally, the A+TNEO-T

+ (stdβ = −0.16 ± 0.002, T = −7.53, 
P < 0.001) and A+TMTL

+ (stdβ = −0.13 ± 0.002, T = −6.21, P < 0.001) 

groups progressed faster than the A+T− group but there was no differ-
ence between the A+TNEO-T

+ and A+TMTL
+ groups (stdβ = −0.003 ± 0.002, 

T = −1.13, P = 0.26). Exploratory study of the mPACC5 subcomponents 
showed that A+TNEO-T

+ and A+TMTL
+ groups did not differ on delayed 

episodic memory (stdβ = −0.002 ± 0.003, P = 0.47; Fig. 3c) but the 
A+TNEO-T

+ group showed faster decline on timed executive function 
(stdβ = −0.007 ± 0.002, P = 0.003; Fig. 3d) and semantic memory 
(stdβ = −0.009 ± 0.003, P = 0.007; Fig. 3e).

On the MMSE, the A+TNEO-T
+ (β = −0.056 ± 0.005, T = −11.55, 

P < 0.001), A+TMTL
+ (β = −0.024 ± 0.005, T = −4.72, P < 0.001) and 

A+T− (β = −0.008 ± 0.002, T = −3.46, P < 0.001) groups showed faster 
decline over time compared to the A−T− (reference) group (Fig. 3b). 
The A+TNEO-T

+ (stdβ = −0.49 ± 0.005, T = −9.51, P < 0.001) and A+TMTL
+ 

(stdβ = −0.16 ± 0.005, T = −3.04, P = 0.002) groups progressed faster 
than the A+T− group and the A+TNEO-T

+ group declined faster than the 
A+TMTL

+ group (stdβ = −0.033 ± 0.007, T = −4.82, P < 0.001). Cognitive 
trajectories on the MMSE and mPACC5 for each cohort are displayed 
in Extended Data Fig. 3.

Replication across different age groups
Based on the lower age of the A−T− group compared to the 
biomarker-positive groups (Table 1), we performed the Cox 
proportional-hazards models and linear mixed models (1) stratified 
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Fig. 3 | Longitudinal cognitive decline in the different AT biomarker profiles. 
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The average regression line for each group was plotted from linear mixed-effect 
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The error bands correspond to the 95% CI.
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by different age groups (that is, 50–69, 70–79 and 80+ years; Tables 2 
and 3) and (2) restricting the A−T− group to individuals >65 years so that 
groups were age-matched (Extended Data Tables 4 and 5). All analyses 
yielded highly similar results as the primary analyses, suggesting that 
age did not explain the observed differences in clinical progression 
rates between AT groups and that the findings can be generalized across 
different age groups.

Findings are independent of white matter lesions
To account for the potential effect of white matter lesions on clinical 
progression, we additionally adjusted the Cox proportional-hazards 
models and linear mixed models for white matter hypointensity vol-
umes (Extended Data Tables 6 and 7). These analyses yielded highly 
similar results as the primary analyses, suggesting that the observed 
differences in clinical progression rates between AT groups were inde-
pendent of white matter pathology.

Discussion
To examine whether amyloid and tau PET-positive cognitively unim-
paired individuals are destined to decline, we performed a multicenter 
study in 1,325 participants with, on average, approximately 3.5 years 
of clinical follow-up data available. We found that A+TNEO-T

+ and A+TMTL
+ 

cognitively unimpaired individuals had clearly increased risk for future 
development of MCI and all-cause dementia and showed steep trajec-
tories of cognitive decline. Hence, evidence of advanced AD pathology 
provided by amyloid and tau PET is strongly associated with short-term 
clinical progression in initially cognitively unimpaired individuals. This 
supports the NIA-AA criteria-based classification of A+T+ cognitively 
unimpaired individuals as ‘preclinical AD’, especially when ‘T’ is defined 
by PET. To consider A+T+ merely as a risk factor, and not manifest disease, 
may be an underestimation of its malignancy.

