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SUMMARY

Animals both explore and avoid novel objects in the environment, but the neural mechanisms that 

underlie these behaviors and their dynamics remain uncharacterized. Here, we used multi-point 

tracking (DeepLabCut) and behavioral segmentation (MoSeq) to characterize the behavior of mice 

freely interacting with a novel object. Novelty elicits a characteristic sequence of behavior, starting 

with investigatory approach and culminating in object engagement or avoidance. Dopamine in 

the tail of striatum (TS) suppresses engagement, and dopamine responses were predictive of 

individual variability in behavior. Behavioral dynamics and individual variability are explained 

by a reinforcement learning (RL) model of threat prediction, in which behavior arises from a 

novelty-induced initial threat prediction (akin to “shaping bonus”), and a threat prediction that is 
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learned through dopamine-mediated threat prediction errors. These results uncover an algorithmic 

similarity between reward- and threat-related dopamine sub-systems.

eTOC blurb

Using automated analysis of mouse behavior, Akiti et al. find diverse and dynamic novelty 

exploration patterns including risk assessment, engagement, and neophobia. These behaviors can 

be explained by a subset of dopamine neurons that treat physical salience as a default threat 

estimate, thereby causing progressive avoidance of the novel object.

INTRODUCTION

In the natural world, animals continuously face the problem of deciding whether to 

approach, avoid, or ignore a novel stimulus. Maladaptation to novelty has been implicated 

in anxiety, autism and schizophrenia (Baron-Cohen et al., 2005; Hirshfeld-Becker et al., 

2014; Jiujias et al., 2017; Kagan et al., 1984; Orefice et al., 2016). Behavioral responses to 

novelty have been modeled in different ways across fields. Within the field of reinforcement 

learning, novelty is often thought of as either a rewarding outcome or a predictor of 

a potential reward, thereby prompting exploration before the first rewards are received 

(Kakade and Dayan, 2002; Xu et al., 2021). In this way, novelty can be incorporated into 

existing reinforcement learning frameworks. Similarly, artificial intelligence models have 

been created that are “curious” or intrinsically motivated (Colas et al., 2019; Oudeyer et al., 

2007, 2016; Stout et al., 2005). Some of these models use information gain, a reduction in 

the difference between the current event and what was expected over time, to define event 

novelty (Jaegle et al., 2019; Kaplan and Oudeyer, 2007). Notably, while many computational 

models of novelty capture the neophilic aspects of novelty behavior, they fail to capture 

the neophobia and the interplay between approach and avoidance in response to novelty, 

observed in natural novelty responses.

Dopamine regulates reward-related behaviors, and electrophysiology studies have shown 

that dopamine signals the discrepancy between actual and predicted reward value (Montague 

et al., 1996; Schultz et al., 1997). In reinforcement learning, dopamine can be used as an 

evaluation signal to reinforce a rewarding action. However, recent studies have found that 

some dopamine neurons are activated by novelty (Horvitz et al., 1997; Lak et al., 2016; 

Ljungberg et al., 1992; Menegas et al., 2017, 2018; Morrens et al., 2020; Schultz, 1998). To 

incorporate these novelty responses into the reinforcement learning framework, it has been 

proposed that dopamine novelty response may correspond to optimism or the potential for 

reward (Kakade and Dayan, 2002).

Although it has been widely assumed that dopamine neurons broadcast reward prediction 

error signals to a wide swath of targets, recent studies have shown that dopamine neurons 

projecting to different targets send distinct information (Kim et al., 2015; Lerner et al., 2015; 

Menegas et al., 2017; Parker et al., 2016). Importantly, the canonical dopamine system – 

comprising those neurons that project from the ventral tegmental area (VTA) to the ventral 

striatum (VS) – does not respond to novel stimuli at the population level (Menegas et al., 

2017). Recent studies in monkeys also found that dopamine neurons in substantia nigra 
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pars compacta (SNc) do not respond to novelty per se (Ogasawara et al., 2022), but rather 

respond to novelty in the context of information seeking for reward (Bromberg-Martin 

and Hikosaka, 2009). In contrast, recent studies found that dopamine neurons that project 

to the tail of the striatum (TS) or the prefrontal cortex play a role in task-independent 

novelty-related behaviors (Menegas et al., 2018; Morrens et al., 2020).

A recent study found that dopamine in TS displays unique response properties (Kim and 

Hikosaka, 2013; Menegas et al., 2017). TS-projecting dopamine neurons are strongly 

activated by high intensity or novel external stimuli in the environment (Menegas et al., 

2017, 2018), or by salient visual cues, but not by reward (Kim et al., 2015). Functionally, 

TS-projecting dopamine neurons facilitate avoidance of a threatening stimulus including a 

novel object (Menegas et al., 2018).

However, it is not clearly understood how dopamine modulates novelty-driven behaviors, 

as there are several limitations in previous studies. First, previous studies treated novelty-

related behavior as a binary choice of either approach (orient, saccade) or avoidance, 

and often ignored the behavioral complexity, dynamics and individual variability, which 

is essential to understand the computations underlying novelty responses. Variability in 

the novelty-triggered behavioral data had been even interpreted as experimental deficits 

(Corey, 1978). However, individual variability is an important factor to understand the neural 

computations (Marder and Goaillard, 2006). Second, many previous studies were conducted 

in constrained environments that limited behavioral choices (Menegas et al., 2017; Morrens 

et al., 2020; Ogasawara et al., 2022). It has been reported that animals respond differently 

to novel objects depending on whether the animal is in a small environment (“forced 

exposure”) or in a sufficiently large enclosure to be able to choose between exploring or 

totally avoiding a novel object (“voluntary exploration”) (Corey, 1978; Rebec et al., 1997). 

Third, the definition of novelty has varied across studies. Recent studies emphasize the 

computational difference between stimulus novelty and contextual novelty: the former refers 

to the quality of not being previously experienced or encountered, and the latter refers to the 

“surprise” when what is experienced does not match with what was expected in time and/or 

context (i.e. prediction error) (Barto et al., 2013; Kumaran and Maguire, 2007; Ranganath 

and Rainer, 2003; Xu et al., 2021).

In this study, we used machine learning to characterize individual variability in behavioral 

novelty responses while mice freely explored a novel object placed in a large arena. We 

subsequently examined the effects of two types of novelty, the first in which a mouse 

explored a new stimulus (“stimulus novelty”) and the second in which a mouse explored 

a familiar stimulus in a new location (“contextual novelty”). These different novelty 

manipulations induced distinct patterns of behavior, which were differentially affected 

by ablation of TS-projecting dopamine neurons. The diversity and the dynamics of the 

observed novelty behaviors were well captured by a simple reinforcement learning model, 

which incorporates the concepts of initial estimation (“shaping bonus”) and uncertainty. We 

propose that novelty avoidance is a critical defensive strategy in which a novel stimulus 

causes default estimation of potential threat when the outcome is unknown. Because death 

or significant injury prevent learning, the brain may have adapted to estimate the degree of 

threat posed by a novel object through its physical salience, signaled by dopamine in TS.
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RESULTS

Novelty triggers diverse behaviors with stereotypical risk assessment response

We designed an open arena novelty exploration paradigm (Figure 1). Mouse movements 

were captured using an overhead camera that recorded four channels: three color channels 

(RGB) and one channel for depth (Microsoft Kinect). DeepLabCut (Mathis et al., 2018) was 

used to track the nose, ears, and tail base of the mouse (see Methods). On the first day 

of novelty (N1) when the mice were first encountering the object, mice exhibited diverse 

behaviors; some spent more and some spent less time within the object area compared 

to habituation days (Figure 1B). The observed diversity was not random noise because 

time spent near the object (see Methods) in each individual was strongly correlated across 

sessions (Figure 1B). Novel object approach frequency and approach bout duration also 

varied across mice, although both of these parameters co-varied within a given mouse 

(Figure 1C–D).

Close examination of nose and tail trajectories revealed that during the first several approach 

bouts mice oriented themselves to face the object (Figure 2). As a result, when the mouse 

reached the closest point to the object, the closest body part was always the nose, not the tail 

(Figure 2C, N1). These data suggest that the novelty response characterized by “approach 

with tail behind” is unique to early interactions with a novel object.

To quantify this prominent novelty-related behavior, we classified approach bouts based 

upon orientation, which revealed that every mouse approached the object with the tail behind 

in the first 10 min of the first day of novelty (Figure 2D, n=26 animals). The frequency of 

approach with tail behind decreased over time (Figure 2D). Over the course of the first day, 

some mice started to expose their tails to the object, while some mice did not expose their 

tails to the object during entire sessions (Figure 2E).

Thus mice exhibit a robust and stereotyped response at the beginning of interactions with 

a novel object, one that resembles a form of behavior described as “risk assessment” 

(Blanchard et al., 1991; Gottlieb and Oudeyer, 2018; Kidd and Hayden, 2015). In contrast, 

post-assessment behaviors were diverse, with individual animals exhibiting a wide spectrum 

of approach or avoidance behaviors. We operationally refer to post-assessment approach as 

“tail exposure engagement,” to distinguish it from risk assessment.

Post-assessment engagement is suppressed by stimulus novelty

Initial encounters with a novel object inevitably include both stimulus novelty (as the 

object has not yet been encountered) and contextual novelty (as the object has not been 

encountered in any context). In order to understand that the stimulus is novel, the brain has 

to search its stored memory of all objects encountered in the past (Barto et al., 2013). To 

understand that, in addition, the object is unexpected in the current context, the brain has to 

compare the current state with the predicted state (Ranganath and Rainer, 2003).

To separate the impact of different kinds of novelty on behavior, we incorporated object 

pre-exposure into our behavioral paradigm (Figure 3), which dramatically changed the 

animal’s reaction to the object in test sessions. As shown above (Figures 1–2), some mice 
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spend more time near a novel object on N1, while others spend less (Figure 3A, left). In 

contrast, mice consistently approached an unexpected familiar object (Figure 3A, middle). 

As a population, mice with an unexpected familiar object spent significantly more time near 

the object than mice with a novel object (Figure 3A, right); they exhibited limited tail behind 

approach and quickly switched to tail exposure (Figure 3B). Mice interacting with a novel 

object used tail-behind approach significantly more frequently than mice with an unexpected 

familiar object and used tail exposure approach significantly less frequently (Figure 3B–C).

Our observation that tail-behind approach was consistently observed at the beginning of 

N1 in both groups (Figure 3B and D) suggested that risk assessment behavior is driven 

by unexpectedness, not specifically by stimulus novelty. However, in response to an 

unexpected familiar object, mice exhibited a quick transition to approach with tail exposure 

(engagement), suggesting that stimulus novelty suppresses engagement.

Ablation of TS-projecting dopamine neurons biases post-assessment behavior towards 
approach

To understand the computational role of dopamine in TS in novelty-driven behaviors, we 

performed ablation of TS-projecting dopamine neurons with 6-hydroxydopamine (6OHDA) 

(Figure 4, Figure S1). Consistent with our previous study (Menegas et al., 2018), animals 

with ablation of TS-projecting dopamine neurons spent more time near a novel object than 

animals with injection of a vehicle (Figure 4B) and showed longer duration of approach 

bouts (Figure S2). When analyzing risk assessment and engagement, all ablation mice as 

well as sham-lesioned animals expressed approach with tail behind in early periods of 

N1 (Figure 4C, left). After risk assessment, more ablation mice showed transition to tail 

exposure approach, resulting in higher frequency of tail exposure as a population (Figure 

4C–D).

These results demonstrate that ablation of TS-projecting dopamine neurons increased 

approach with tail exposure, i.e. premature transition to engagement, suggesting that intact 

dopamine in TS suppresses post-assessment engagement.

Behavioral segmentation of novelty-driven behaviors

So far, we classified approach types by focusing on animal’s tail position relative to nose. 

To segment behavioral responses to novel objects into constituent components, we next 

analyzed the same data using MoSeq (Wiltschko et al., 2015), an unsupervised machine 

learning-based behavioral characterization method, that identifies behavioral motifs or 

“syllables” from depth imaging data (Figure 5). We noticed that some syllables were 

overrepresented near the time of retreat. One syllable stood out (Figure 5B, syllable 79, 

purple) in both the novel object mice and the sham mice. To examine whether any of 

the syllables were frequently and specifically expressed in different novelty conditions, we 

first identified a set of syllables that was both highly used and enriched in the novel or 

unexpected familiar object condition (see Methods, Figure S3). We found that the identified 

syllables 79 and 14 were highly enriched at the time of retreat compared to the whole 

session, nearly always occurring during approach with tail behind rather than with tail 

exposure (Figure 5C, usage was 46.3% and 22.9% of all approach with tail behind (n=684) 
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for syllables 79 and 14, respectively). Interestingly, syllable 79 was expressed just before 

the time of retreat and was reliably followed by syllable 14 (14 follows 79, 71.3%±18.9 of 

usages, mean±SEM, n=17 sham animals, Figure 5F, left).

Visual inspection of the videos (Video S1, Video S2) and video clips (Figure 5D) revealed 

that syllable 79 represented a “cautious approach” behavior and that syllable 14 represented 

a “cautious retreat” behavior. These results indicate that cautious approach and retreat are 

linked, and together make up risk assessment behavior. Thus, both syllables enriched in the 

novel object condition were related to risk assessment behavior, which is consistent with our 

observations made through body part tracking (DeepLabCut) demonstrating that approach 

with tail behind is more pronounced with a novel object (Figure 3).

Consistent with the temporal dynamics of risk assessment characterized above, syllables 

79 and 14 showed a gradual decay in usage (Figure 5E). Interestingly, both syllables were 

also expressed more frequently in sham mice compared to ablation mice (Figure 5E, Figure 

S3, sham vs ablation, p=0.010, syllable 79; p=0.030, syllable 14, K-S test). Thus, ablation 

of TS-projecting dopamine neurons decreased both novelty responses and usage of risk 

assessment syllables 79 and 14, although our manual classification using DeepLabCut could 

not detect the small difference (Figure 4D).

Our finding that the expression of both syllables 79 and 14 were decreased in ablation mice 

indicates that TS dopamine impacts both cautious approach and retreat behaviors. This is 

surprising because if approach and retreat are opposing behaviors, and dopamine in TS 

reinforces only retreat, ablation of TS-projecting dopamine neurons should predominantly 

affect retreat. However, the specific syllables associated with approach and retreat were 

both affected by ablation. We next compared transition from syllable 79 to 14 in sham 

and ablation animals. Transition from syllable 79 to syllable 14 was similarly high in 

both animal groups (Figure 5F), indicating that choice of retreat types, characterized by 

a combination of syllables 79 and 14, was already determined before approach. Ablation 

of TS-projecting dopamine neurons decreased risk assessment, characterized by a specific 

posture of approach-retreat, but did not change the structure of risk assessment behaviors, 

characterized by the sequence of unique syllables.

TS dopamine response to novelty reflects individual variability in behavior

To better understand the role that TS dopamine plays in novelty behavior, we monitored 

dopamine release in TS using fiber fluorometry with a dopamine sensor, GRAB-DA2m (Sun 

et al., 2020)(Figure 6, Figure S4). Consistent with our previous observations of dopamine 

axon calcium in TS (Menegas et al., 2018), we observed dopamine release in TS around 

the time of retreat onset when animals were at the closest point from an object, but not at 

the start of approach or at the end of retreat (Figure 6A), consistent with the idea of risk 

assessment or evaluation.

As described above (Figures 1–2), behavioral responses to novelty were variable across 

animals. Interestingly, the dopamine responses to a novel object were also variable (Figure 

6B). Further, mice with high average TS dopamine responses on N1 tended to spend less 

time near the object (Figure 6C, left), showed less frequent tail exposure (Figure 6C, second 
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from left), and were slower to transition to the first approach with tail exposure (Figure 

6C, right). These correlations held true even if we considered the same number of approach 

bouts in each analysis (Figure S4C). Thus, the individual variability of dopamine responses 

corresponded to individual variability in behavior.