Although the A+TNEO-T
+ group was at increased risk for progression 

to all-cause dementia compared to the A+TMTL
+ group, there were no 

differences in risk for progression to MCI. A potential explanation is 
that tau pathological changes in the MTL can cause severe-enough 
memory loss leading to an individual being classified as MCI (but not 
dementia), while widespread tau pathology into the neocortex might 
be needed to produce a dementia syndrome16,17,35. Supporting this 
hypothesis, we found that the A+TNEO-T

+ group exhibited faster decline 
in global cognition, semantic memory and timed executive function 
but not in delayed episodic memory function compared to the A+TMTL

+ 
group (Fig. 3c–e).

Another important finding was the higher clinical progression rate 
for both A+T+ groups compared to the A+T− group, with HRs up to 7.9 and 
26.7 for progression to MCI and all-cause dementia, respectively. This 
indicates that among A+ cognitively unimpaired individuals, who are 
presumably already on the AD pathological continuum, the coexistence 
of tau pathological changes in the MTL and/or the neocortex represents 
a ssubstantial additional relative risk for short-term cognitive decline. 
However, a proportion of the A+T+ group remained cognitively intact 
after approximately 3.5 years of follow-up, highlighting the variable 
rates of cognitive decline even among individuals who are at the high-
est risk of deterioration based on their AD biomarker profile5–7,23,24,36. 
This possibly represents highly resilient individuals due to a favorable 
genetic makeup and/or a healthy lifestyle37–39. Alternatively, these 
nonprogressors may harbor fewer additional factors on top of Aβ and 
tau pathology, for example, synaptic loss, copathologies or neuroin-
flammation, resulting in an attenuation of their cognitive decline40–42. 
Hence, research into both resilience and risk factors is necessary to 
optimize future prediction models.

The main strengths of this study include the large-scale multi-
center dataset with available amyloid PET, tau PET and longitudinal 
clinical and cognitive data, which allowed us to accurately estimate the 
relative risk of the different AT groups in terms of clinical progression 
and cognitive decline. This study also has several limitations. First, 

Table 2 | Survival analyses across different age groups

All agesA−T−: 
n = 781A+T−: 
n = 292A+TMTL

+: 
n = 51A+TNEO-T

+: 
n = 60

50–69 
yearsA−T−: 
n = 433A+T−: 
n = 75A+TMTL

+: 
n = 12A+TNEO-T

+: 
n = 10

70–79 
yearsA−T−: 
n = 256A+T−: 
n = 123A+TMTL

+: 
n = 25A+TNEO-T

+: 
n = 29

80+ 
yearsA−T−: 
n = 92A+T−: 
n = 94A+TMTL

+: 
n = 14A+TNEO-T

+: 
n = 21

HR (95% CI), P HR (95% CI), P HR (95% CI), P HR (95% CI), P

Progression to MCI

A+T− 2.43 (1.38–
4.26), P = 0.002

0.94 (0.25–
3.59), P = 0.93

2.93 (1.16–7.39), 
P = 0.02

2.41 (0.90–
6.42), P = 0.08

A+TMTL
+ 14.60 (8.06–

26.41), P < 0.001
17.19 
(5.98–49.42), 
P < 0.001

21.94 
(8.51–56.56), 
P < 0.001

5.14 (1.39–
18.94), P = 0.01

A+TNEO-T
+ 19.19 (10.93–

33.71), P < 0.001
17.21 
(4.54–65.19), 
P < 0.001

26.07 
(10.79–62.99), 
P < 0.001

11.28 
(3.91–32.57), 
P < 0.001

Progression to all-cause dementia

A+T− 1.58 (0.46–
5.41), P = 0.47

2.50 
(0.27–23.00), 
P = 0.42

1.33 (0.16–
10.84), P = 0.78

0.90 
(0.50–15.98), 
P = 0.94

A+TMTL
+ 6.22 (1.44–

26.79), P = 0.01
18.09 (1.99–
165), P = 0.01

NA 6.26 (0.34–
116), P = 0.22

A+TNEO-T
+ 41.26 

(16.70–101.93), 
P < 0.001

28.17 (4.47–
177), P < 0.001

47.62 (9.55–
237), P < 0.001

27.69 (2.49–
307.56), 
P = 0.007

The HR are derived from Cox proportional-hazards models with clinical progression 
(progression to MCI or all-cause dementia) as outcome, age, sex, education and cohort 
as covariates and A−T− serving as the reference group. NA, there were no progressors to 
dementia in the A+TMTL

+ group for this particular age bin.