On trial-by-trial basis, dopamine responses were significantly correlated with current 

and next approach types (Figure S4D). Dopamine responses were higher during early 

risk-assessment phase before the first approach with tail exposure (phase 1) than the 

late engagement phase after it (phase 2) (p=0.0059, n=12 animals, paired t-test, Figure 

6E, Figure S4E–F). However, within phase 2, dopamine responses were similar between 

approach types (p=0.90, n=12 animals, paired t-test, Figure 6F). After normalizing for trial 

number dopamine responses were still correlated with the next approach type, but were no 

longer correlated with the current approach type (Figure S4E).

Taken together, our recording results reveal that dopamine release in TS correlates with 

approach types, with smaller responses correlating with individual engagement. However, 

the specific level of dopamine release in TS was not correlated with the current approach 

type after normalizing for trial number or within phase 2, suggesting that acute dopamine 

concentration in TS does not fully explain retreat movement in this paradigm.

Reinforcement learning model with a shaping bonus and uncertainty for novelty response

We sought to develop a simple model to understand how dopamine signals algorithmically 

relate to novelty-driven behaviors. In standard reinforcement learning models, dopamine 

is typically modeled as temporal difference (TD) error. This is the difference between 

reward predictions (or values) of adjacent states, which can be used as a teaching signal for 

incremental learning of reward predictions (Sutton and Barto, 2018). Using similar logic, 

we first modeled simple threat prediction learning with TD error (Figure 7). In this model, 

trials are denoted by bouts of approach towards and sampling of the object. We added 

‘threat’ at the time when an agent reached the object (‘object location’ hereafter; Figure 7, 

far left), instead of adding reward as in reward prediction learning. Threat prediction is used 

to determine immediate behavioral choice by comparing prediction with a constant threat 

threshold. If the current threat prediction is lower than the threat threshold, an agent will 

engage the novel object. If threat prediction is higher than threat threshold, an agent will 

avoid the object (Figure 7, far right).

In this model, TD error shows a positive response at the object location, which gradually 

decreases over many encounters (Figure 7, second panel from right). The decrease of TD 

error is solely because threat is more predicted, thus generating a smaller prediction error, 

but the level of threat assigned to the object is kept constant (Figure 7, far left). We 

then examined how threat predictions developed near the object location. Threat prediction 

before an agent reaches the object location gradually increased over multiple encounters 

and eventually plateaus (Figure 7, far right). Because the threat threshold is a constant, the 

increase of threat prediction translates into a behavioral change from approach to avoidance 

(Figure 7, far right). While increasing threat prediction explains the later avoidance exhibited 

by some animals in the novel object group, this explanation is inconsistent with our 
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observation that some animals eventually showed engagement. Further, it does not explain 

why animals engage with familiar objects if the object is threatening.

We previously found that TS dopamine responses to a novel stimulus decayed when not 

associated with an outcome, whereas this decay slowed when it was associated with an 

outcome, especially a threatening outcome (Menegas et al., 2017). In this case, a novel 

stimulus can be interpreted as a threat-predicting cue instead of unconditioned threat 

stimulus. We therefore modeled threat learning with a positive default value of threat 

prediction assigned to a novel object, similar to a “shaping bonus” (Kakade and Dayan, 

2002). A fixed value for the shaping bonus functions as a preliminary, initializing value 

of threat prediction, which speeds up (‘shapes’) but does not distort eventual learning. In 

our model, an agent would eventually learn no outcome (no threat) associated with a novel 

object, but in the meantime, threat prediction and behaviors would be shaped by the initial 

estimation of threat prediction.

We examined the dynamics of TD errors and threat prediction using different levels of 

shaping bonus (i.e. initial threat prediction level) (Figure 8). The shaping bonus was applied 

at the object location to model a tentative guess of threat prediction according to the sampled 

sensory features without knowing the ultimate outcome. Threat prediction at the object 

location was defined by the shaping bonus (Figure 8A, fourth column, cyan) and gradually 

decreased over trials to 0 (Figure 8A fourth column at time 10), because the actual outcome 

is nothing. In other words, the agent’s initial guess of threat prediction associated with 

the sensory features was wrong and subsequently updated by learning (Figure 8A, third 

column).

In the meantime, the threat prediction near the object initially increases because of positive 

TD errors caused by a shaping bonus, then decreases afterwards and eventually becomes 

0 after learning has finished (Figure 8A, fourth and far right columns). Across different 

conditions as the shaping bonus increases, the peak of the threat prediction near the object 

increases, whereas the time-course is similar (Figure 8A, far right). The concave shape of 

threat prediction development near the object explains approach agents who eventually 

engage with a novel object (Figure 8A, second row), and avoidance agents who first 

approach but ultimately avoid (Figure 8A, third row, see below for termination of learning 

with avoidance). Differences in the level of shaping bonus can thus produce different 

patterns of behavior throughout learning (Figure 8C).

However, animals do not choose behaviors based solely on threat prediction level. Even 

if their estimate of potential threat is low, they should be still cautious if the estimation 

is uncertain. We therefore added uncertainty of threat prediction to the model as another 

determinant of behavior. To implement uncertainty in a principled manner, we used a 

Kalman filter to incrementally determine estimation uncertainty (see Methods), and plotted 

this together with threat prediction (Figure 8A, B). In these examples, threat prediction is 

plotted with a 95% confidence range.

We find that the uncertainty of threat prediction explains dynamics of risk assessment 

behaviors. With low initial estimation of threat, uncertainty of threat prediction is high 
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at the beginning, inducing risk assessment behaviors, but the uncertainty quickly decays 

and allows a fast switch to engagement (Figure 8A, first row). Similarly, an unexpected 

familiar object causes an initial risk assessment because of threat uncertainty, but does not 

induce avoidance because the initial estimation of threat prediction with the object features 

is already canceled out by learning during pre-exposure (Figure 8A, bottom row). On the 

other hand, with high initial estimation of threat, uncertainty is high at the beginning, and 

then threat prediction increases, causing longer risk assessment (Figure 8A, second row). If 

threat prediction gets bigger than a threshold, agent chooses to avoid. Once it avoids, it loses 

a chance to further learn threat prediction that would eventually become 0, which results in 

persistent avoidance (neophobia) (Figure 8A, third row). Thus, the degree of shaping bonus 

may determine whether an agent becomes neophobic or not.

The shaping bonus in this model is determined by the initial responses of dopamine in 

TS to an object, and initial responses vary by individual. Our previous studies found 

that responses of TS-projecting dopamine neurons are monotonically modulated with the 

physical salience (intensity) of an external stimulus in the environment (Menegas et al., 

2018). Thus, representation of physical salience in TS dopamine will determine the shaping 

bonus in this model, which in turn facilitates development of threat prediction and affects 

future actions. Taken together, these results suggest that behavioral engagement with a novel 

object is well captured by a reinforcement learning model with a shaping bonus, one in 

which threat prediction builds up according to representation of physical salience of the 

object in TS dopamine. By changing the level of shaping bonus, which can be inferred 

from the level of TS dopamine, the model predicts the diverse and dynamical patterns of 

behaviors observed across individuals and experimental conditions.

As an alternative model, we next modeled that TS actively promotes assessment by signaling 

prediction of prediction errors (“salience”), while too much of salience causes avoidance 

(Figure S5, see Methods). A simple TD learning was applied. We found that salience near 

an object initially increases and then decreases as an agent learns an object. By setting a 

threshold for avoidance, this model also predicts diverse and dynamic behaviors depending 

on TS dopamine.

DISCUSSION

In this study, we propose a reinforcement learning model that captures behavioral 

dynamics and variability in response to novelty. We were led to this model by examining 

novelty-induced behaviors in freely-moving animals using supervised (DeepLabCut) and 

unsupervised (MoSeq) machine learning tools. These approaches demonstrate that all mice 

initially exhibit risk assessment behaviors toward a novel object, followed by engagement 

or avoidance. Behavioral syllables that are enriched at the beginning of a novel object 

exploration correspond to cautious approach and cautious retreat, which together constitute 

a set of risk assessment behavior. Thus, our application of machine-learning-based analysis 

methods allowed us to identify distinct behavioral motifs that are dynamically driven during 

an encounter with a novel object.
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The observed distinct approach behaviors depart from the previous studies that categorized 

novelty-induced behaviors merely by two opposing choices (approach versus avoidance) 

along a single dimension. By distinguishing the approach types, we found that stimulus 

novelty and dopamine in TS specifically suppress post-assessment engagement, but not 

risk assessment. We constructed a simple temporal difference (TD) learning model by 

incorporating an initializing value (shaping bonus) and uncertainty of threat prediction. 

In this model, TS dopamine, which conveys a threat prediction error, gradually builds up 

threat prediction over multiple encounters with a novel object. This in turn suppresses the 

transition from the risk assessment phase to post-assessment engagement, causing neophobia 

in extreme cases. Thus, in contrast to classical animal behavior models of novelty, neophobia 

can be caused by development of threat prediction rather than novelty detection per se. 

As the object turns out not to be threatening, threat prediction gradually decreases which 

models habituation. In this way, the model captured not only the temporal dynamics of 

novelty responses, but also individual variability in the behaviors. Importantly, we found that 

variability in TS dopamine responses corresponded to individual variability in behavioral 

responses, providing a neural readout of shaping bonus for threat learning. Together, our 

findings provide insights into the computations and neural mechanisms that may underlie the 

dynamics of novelty-induced behaviors, including neophobia.

Shaping bonus and neophobia

Novelty drives both immediate behavioral responses and learning. Various computational 

models incorporate novelty components to understand optimal strategies and animal 

behaviors, because the generation of appropriate novelty responses has been linked to 

behavioral strategy and learning in daily life (Jaegle et al., 2019; Kakade and Dayan, 

2002). While most computational models have focused on the approach aspect of 

novelty responses, our study has extended these ideas to model approach suppression by 

incorporating a shaping bonus and uncertainty into a reinforcement learning framework.

Learning an appropriate action is often difficult, because the action is too complicated to 

learn at once and because an action and its outcome are too temporally separated to easily 

establish causality. Therefore, in operant conditioning, it is often the case that behaviors 

are “shaped by making the contingencies of reinforcement increasingly more complex” 

(Skinner, 1975). In machine learning, some powerful learning models are often slow. To 

make learning more efficient and fast, some models have copied the idea of shaping from 

psychology by adding an extra reward (“shaping” or sometimes called an intrinsic reward) 

at an intermediate step for learning of longer sequential choices (Ng et al., 1999; Singh et 

al., 2010). However, adding an extra intermediate reward distorts the eventual learning; an 

agent might learn to acquire only the mid-point reward, which prevents from learning from 

the actual reward in the future. To overcome the problem of learning distortion, a specific 

form of shaping (“potential-based shaping”) has been proposed (Ng et al., 1999). In this 

method, instead of adding an extra reward, reward expectation is added at an intermediate 

step to preserve original reward function, but still “shapes” an agent’s actions and learning 

(Wiewiora, 2003). As a consequence, reward prediction of a state is initialized with a 

positive value even before an agent has visited that state.
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Optimal initialization of control systems plays a critical role not only in machine learning 

but also in animal behaviors. For example, animals can avoid some threatening stimuli 

using species-specific defensive systems even if they have never encountered them. 

These phenomena can be interpreted as an initialization of threat prediction with a pre-

programmed value. In addition to these pre-programmed mechanisms, the initializing value 

could in principle be set by experiences in other states without visiting the actual state. 

Such flexible initialization is critical for efficient machine learning (“smart initialization” 

(Simsek et al., 2011)), and for behavioral choices in daily life, where agents/animals 

continuously face novel states. Rather than starting from uniform estimation over all states, 

an initial guess (generated via evolution and/or generalization) can help to quickly learn 

more accurate estimation.

In reinforcement learning, approach to novel objects or cues is often modeled using a 

“novelty bonus” or “shaping bonus”. We adapted this approach to model avoidance of a 

novel object. Our model differs from previous animal behavior models of novelty where 

fear is simply a decaying function with novelty (Blanchard et al., 1991; Gordon et al., 

2014; Halliday, 1966; Hogan, 1965; Hughes, 1997; Lester, 1967; Montgomery, 1955; 

Thorpe, 1956) in that it predicts that threat prediction first builds up and then (potentially) 

decays. These dynamics explain a variety of observed behavioral patterns. We also 

incorporated uncertainty of the threat prediction into our model, thereby accommodating 

threat predictions ranging from risk assessment to engagement. Interestingly, we found a 

unique phenomenon specific to threat learning. Once an agent learns that the object is 

threatening, an agent avoids the object entirely and loses a chance to further learn. As a 

consequence, the agent gets trapped in an avoidance state. Thus, our model changes the 

way we interpret neophobia. Neophobia may not be simply driven by abnormal novelty 

detection per se, but instead forms dynamically in two steps. Uncertainty of safety induces 

initial risk-assessment, which is followed by a learning process about which objects should 

be avoided.

Since neophobia was thought to be linked to novelty, brain areas engaged during neophobia 

have been proposed to be involved in novelty detection. In this study, we found that TS 

dopamine plays a role in neophobia. While we cannot exclude possibility that TS dopamine 

is involved in novelty detection, TS dopamine likely signals the physical salience (such as 

intensity) of external stimuli. Activity of dopamine in TS is initially correlated with the 

intensity of novel stimuli (Menegas et al., 2018) and then gradually decays depending on 

associated future events (Menegas et al., 2017). Thus dopamine responses in TS, instead 

of detecting novelty, are initialized depending on stimulus salience, and then responses 

are adjusted afterwards. Our model further predicts that TS dopamine excitation with 

positive initialization (‘potential threat’ associated with strong physical salience) is used 

as an evaluation signal for learning of threat prediction at an earlier time point (before 

approach), which in turn prevents animals from approaching a potential threat. In this 

way, TS dopamine system uses physical salience of a stimulus as a default value of threat 

prediction to shape defensive behaviors even before animals learn the exact threat level. 

Hence, neophobia may be caused by abnormal threat prediction due to general sensitivity to 

sensory stimuli, rather than aberrant novelty detection.
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Why, then, do animals avoid a novel salient stimulus in the first place? A recent series of 

studies found that in appetitive situations, the taste of food is not an ultimate outcome but 

instead functions as a prediction of nutrients, which are the ultimate consequence of eating 

(Fernandes et al., 2020; Han et al., 2018; Tellez et al., 2016). From these results, Dayan 

proposed that taste is a kind of shaping, an initial guess for value of eating, which can be 

updated according to an actual outcome, i.e. nutrients (Dayan, 2021). In this framework, 

dopamine responses to food rewards (taste, or odor (Morrens et al., 2020) ) are tentative 

feedback based on shaping bonus, but not ultimate reward outcome, to facilitate learning. 

We can interpret our threat prediction data by analogy to the idea in appetitive value 

(Figure S6). Similar to well-known pre-programed threats such as looming stimuli and 

predator odors, physical salience of stimuli may help animals to estimate threat without 

actual experiences. While many salient stimuli end up being non-threatening, caution against 

exploring high intensity novel stimuli may be lifesaving. Physical salience can be easily 

and quickly computed and easily generalized. Therefore, animals may routinely use physical 

salience as an initial guess of a potential threat for an immediate action and learning, 

because learning threat only from ultimate outcomes such as pain, injury and death may 

come at a high cost. Thus, the idea of shaping can be broadly applicable, and dopamine 

neurons with distinct activities can share a common framework.

Diversity of dopamine neurons

While the role of dopamine in reward prediction has been relatively established (Eshel et al., 

2013; Glimcher, 2011; Schultz, 2016; Watabe-Uchida and Uchida, 2018), our knowledge of 

functional diversity of dopamine neurons is still incomplete (Cox and Witten, 2019; Watabe-

Uchida and Uchida, 2018). In particular, it is not yet clear whether non-canonical dopamine 

signals can be understood in the similar theoretical framework or algorithm as those 

in reinforcement learning theories. In our previous studies, we found that TS-projecting 

dopamine neurons do not signal rewards but respond to a set of external stimuli in the 

environment, especially high intensity or novel stimuli (Menegas et al., 2017, 2018), and 

play a role in avoidance of them (Menegas et al., 2018).