Table 3 | Linear mixed models across different age groups

All agesA−T−: 
n = 843A+T−: 
n = 328A+TMTL

+: 
n = 55A+TNEO-T

+: 
n = 65

50–69 
yearsA−T−: 
n = 442A+T−: 
n = 77A+TMTL

+: 
n = 12A+TNEO-T

+: 
n = 10

70–79 
yearsA−T−: 
n = 284A+T−: 
n = 148A+TMTL

+: 
n = 27A+TNEO-T

+: 
n = 33

80+ yearsA−T−: 
n = 117A+T−: 
n = 103A+TMTL

+: 
n = 16A+TNEO-T

+: 
n = 22

Stdβ (s.e.), P Stdβ (s.e.) P Stdβ (s.e.) P Stdβ (s.e.) P

mPACC5

A+T− −0.005 (0.001), 
P < 0.001

−0.002 
(0.001), 
P = 0.11

−0.004 (0.001), 
P = 0.005

−0.003 
(0.003), 
P = 0.33

A+TMTL
+ −0.017 (0.002), 

P < 0.001
−0.015 
(0.003), 
P < 0.001

−0.016 (0.003), 
P < 0.001

−0.015 (0.005), 
P = 0.004

A+TNEO-T
+ −0.020 

(0.002), 
P < 0.001

−0.025 
(0.004), 
P < 0.001

−0.019 (0.003), 
P < 0.001

−0.012 (0.005), 
P = 0.02

MMSE

A+T− −0.008 
(0.002), 
P < 0.001

−0.001 
(0.003), 
P = 0.73)

−0.007 
(0.004), 
P = 0.06

−0.013 (0.007), 
P = 0.06

A+TMTL
+ −0.024 

(0.005), 
P < 0.001

−0.039 
(0.008), 
P < 0.001)

−0.006 
(0.008), 
P = 0.43

−0.032 (0.014), 
P = 0.02

A+TNEO-T
+ −0.056 

(0.005), 
P < 0.001

−0.050 
(0.011), 
P < 0.001

−0.049 
(0.007), 
P < 0.001

−0.063 (0.013), 
P < 0.001

The stdβ values are derived from the linear mixed models adjusted for age, sex, education 
and cohort and represent the group × time interaction with the A−T− serving as the reference 
group. P values from two-sided statistical tests without adjustment for multiple comparisons 
are reported.
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there are inherent challenges due to the multicenter study design, 
such as data pooling and harmonization, different amyloid and tau PET 
tracers and dissimilarities in PET acquisition protocols. Also, different 
neuropsychological tests were used as mPACC5 subcomponents across 
cohorts and these differences could impact the overall mPACC5 score. 
Relatedly, the varying rates of clinical progression in the A+TNEO-T

+ and 
A+TMTL

+ groups across cohorts (Supplementary Table 1) could be due to 
chance given the relatively small number of T+ participants but might 
also be a result of different ascertainment and recruitment methods. 
Second, the number of events (that is, progression to MCI and espe-
cially dementia) was relatively low. Third, we may have underestimated 
the actual risk of A+TNEO-T

+ and A+TMTL
+ cognitively unimpaired individu-

als due to consent or volunteer bias (lower study participation among 
individuals at risk) and informative censoring (the tendency of people 
to drop out when experiencing onset or worsening of symptoms)43. 
Fourth, we acknowledge that our design only allowed establishing rela-
tive risk and not lifetime risk and we did not control for the competing 
risk of death in our survival analyses.

Future studies should test whether our findings are generalizable 
to more diverse populations in terms of ethnicity, socioeconomic 
status and medical comorbidities. Furthermore, studies with longer 
follow-ups and larger samples of A+TNEO-T