Based on precise observation of behaviors and dopamine signals in response to novelty, we 

have obtained a clearer view on how TS dopamine functions during novelty exploration. 

First, it should be noted that, unlike previous experiments (Cohen et al., 2012; Menegas et 

al., 2017; Schultz et al., 1997; Tsutsui-Kimura et al., 2020), our work involves animals 

freely interacting with an environment. Nonetheless, discrete approach-retreat bouts in 

our novelty paradigms can be regarded as being equivalent to “trials” in more structured 

behavioral paradigms, albeit with a critical difference in that the animal can control “task” 

structure. Our results support the possibility that non-canonical dopamine signals found 

in TS work as an evaluation signal even in a naturalistic setting, in a manner similar 

to canonical dopamine signals observed in many structured tasks (Cohen et al., 2012; 

Glimcher, 2011; Schultz, 2015) or during social interactions (Dai et al., 2021; Gunaydin 

et al., 2014). Further, dopamine in TS, while signaling totally different information from 

canonical dopamine, may facilitate salience prediction (threat prediction if salience is too 

strong) in a similar manner that canonical dopamine facilitates reward prediction.
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Together, our results suggest a possibility that even if information contents are diverse, 

the function of dopamine neurons can be understood within the common framework of 

reinforcement learning including an idea of bonuses for fine tuning.

STAR Methods

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Mitsuko Watabe-Uchida 

(mitsuko@mcb.harvard.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—Matlab code files are available on GitHub (https://

github.com/ckakiti/Novelty_paper_2021).

Video tracking and dopamine fluorometry data are deposited at Dryad (doi:10.5061/

dryad.41ns1rnh2).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals—78 adult male and female mice were used. Behavioral experiments were 

performed on C57BL/6J mice (Jackson Laboratories, RRID: IMSR_JAX:000664), aged 

9–17 weeks, on the dark cycle of a 12-hr dark/12-hr light cycle (dark from 7:00 to 19:00). 

Behavioral tests and recordings were conducted between 8:00 and 18:00. Animals were 

group-housed until testing or surgery, then individually housed throughout testing. All 

procedures were performed in accordance with the National Institutes of Health Guide for 

the Care and Use of Laboratory Animals and approved by the Harvard Animal Care and Use 

Committee.

METHOD DETAILS

Behavioral apparatus—To assess naturalistic behaviors in mice, an open-field arena 

was developed that allowed the recording of free movement (see Key Resources Table for 

parts list). Mice were able to explore freely in a 60cm by 60cm flat arena, either empty or 

containing a single novel object in one corner. To record movement, a single camera was 

mounted on a beam ~70cm above the floor of the arena. A bright white LED light (Westek 

Indoor Outdoor White LED Rope Light) illuminated arena from above.

Experiment workflow—Before start of experiment, mice were separated and individually 

housed at least 1 day in advance. Once separated, mice were then handled for 30 minutes 

per day for 3 days (see Handling). For a novel object/an unexpected familiar object tests, 

mice were then pre-exposed to the test object (or dummy object) in their home cage for 30 

minutes per day for 4–7 days. Test objects were either legos (Mega Bloks First Builders 

80-piece Classic Building Bag, 72 mice) or rubber dog toys (Kong Classic dog toy size 

M, 6 mice). Brand new test objects were used at the start of each set of mice (fresh out 

of packaging). Dummy objects were plastic coconut cups (Shindigz 16-oz Coconut Cups, 
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5.5-in tall). For each animal, the same object was used for the duration of the experiment 

(1 object per animal, each animal’s object was wiped with ethanol after every day). A novel 

object group and a sham surgery group were pooled for Figure 1.

Handling: Handling consisted of weighing mice (on first day) and scooping mice into a 

transport box. This scooping was to acclimate a mouse to the way they would later be 

transferred from the behavioral arena back to their home cage. To scoop a mouse, the 

experimenter would hold a takeout box in a corner of the home cage, laying sideways with 

opening facing center of cage. The experimenter would wait until the mouse approached 

and walked into the box before lifting the box up and tilting it gently upright. Then the box 

would be tilted back sideways, replaced onto the floor of the cage, and the mouse would 

be allowed to return to cage. If the mouse did not voluntarily approach the box within 10 

minutes, the opening of the box would be moved closer to the mouse to encourage entry. 

Sessions lasted for 30 minutes or until the mouse was scooped at least 5 times, whichever 

occurred first.

Pre-exposure: During pre-exposure, one object was placed in each mouse’s cage according 

to experimental condition (test object or dummy object). Each mouse’s object was kept 

consistent across pre-exposure days, with each object being wiped with ethanol between 

days. Sessions lasted 30 minutes per day for 7 days. During session, mouse would be 

allowed to explore object freely within home cage (including touching, moving, etc). Pre-

exposure sessions occurred in dimly lit rooms.

Habituation: During habituation, animals were placed in empty behavioral arena and 

allowed to explore freely. Mice were transferred from their home cage into the behavioral 

arena and transferred out of the arena by scooping with a takeout box. Behavior was 

recorded with a single overhead camera (Xbox Kinect; see Key Resources Table for 

materials list). Habituation sessions lasted 25 minutes per animal per day for 2 consecutive 

days. Mice were run in the same order each day (order determined randomly at the 

beginning of the experiment, and held constant for the rest of the experiment). If arena 

was soiled at the end of a session, feces would be removed and floor of arena would be 

spot cleaned using ethanol-soaked wipes before the next session began. Between rounds of 

experiments, arena was thoroughly cleaned and base of arena was wiped down with odorless 

eliminator (Ah! Products All Clear Odorless Odor Eliminator).

Novelty testing: Novelty testing sessions consisted of animals exploring a single novel 

object within the behavioral arena. Object was placed in the corner of a behavioral arena 

(taped to floor to prevent animal from moving it, ~12–15cm from either wall). Sessions 

lasted for 25 minutes per animal per day for 4–12 days, and mice were run in the same order 

as habituation each day. One object was used per animal for duration of experiment and the 

objects were not shared between animals. Before each session, object would be submerged 

in soiled bedding (mixture of bedding from each mouse’s cage in current round, 6 animals) 

and wiped off with dry kimwipe to remove excess bedding dust. Objects were wiped with 

ethanol after each day and allowed to air out overnight before use.
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Video recording and analysis

Recording: An Xbox One Kinect camera (Key Resources Table) was mounted 70cm 

above the behavioral arena. Mice were videotaped with four channels: three color channels 

(RGB, 15fps) and one depth channel (30fps). The RGB video was used to locate body 

part locations (DeepLabCut) and the depth video was used to segment behavior (MoSeq). 

Data was saved using custom recording software (Wiltschko et al., 2015). Analysis code 

and instructions for running them are deposited on GitHub (https://github.com/ckakiti/

Novelty_paper_2021).

DeepLabCut analysis: For body part tracking, we used DeepLabCut version 1.0 (Mathis 

et al., 2018). Separate networks were used for different experimental settings: namely for 

mice without fiber implants (network A) and mice with fiber implants (network B). Both 

networks were run using a ResNet-50-based neural network (He et al., 2016; Insafutdinov et 

al., 2016) with default parameters for 1,030,000 training iterations. We provided manually 

labeled locations of four mouse body parts within video frames for training: nose, left ear 

base, right ear base, and tail base. For network A: We labeled 1760 frames taken from 64 

videos. For network B: We labeled 540 frames taken from 17 videos. For both networks, 

95% of labeled frames were then used for training.

After running DeepLabCut on each video file, we processed the output files (csv array with 

x/y coordinates and likelihood values for each body part). First, we trimmed the early frames 

that had low (<10%) likelihood values, indicating that the mouse was not present in the 

arena yet, or they had poor tracking. We then corrected “jumps” in tracking, defined as a 

>15cm/frame change in Euclidian distance. Points identified as jumps were replaced by the 

mean of the previous frame and the following frame. Jumps were corrected separately for 

each body part (nose, left ear, right ear, and tail). Trajectories for each body part were then 

smoothed using a lowest moving average filter (5 points, default).