+ and A+TMTL
+ cognitively unim-

paired individuals will help refine the current findings. This may, in 
turn, aid in enriching clinical trials for fast progressors and developing 
algorithms for a personalized prognosis that reliably estimates the risk 
for future cognitive decline at an individual level. Of particular interest 
will be the performance of head-to-head studies between tau PET and 
high performing plasma p-tau assays44–47 to investigate the potential 
added value and cost-effectiveness of tau PET as a prognostic tool.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41591-022-02049-x.
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Methods
Participants
We included 1,325 participants from the Mayo Clinic Olmsted Study 
of Aging48 (MCSA, n = 680), the Swedish BioFINDER-1 (n = 56) and 
BioFINDER-2 (n = 228) studies at Lund University10,16, the Berkeley Aging 
Cohort Study49 (BACS, n = 109), the Harvard Aging Brain Study50 (HABS, 
n = 162, data obtained in March 2022 from data release 2.0 via https://
habs.mgh.harvard.edu), the Australian Imaging, Biomarker & Lifestyle 
Flagship Study of Ageing51 (AIBL, n = 48) and the SCIENCe project52, 
which is part of the Amsterdam Dementia Cohort (ADC, n = 42). A brief 
description of each cohort is provided in Supplementary Table 2. All 
participants were (1) cognitively unimpaired at baseline defined by 
neuropsychological test scores within the normative range given an 
individual’s age, sex and educational background, (2) had amyloid 
PET available to determine Αβ status, (3) underwent a tau PET scan 
before 1 January 2019, to allow for sufficiently long follow-up and (4) 
had at least one clinical follow-up visit available. Follow-up data were 
collected until 1 April 2022. Amyloid and tau PET scans included in the 
study were acquired at the same time point in most cases and always 
within a maximum of 1 year of each other. Written informed consent was 
obtained from all participants and local institutional review boards for 
human research approved the study. This includes the Mayo Clinic and 
Olmsted Medical Center institutional review boards for MSCA, regional 
ethics committee at Lund University for BioFINDER-1 and BioFINDER-2, 
institutional review boards at Lawrence Berkeley National Laboratory 
and the University of California, Berkeley, for BACS, institutional human 
research ethics committees of Austin Health, St. Vincent’s Health, Hol-
lywood Private Hospital and Edith Cowan University for AIBL, partners 
human research committee for HABS and the medical ethics review 
committee of the Amsterdam University Medical Center for ADC.

Amyloid PET status
Amyloid PET scans were performed and analyzed at each respective 
cohort site. Αβ status was determined using center-specific cutoffs 
or visually read metrics using [18F]flutemetamol PET for BioFINDER-1 
and BioFINDER-2, [11C]Pittsburgh compound-B PET for MCSA, BACS 
and HABS, [18F]florbetapir PET for ADC and AIBL (n = 47 out of 48) and 
[18F]NAV4694 for AIBL (n = 1 out of 48). Each cohort provided the Αβ 
status for their participants (see Supplementary Table 3 for details).

Tau PET status
Tau PET was performed using [18F]flortaucipir across all cohorts, except 
BioFINDER-2 where [18F]RO948 was used, and data were processed 
according to previously described procedures (Supplementary Table 
4). BioFINDER-1, BioFINDER-2 and BACS (part of a previous multicenter 
study23) tau PET scans were analyzed at Lund University. For the other 
cohorts, tau PET scans were processed at the respective sites; stand-
ardized uptake value ratios and region-of-interest (ROI) volumes were 
sent to the statistical analysis team (R.O. and A.P.B.) at Lund University. 
Based on these data, we computed the tau PET status for an MTL (an 
unweighted average of bilateral entorhinal cortex and amygdala) and 
an NEO-T (a weighted average of bilateral middle temporal and infe-
rior temporal gyri) ROI. We used an unweighted MTL ROI because we 
intended the entorhinal cortex to have a relatively higher contribution 
since this region is involved in the earliest stages of tau accumula-
tion yet it is somewhat smaller compared to the amygdala. The MTL 
and NEO-T ROIs were modified from a previously described temporal 
meta-ROI17,53 based on a well-established stereotypical progression of 
tau pathology from the MTL into the lateral temporal cortex19,54,55. The 
threshold was determined for each cohort separately, based on the 
mean + 2 × s.d. across all Αβ-negative participants in each cohort (see 
cohort-specific cutoffs in Supplementary Table 4). Based on amyloid 
and tau PET status, we generated four different biomarker groups: 
A−T−; A+T−; A+TMTL

+ (defined as tau PET-positive in the MTL but not in the 
neocortex); and A+TNEO-T

+ (defined as tau PET-positive in the NEO-T and/

or MTL; 49 out of 65 were also TMTL
+). The A−T+ group was considerably 

smaller than the other groups (n = 34; Extended Data Table 1), hence 
their results are only reported in Extended Data Fig. 1.

Clinical outcome measures
We used both binary and continuous measures of clinical progression. 
First, we examined progression from cognitively unimpaired to MCI 
(Fig. 2a), all-cause dementia (Fig. 2d) or AD-type dementia (Extended 
Data Fig. 2). MCI was established using the Petersen criteria56 and is 
defined as significant cognitive symptoms as assessed by a physician, 
in combination with cognitive impairment on one or multiple domains 
(for example, memory, executive functioning, attention, language) that 
is below the normative range given an individual’s age, sex and educa-
tional background but not sufficiently severe to meet the diagnostic cri-
teria for dementia. A large systematic review assessing 11,000 studies 
showed convergence across practices when validated diagnostic tools 
were used, such as in the current study57. AD-type dementia was diag-
nosed using established criteria58. Both MCI and dementia diagnoses 
were made by clinicians who were blinded for any PET or CSF outcome. 
For BACS, no formal diagnosis of MCI or dementia was made during the 
study; hence, the cohort was excluded from this analysis. Second, we 
examined cognitive trajectories using a sensitive composite measure 
specifically developed to detect cognitive changes in preclinical stages 
of AD (that is, the mPACC5 (refs. 34,59); Fig. 3a) and a screening tests of 
global cognition (that is, the MMSE, which is frequently used in clinical 
practice and in trials; Fig. 3b). The mPACC5 consists of tests capturing 
episodic memory, executive function, semantic memory and global 
cognition34. Individual tests were z-transformed using the baseline test 
scores of Αβ-negative participants in each cohort as the reference group 
and then averaged to obtain a composite z-score. The composition of 
mPACC5 is described for each cohort in Supplementary Table 5. Note 
that we used a modified version of the mPACC5 because, although we 
measured the same cognitive domains, the specific tests used in this 
study are not consistent with the original mPACC5 and they differ by 
cohort. However, a direct comparison between the original PACC5 and 
the mPACC5 in HABS (where the original PACC5 was developed) showed 
a strong correspondence between the 2 versions (r = 0.89, P < 0.001; 
Supplementary Fig. 2).

Statistical analyses
All statistical analyses were performed in R v.4.0.5. Differences in base-
line characteristics between groups were assessed using analysis of 
variance (ANOVA) with post-hoc t-tests with Bonferroni correction 
for continuous variables and chi-squared and Kruskal–Wallis with 
post-hoc Mann–Whitney U-tests for categorical or ordinal variables. 
First, we examined progression from cognitively unimpaired to MCI 
(Fig. 2a), all-cause dementia (Fig. 2d) or AD-type dementia (Extended 
Data Fig. 2) using Cox proportional-hazards models, adjusting for age, 
sex, education and cohort using A−T− as the reference group. We addi-
tionally repeated the Cox proportional-hazards model analysis while 
using the A+T− group as the reference group. Furthermore, we compared 
the A+TMTL

+ and A+TNEO-T
+ groups using pairwise log-rank tests with false 

discovery rate correction. For individuals who progressed to MCI and 
subsequent dementia, we used the respective times at conversion to 
MCI and dementia for the analyses presented in Fig. 2a,d. Second, we 
examined differences in cognitive trajectories between groups on the 
mPACC5 (Fig. 3a) and on global cognition (that is, the MMSE; Fig. 3b) 
using linear mixed-effect models with random intercepts and slopes, 
adjusting for age, sex, education and cohort. Finally, we examined 
whether our findings would generalize across different age groups and 
whether our results would be consistent when accounting for white 
matter pathology. Therefore, we performed two sets of analyses. First, 
we performed the main analyses when (1) stratifying the participants 
into different age groups (that is, 50–69, 70–79 and 80+ years old) and 
(2) restricting the A−T− group to individuals older than 65 years, so that 
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all groups were age-matched. Second, we additionally adjusted the sta-
tistical models for a measure of white matter pathology, that is, white 
matter hypointensity volumes derived from T1-weighted magnetic 
resonance imaging scans using the standard FreeSurfer pipeline60. 
Statistical significance for all models was set at two-sided P < 0.05.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Due to the multicenter design of the study, access to individual partici-
pant data from each cohort would need to be made available through 
the principal investigators or project websites of the respective 
cohorts. For the MCSA, raw and analyzed de-identified data can be 
requested at https://ras-rdrs.mayo.edu/Request/IndexRequest. The 
request will be reviewed by the MCSA investigators and Mayo Clinic to 
verify whether it is subject to any intellectual property or confidenti-
ality obligations. A data sharing agreement must be obtained before 
release. For BioFINDER-1 and BioFINDER-2, anonymized data will be 
shared by request to O.H. from a qualified academic investigator for 
the sole purpose of replicating the procedures and results presented 
in the article and as long as data transfer is in agreement with Euro-
pean Union legislation on the general data protection regulation and 
decisions by the Swedish Ethical Review Authority and Region Skåne, 
which should be regulated in a material transfer agreement. For BACS, 
data are available on request to W.J.J. Requests for data from the open 
access part of HABS can be submitted to https://habs.mgh.harvard.
edu. Requests for access to the AIBL data can submitted via an online 
form available at https://aibl.csiro.au/adni/index.html. For the ADC, 
the dataset used for the present study is available from R.O. and/or 
W.F. upon reasonable request.