A body part was determined to be “near” the object if it fell within a radius of 7cm 

(Euclidean distance) from the center of the object. An approach bout is defined as either the 

nose or tail entering near the object, and the end of this bout is determined when the nose 

and tail are no longer near the object. Habituation sessions did not have an object present; 

therefore the area of analysis was chosen based on the position where the object would be 

in later sessions. This radius was chosen to not be too large and include edge walking (since 

the object was placed near the corner) but also not to be too small and fail to capture enough 

of the animals’ trajectory. These approach bouts can be further broken down into whether 

the nose was closer to the object than the tail for the entire bout (approach with tail behind) 

or whether the tail was closer at some point (approach with tail exposure). Frequency of 

tail behind or tail exposure were calculated based on the number of bouts with tail behind 

approach versus tail exposed approach. Retreat timing was determined to be the closest 

point of the nose relative to the object before the mouse moves away. Previous studies have 

used “stretched-attend” posture to detect risk assessment (Blanchard et al., 1991; Fanselow, 

1994).

Akiti et al. Page 15

Neuron. Author manuscript; available in PMC 2023 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ckakiti/Novelty_paper_2021
https://github.com/ckakiti/Novelty_paper_2021


MoSeq analysis: Raw imaging data was collected from the depth camera, pre-processed 

(filtered, background subtracted, and parallax corrected), and submitted to a machine 

learning algorithm that evaluates the pose dynamics over time (Wiltschko et al., 2015). 

During video extraction (moseq2-extract), 900 frames were trimmed from the beginning of 

the video to correct for time between when video was started and when the mouse was 

placed in arena. During model learning (moseq2-model), a hyperparameter was set to the 

total number of frames in the training set (kappa=2,711,134, 52 sessions, 52 animals). This 

exceeds the recommended >=1 million frames (at 30 frames per second) needed to ensure 

quality MoSeq modeling.

To align syllables to retreat timing, MoSeq data was aligned to DeepLabCut timeframes. 

This alignment was necessary because the depth and rgb videos have different frame 

rates (depth=30fps, rgb=15fps; timestamps are saved alongside raw data). We first 

extracted the timestamps and syllables associated with each frame in the depth video 

(scalars_to_dataframe function; see GitHub repository “moseq2-app”, code available on 

request: datta.hms.harvard.edu/research/behavioral-analysis/). We then aligned the depth 

video timestamps to the corresponding rgb video timestamps (custom MATLAB script, 

see GitHub repository “Novelty_paper_2021”). This alignment was then used to determine 

which syllables were expressed at each frame in the RGB videos. We then identified retreat 

timing and the corresponding MoSeq syllable in each RGB video.

MoSeq was first used to categorize postures into a total of 100 syllables using a combined 

data on novelty day 1 across the 4 experimental groups: novel object, familiar object, 

control, and ablation. In order to find a set of syllables that was both highly used and 

enriched in the novel or unexpected familiar object condition, we chose 10 most frequently 

occurring syllables around the object (−1s to 1s from retreat time) in each of 4 experimental 

groups, a total of 21 syllables, and compared the frequency of syllables in each animal. 

We identified 2 syllable (syllables 79 and 14) that were enriched in the novel object group 

(p=0.00049 both for syllables 14 and 79, K-S test). Bonferroni correction was applied to 

correct for multiple comparison. No syllables were significantly enriched in the familiar 

object group with this analysis, although we observed multiple syllables that showed the 

tendency.

Surgical procedures—All surgeries were performed under aseptic conditions with 

animals anesthetized with isofluorane (1–2% at 0.5–1.0 l/min). Analgesia was administered 

pre- (buprenorphine, 0.1mg/kg, I.P.) and post-operatively (ketoprofen, 5 mg/kg, I.P.). At the 

time of surgery, mice were 2–4 months old. We used the following coordinates to target 

injections and implants for tail of striatum (TS): Bregma: −1.5 mm, Lateral: +3.0 mm, 

Depth: −2.4 mm (relative to dura) (Paxinos and Franklin, 2019).

6OHDA surgical procedure: To bilaterally ablate dopamine neurons projecting to TS, we 

followed an existing protocol (Menegas et al., 2018; Thiele et al., 2012). The following 

solution was injected (I.P.) to animals at 10 mg/kg:

• 28.5 mg desipramine (Sigma-Aldrich, D3900–1G)

• 6.2 mg pargyline (Sigma-Aldrich, P8013–500MG)
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• 10 mL water

• NaOH to pH 7.4

Most animals (weighing ~25g) received ~250 μL of this solution. This was given to prevent 

dopamine uptake in noradrenaline neurons and to increase the selectivity of uptake by 

dopamine neurons. After injection, mice were anesthetized as described above. We then 

prepared a solution of 10 mg/mL 6-hydroxydopamine (6OHDA; Sigma-Aldrich, H116–

5MG) and 0.2% ascorbic acid in saline (0.9% NaCL; Sigma-Aldrich, PHR1008–2G). The 

ascorbic acid in this solution helps prevent 6OHDA from breaking down. Control animals 

were injected with vehicle ascorbic acid solution. To further prevent 6OHDA from breaking 

down, we kept the solution on ice, wrapped in aluminum foil, and it was used within three 

hours of preparation. If the solution turned brown in this time (indicating that 6OHDA has 

broken down), it was discarded and fresh solution was made. 6OHDA (or vehicle, ascorbic 

acid solution) was injected bilaterally into TS (200nL per side). Each injection was spread 

out over several minutes (70–100 nl per minute) to minimize damage to the tissue. Surgeries 

occurred 1 week before handling.

Dopamine sensor surgical procedure: For TS neurons to express dopamine sensor for 

fluorometry, we unilaterally injected mixed virus solution (AAV for dopamine sensor and 

tdTomato, 1:1 mixture, 350 nl total) into TS in WT mice. Virus injection lasted around 5 

minutes (injection of 70–100 nl per minute), after which the pipette was slowly removed 

to prevent damage to the tissue. We also implanted optic fibers (400 μm diameter, Doric 

Lenses, Canada) unilaterally into the TS (one fiber per mouse). Once fibers were lowered, 

we attached them to the skull with UV-curing epoxy (Thorlabs, NOA81), then waited for 

15 min for this to dry. We then added a layer of black Ortho-Jet dental adhesive (Ortho-Jet, 

Lang Dental, IL). We used magnetic fiber cannulas (Doric Lenses, MFC_400/430) to allow 

for recording in freely moving animals. We waited for 15 min for the dental adhesive to dry, 

and then the surgery was complete.

Histology and immunohistochemistry—Histology was conducted in the same manner 

as previously reported (Tsutsui-Kimura et al., 2020). Mice were perfused using 4% 

paraformaldehyde, then brains were sliced into 100μm thick coronal sections using a 

vibratome (Leica) and stored in PBS. These slices were then stained with rabbit anti-tyrosine 

hydroxylase (TH; AB152, EMD Millipore, RRID: AB_390204) at 4°C for 2d to reveal 

dopamine axons in the striatum, dopamine cell bodies in the midbrain, and other neurons 

expressing TH throughout the brain. Slices were then stained with fluorescent secondary 

antibodies (Alexa Fluor 594 goat anti-rabbit secondary antibody, A-11012, Invitrogen, 

RRID: AB_2534079) at 4°C for 1d. Slices were then mounted in anti-fade solution 

(VECTASHIELD anti-fade mounting medium, H-1200, Vector Laboratories, CA) and 

imaged using Zeiss Axio Scan Z1 slide scanner fluorescence microscope (Zeiss, Germany).

Fluorometry (photometry) recording

Overview: Fiber fluorometry signal was recorded from the striatum in mice performing 

open field novelty behavior tasks (15 animals). Mice were injected either with AAV to 

express dopamine sensor. After undergoing surgery (details in Surgical Procedures), animals 
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were allowed to recover for 2 weeks before the start of behavior testing. In the last 3 days 

of this period, animals were handled (details in Handling). Then animals went through 

habituation and novelty testing in the arena (described in a previous section). During 

photometry recordings, a long flexible optic fiber (see Recording section) was attached 

to connector on the animal’s skull which did not impede animal movement.

Handling: In addition to weighing and scooping mice in the takeout box, photometry mice 

also had a patch cord attached and removed once during the session (not connected to 

laser, no light transmitted). Animal was allowed to briefly move about cage with patch cord 

attached (~10s) before being picked back up and disconnected from patch cord. Attachment 

and removal were conducted in same manner that they would be later in behavioral sessions.

Recording: Fluorometry recording was performed as previously reported (Menegas et al., 

2018; Tsutsui-Kimura et al., 2020). The following describes this established setup: We 

use an optic fiber to stably access deep brain regions and interfaces with a flexible patch 

cord (3 m, Doric Lenses, Canada) on the skull. The patch cord simultaneously delivers 

excitation light (473 nm, Laserglow Technologies, Canada; 561 nm, Opto Engine LLC, 

UT) and collect dopamine sensor and tdTomato fluorescence emissions. Activity-dependent 

fluorescence emitted by cells in the vicinity of the implanted fiber’s tip (NA=0.48) was 

spectrally separated from the excitation light using a dichroic, passed through a single band 

filter, and focused on a photodetector connected to a current preamplifier (SR570, Stanford 

Research Systems, CA).

During photometry recording, optic fibers on the animal’s skull were connected to a 

magnetic patch cable (Doric Lenses, MFP_400/430) which both delivered excitation light 

(473 and 561 nm) and collected emitted light. The emitted light was then filtered using a 

493/574 nm beam-splitter (Semrock, NY), followed by a 500 ± 20 nm (Chroma, VT) and 

661 ± 20 nm (Semrock, NY) bandpass filters and collected by a photodetector (FDS10 X 

10 silicone photodiode, Thorlabs, NJ) which is connected to a current preamplifier (SR570, 

Stanford Research Systems, CA). This preamplifier outputs a voltage signal which was 

collected by a NIDAQ board (National Instruments, TX) and custom Labview software 

(National Instruments, TX, RRID:SCR_014325).

Lasers were turned at least 30 minutes prior to recording to allow them to stabilize. Before 

each recording session, laser power and amplifier settings were individually adjusted for 

each mouse. First, the laser power was set low enough to avoid bleaching and high 

enough to detect signal. Then, the amplifiers were set such that the baseline signals 

recorded through LabView were similar across mice and days (3–6 a.u. at start of session). 

Behavior and photometry signal were measured simultaneously using Labview software (see 

Synchronization section below). After each recording session, collected light intensity was 

measured from the patch cord using a photometer. Light intensity fell within a range of 

15–180μW across animals and days.

Signal analysis: DA sensor (green) and tdTomato (red) signals were collected as voltage 

measurements from current pre-amplifiers (SR570, Stanford Research Systems, CA). Green 

and red signals were cleaned by removing 60 Hz noise with bandstop FIR filter 58–62 
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Hz and smoothing with a moving average of signals in 50 ms. The global change within 

a session was normalized using a moving median of 100 s. Then, the correlation between 

green and red signals was examined by linear regression. If the correlation was significant 

(p<0.05), the fitted red signals were subtracted from green signals. Z-scores were calculated 

using an entire recording session. Retreat start was defined as the time point when the 

animal’s nose was closest to the object within an approach bout. Only one retreat start 

was detected in each approach bout to avoid using multiple time points close each other. 

Approach start was defined as the time point when the distance between the animal’s 

nose and the object started decreasing before each retreat start. Retreat end was defined 

as the time point when the distance between the animal’s nose and the object started 

decreasing after each retreat start. Responses aligned at a behavioral event were calculated 

by subtracting the average baseline activity (−3s to −1s before the event) from the average 

activity of the target window (0–1s after the event). To show overall activity patterns (Figure 

6A), the average activity (−3s to −1s before approach start) was used as baseline.

Synchronization: In order to match photometry signal to behavior, it was important to 

synchronize the rgb video and photometry data. To achieve this, an LED was mounted 

within view of rgb camera such that it appeared in video, but did not overlap the floor 

of the arena or obscure the mouse. Custom LabView software was programmed to send a 

short TTL signal for a brief LED pulse every 10s for the duration of recording. TTL pulses 

and photometry signal were recorded simultaneously. After recording, the timing of LED 

flashing in the rgb video was determined and matched with the corresponding TTL pulses 

that had been saved alongside photometry signal. The result is two arrays of the same length: 

one containing the RGB frame number for each LED flash and the other containing the 

photometry timestamp for each TTL pulse (i.e. every 10s). The time for other frames were 

determined by evenly spacing those frames within 10s intervals.

Modeling

Reinforcement learning of threat prediction: We applied the standard formulation of 

temporal difference (TD) learning (Schultz et al., 1997; Sutton and Barto, 1990) to threat 

prediction. In standard TD learning models (Sutton and Barto, 2018), an agent predicts the 

cumulative future rewards, or value. In our TD model, an agent predicts the cumulative 

future threats (threatening outcomes) to guide its behavior. We note that TD learning 

algorithm was originally developed for explaining the strength of association in a type of 

aversive conditioning (nictitating membrane response)(Sutton and Barto, 1987, 1990). There 

have also been some efforts to generalize TD learning algorithms to predictions of other 

quantity or outcomes (or “cumulants”) than value (Dayan, 1993; Schlegel et al., 2021). Our 

application of TD learning to threat prediction takes a similar approach to these precedents.

The threat prediction at time t is denoted as TP (t), and is defined by,

TP (t) = E ∑
k = 0

N − t
γk ⋅ tℎreat(t + k)
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where E[…] denotes expectation, threat(t) denotes a threatening outcome occurring at time 

t, and γ ∈ (0,1) is a discount factor. The model contained N (N=350) discrete states or 

timesteps, which constitute an entire bout of novel object exploration, with a novel object 

occurring upon entering to the 100th state (t = 10) (for convenience, we express time t as the 

number of timesteps divided by 10). For simplicity, we applied a form of state representation 

called a complete serial compound, in which an agent deterministically traverses each of the 

35 states in sequence (Schultz et al., 1997; Sutton and Barto, 1990), without considering 

avoidance action that would terminate state transitions and, thus, learning (see below).

In the first model (Figure 7), we assumed that a threatening outcome occurred when the 

animal encountered a novel object (i.e. t = 10). That is, the novel object itself is a threat. 

Thus,

tℎreat(t = 10) = c, tℎreat(t ≠ 10) = 0

where c is a constant (in the Figure, c = 2 was used). Threat prediction, TP, was initialized to 

0 for all the states before trial 1.

TP (t) = 0 for all t

In each trial, the eligibility trace, et, was initialized to 0 at the beginning of a trial. At each 

time t, TD errors, δ, were computed similar to a standard definition of TD error (Sutton and 

Barto, 1987) as the difference between the threat prediction at consecutive time steps plus 

received threats at each time step.

δ = tℎreat(t) + γ × TP (t + 1) − TP (t)

Eligibility trace, et, for each state was updated by decaying et by the discount factor (γ) and 

the eligibility trace parameter (λ). For the current state, 1 was added.

et = γ × λ × et if t ≠  current state 

et = γ × λ × et + 1 if t =  current state 

Threat prediction was updated according to the obtained δ and et,

TP (t) = TP (t) + α × δ × et

where α ∈ (0,1) is a learning rate. Then, an agent moves to the next time step, starting the 

next iteration of threat prediction. In this model, TD error at object (t = 10) is expressed as:

δ(t = 10) = c − TP (t)

which is simply threat minus learned threat prediction.
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The second model (Figure 8) does not experience an actual threatening outcome but an 

initializing value (0 to 2) of threat prediction (i.e., shaping bonus Φ) was added to the 

state containing a novel object (t = 10) that gradually decays, to simulate lingering threat 

prediction until the animal finds out that there is no threat outcome. Thus, before starting the 

trial 1,

Φ(10 ≤ t ≤ 34) = c × decayt − 10 (sℎapingbonus)

tℎreat(t) = 0

We used constant c from 0 to 2, and decay=0.98 in the Figure 8 Different levels of c yielded 

different time-course of threat prediction and prediction error in this model. Since Φ is an 

initializing value of threat prediction, threat prediction can be expressed as:

TP = Φ + TPl

where TPl denotes learned component of threat prediction. Iteration of threat prediction was 

performed similarly to the model 1.