Code availability
The codes used for the data analyses in our study can be requested 
from the corresponding authors (R.O., O.H.).
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Extended Data Fig. 1 | Main analyses from Figs. 2 and 3, but now also 
including the A-T + group. This figure resembles parts of Figs. 2 and 3 of the 
main manuscript but now also includes the A-T + group. a, Survival curves in 
relation to progression to MCI in the different AT categories, with the table of 
total number of participants available at each time point. b, Survival curves 
in relation to progression to all-cause dementia in the different AT categories, 
with the table of total number of participants available at each time point. c, d 
Forest plots showing the hazard ratios and 95% confidence intervals from the 
survival analyses shown in a and b, from Cox regression models including age, 

sex, education, and cohort as covariates. Statistical tests were two-sided without 
adjustment for multiple comparisons. e, Cognitive trajectories of mPACC5 scores 
over time in the different AT categories f, Cognitive trajectories of MMSE scores 
over time in the different AT categories. The average regression line for each 
group was plotted from linear mixed effect models including age, sex, education, 
and cohort as covariates. The error bands correspond to the 95% confidence 
interval. Data are anchored to the tau-PET visit (Time 0), and cognitive data up to 
1 year prior to PET was included. *p = 0.01, **p < 0.001.
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Extended Data Fig. 2 | Progression to AD dementia in the different AT 
categories. a, Survival curves in relation to progression to AD dementia 
in the main AT categories, with the table of total number of participants 
available at each time point. b, Survival curves in relation to progression to 
AD dementia when including the A-T + group, with the table of total number 
of participants available at each time point. Given the small number of 

events, the hazard ratios are difficult to interpret, but the A + T-, A + TMTL + and 
A + TNEO-T + groups had higher HR’s compared to A-T- reference group (all 
p < 0.001). Pairwise comparisons indicated that both the A + TNEO-T + (p < 0.001) 
and A + TMTL + (p = 0.008) groups differed from the A + T- group, and the 
A + TNEO-T + group differed from the A + TMTL + group (p = 0.01).
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Extended Data Fig. 3 | Cognitive decline on mPACC5 and MMSE in the 
individual cohorts. a, Cognitive trajectories of mPACC5 scores over time in the 
different AT categories in each individual cohort. b, Cognitive trajectories of 
MMSE scores over time in the different AT categories in each individual cohort. 

The average regression line for each group was plotted from linear mixed 
effect models including age, sex, and education as covariates. The error bands 
correspond to the 95% confidence interval. Data are anchored to the tau-PET visit 
(Time 0), and cognitive data up to 1 year prior to PET was included.
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Extended Data Table 1 | Participant characteristics of the A−T+ group
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Extended Data Table 2 | Characterization of stable individuals versus progressors in A−TMTL+ and A−TNEO-T+ groups. 
Progressors indicates individuals who progressed from cognitively normal to MCI. P values were derived from a Wilcoxon 
test for continuous variables and Fisher test for proportions, appropriate for small sample sizes. P values from two-sided 
statistical tests were reported
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Extended Data Table 3 | Progression to non-AD dementia types and their AT status
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Extended Data Table 4 | Survival analyses for the full A-T- sample versus an age-matched A-T- sample. In this analysis, the A-T- 
sample was restricted to individuals older than 65 years (n = 485), so that there was no longer any significant age difference 
between the AT groups. The hazard ratios are derived from a Cox proportional-hazards model with clinical progression 
(progression to MCI or to all-cause dementia) as the outcome and age, sex, education and cohort as covariates; A−T− served 
as the reference group. P values from two-sided statistical tests without adjustment for multiple comparisons are reported
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Extended Data Table 5 | Linear mixed models for the full A-T- sample versus an age-matched A-T- sample. In this analysis, 
the A-T- sample was restricted to individuals older than 65 years (n = 541), so that there was no longer any significant age 
difference between the AT groups. The standardized beta values are derived from the linear mixed models adjusted for age, 
sex, education and cohort, and represent the group × time interaction with the A−T− serving as the reference group. P values 
from two-sided statistical tests without adjustment for multiple comparisons are reported
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Extended Data Table 6 | Survival analyses with and without covarying for white matter pathology. The hazard ratios are 
derived from a Cox proportional-hazards model with clinical progression (progression to MCI or to all-cause dementia) 
as the outcome, adjustment for age, sex, education, cohort and white matter hypointensity volumes (sensitivity analysis 
only) and A−T− serving as the reference group. P values from two-sided statistical tests without adjustment for multiple 
comparisons are reported
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Extended Data Table 7 | Linear mixed models with and without covarying for white matter pathology. The standardized beta 
values are derived from the linear mixed models adjusted for age, sex, education, cohort and white matter hypointensity 
volumes (sensitivity analysis only) and represent the group × time interaction with A−T− serving as the reference group. P 
values from two-sided statistical tests without adjustment for multiple comparisons are reported
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unimpaired individuals. we aimed to maximize the sample size of especially the A+T+ individuals by pooling data across 7 different cohorts. 
We used the following inclusion criteria: All participants were i) cognitively unimpaired at baseline defined by neuropsychological test scores 
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55 A+Tmtl+ and 65 A+Tneo+ participants was deemed sufficient to demonstrate significant differences in rates of clinical progression relative 
to A+T- and A-T- groups.

Data exclusions No data were excluded from the analysis.
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Randomization Based on amyloid and tau PET status we generated four different biomarker groups: A-T-, A+T-, A+TMTL+ (defined as tau PET positive in the 
MTL but not in the neocortex) and A+TNEO+ (defined as tau PET positive in the neocortex). 
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Recruitment Detailed information about the recruitment strategies is provided in Extended Table 4 for each individual cohort.

Ethics oversight Local institutional review boards for human research approved the study. This includes the Mayo Clinic and Olmsted Medical 
Center Institutional Review Boards for MSCA, the regional Ethics Committee at Lund University for BioFINDER-1 and 
BioFINDER-2, the Institutional Review Board at Lawrence Berkeley National Laboratory and the University of California, 
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Clinical trial registration BioFINDER-1: NCT01208675, BioFINDER-2: NCT03174938. 

Study protocol MSCA: https://www.mayo.edu/research/clinical-trials/cls-20311806 
BioFINDER-1: https://clinicaltrials.gov/ct2/show/NCT01208675 
BioFINDER-2: www.biofinder.se 
AIBL: https://aibl.csiro.au/ 
ADC: https://www.alzheimercentrum.nl/wetenschap/amsterdam-dementia-cohort/ 
BACS: https://jagustlab.neuro.berkeley.edu/bacs 
HABS: https://habs.mgh.harvard.edu/ 

Data collection Data were collected between Jan 1 2014 and April 1 2022. Participating cohorts included MSCA (a population-based cohort in 
Rochester, USA), BioFINDER-2 and BioFINDER-2 (a mix of population-based and memory clinic-based studies in Lund and Malmo, 
Sweden), BACS (a population-based cohort in Berkeley, USA), AIBL (a multicenter study that combines population-based and memory 
clinic-based participants from Australia), HABS (a population-based cohort in Boston, USA) and the ADC (a memory clinic-based 
sample from Amsterdam, the Netherlands).

Outcomes The predefined primary outcome measures are 1) progression to MCI or all-cause dementia and 2) longitudinal changes on the 
mPACC5 and MMSE. As predefined secondary outcomes we assessed the mPACC5 subcomponents (i.e., delayed episodic memory, 
timed executive functions and semantic memory).
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