TP (t) = TP (t) + α × δ × et

Since shaping bonus is fixed across trials, the learning rule can be also expressed as:

TPl(t) = TPl(t) + α × δ × et

In this model, TD error is expressed as:

δ = γ × TP (t + 1) − TP (t)

because there is no actual threat in any time step.

In all simulations, the learning rate α, the discounting rate γ and the parameter for eligibility 

trace λ were fixed to 0.02, 0.98, and 0.9, respectively, without model exploration.

For broader application, threat prediction at the decision point can be interpreted as 

prediction associated with an “object”, whereas the shaping bonus is linked to physical 

salience of sensory features. While the shaping bonus was applied at the object location 

(thus representing proximal sensory features including visual details, odors and textures) to 

simplify the model, shaping bonus can be applied to multiple time points to accommodate 

other sensory features at a distance. Of note, different from shaping of food approach, 

which also shapes learning itself by promoting visits, shaping of threat avoidance, which is 

associated with avoidance of an object, does not promote threat learning itself.
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Uncertainty: Uncertainty of threat prediction (estimation uncertainty), pp(n), in each trial n 
was determined incrementally using the following equation (Kalman filter):

K = pp(n)
pp(n) + pm(n)

pp(n + 1) = (1 − K) × pp(n)

where pm is a measurement uncertainty. The model used standard normal distribution for 

estimation (threat prediction) in trial 1, and measurement (actual threat) in all trials, so that 

both variance pp(1) and pm (n) was set to 1.

While we used a frequency-based simple Kalman filter to compute uncertainty, other 

methods – such as those based on probability distributions over threat levels – could 

be used to compute uncertainty. While a recent study analyzing single neuron activity 

found evidence supporting distributional reinforcement learning in the canonical dopamine 

neuron population (Dabney et al., 2020; Lowet et al., 2020), whether the distributional code 

observed in dopamine activity is actually used in biology, and whether similar diversity 

consistent with distributional reinforcement learning is observed in TS-projecting dopamine 

neurons remain to be clarified.

Behavioral choice: Behavior (risk assessment, engagement and avoidance) was chosen 

every time the agent entered the state near the object (t = 8), according to the threat 

prediction near the object, TP(t = 8) and uncertainty, pp(n), compared to a threat threshold, 

thresh.

riskassessment if TP (t = 8) − sqrt(2 × pp(n)) <  tℎresℎ <  TP  (t = 8) + sqrt(2 × pp(n))

engagement if TP (t = 8) − sqrt(2 × pp(n)) <  tℎresℎ

avoidance if tℎresℎ < TP (t = 8) + sqrt(2 × pp(n))

where engagement was chosen only if threat prediction is below threat threshold with > 95% 

confidence level. thresh = 0.2 was used for Figure 8.

Reinforcement learning of salience prediction: The above models propose that TS works 

together with a separate system that provides an approach drive. Risk assessment is 

performed when uncertainty of threat prediction is high, but not directly promoted by threat 

prediction. However, it is also possible that assessment is directly promoted by TS. Pearce 

and Hall proposed that attention to a specific stimulus is induced by prediction error of its 

outcome, which in turn promotes learning of the stimulus in the next trial (Pearce and Hall, 

1980). Applying this idea, Gordon et al. modeled hierarchical reinforcement learning where 

prediction error promotes active sensing so that an agent is encouraged to learn what is 
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unexpected (Gordon and Ahissar, 2012; Gordon et al., 2014). The authors also combined it 

with the notion that too much novelty (prediction error) is fearful, causing retreat.

In the third model (Figure S5), we applied reinforcement learning to model prediction of 

prediction error, similar to hierarchical curiosity loops (Gordon and Ahissar, 2012; Gordon 

et al., 2014). The first order learner collects information of an object using a prediction error. 

To simplify, object information was modeled as a single dimension (e.g. size Φ), although 

multiple dimensions of object features are likely to be learned. The second agent models 

TS and learns prediction of object information gain (we will call “salience” here), which 

induces assessment, but also causes avoidance if the prediction is too high.

The object information V was updated only when an agent is at object (t = 10), following 

Rescorla-Wagner rule (Rescorla and Wagner, 1972).

δ1 = Φ − V

V = V + α × δ

The salience prediction at time t is denoted as SP(t), and is defined by,

SP (t) = E ∑
k = 0

N − t
γk ⋅  salience(t + k)

similar to threat prediction in models 1 and 2. We assumed that a salience outcome occurred 

when the animal encountered a surprising feature of a novel object (i.e. t = 10).

salience(t = 10) = δ1, tℎreat(t ≠ 10) = 0

Salience prediction, SP, was initialized to uniform small number 0.1 for the states 

approaching object.

SP (t) = 0.1 for 0 < t < 10

Update rules for SP is the same as TP.

Behavior (risk assessment, engagement and avoidance) was chosen according to the salience 

prediction near the object, TP(t = 8), compared to a threat threshold, thresh, and an approach 
threshold, a_thresh.

riskassessment if a tℎresℎ < SP (t = 8) <  tℎresℎ

engagement if SP (t = 8) < a tℎresℎ
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avoidance if tℎresℎ  < SP (t = 8)

thresh = 0.28, a_thresh = 0.05 was used for Figure S5.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis was performed using custom software written in MATLAB (MathWorks, 

Natick, MA, USA, RRID:SCR_001622). All error bars in the figures are SEM. In boxplots, 

the edges of the boxes are the 25th and 75th percentiles, and the whiskers extend to the most 

extreme data points not considered outliers. The exact value of p and n are indicated in 

figure legends unless otherwise noted.

Time-course of behaviors—Time spent near object is defined as fraction of time when 

the nose or tail fell within a radius of 7cm (Euclidean distance) from the center of the object 

(Figure 1B, Figure 3A, Figure 4B). Fraction of time spent near object per day and per min 

in individual animals, and average of all animals (mean ± SEM, n=26 animals) per min are 

shown in Figure 1B. Time spent near object was significantly correlated across novelty days, 

but not between novelty and habituation days (R=−0.02, p=0.89, H1; R=0.29, p=0.13, H2; 

R=0.87, p=0.0000, N2; R=0.69, p=0.001, N3; R=0.66, p=0.0002, N4, Pearson’s correlation 

coefficient with N1, n=26 animals, Figure 1B). Fraction of time spent near object per min in 

individual animals are shown in Figure 3A and Figure 4B. Cumulative probability of each 

group of mice spending certain amounts of time near object on the first day of novelty (N1) 

is shown (Figure 3A, Figure 4B). Mice spend less time near a novel object than familiar 

object (p=0.018, n=9 animals for each group, Kolmogorov-Smirnov (K-S) test, Figure 3A). 

Ablation mice spend more time near a novel object than sham mice (p=0.030, n=17 animals 

for each group, K-S test, Figure 4B).

An approach bout is defined as an event from the time when either the nose or tail enters 

an area within 7cm from the center of the object to the time when both nose and tail are 

no longer within the area. Approach frequency is defined as frequency of approach bouts 

per min (Figure 1C), and approach bout duration is defined as average duration of approach 

bouts in 1 min (Figure 1D). Both data of individual animals and average of all animals 

(mean ± SEM, n=26 animals) are shown.

Distance from object is defined as distance between either nose or tail and the center of the 

object (Figure 2B). Closest point to object is defined as the shortest distance from the nose 

or tail to the center of the object in each bout (Figure 2C).

Approach bouts were broken down into two types depending on whether the nose was closer 

to the object than the tail for the entire bout (approach with tail behind) or whether the 

tail was closer at some point (approach with tail exposure). Frequency of approach with 

tail behind or tail exposure per min were calculated (Figure 2D–E, Figure 3B, Figure 4C). 

Both data of individual animals and average of all animals (mean ± SEM, n=26 animals for 

Figure 2D–E, n=9 animals for Figure 3B, n=17 animals for Figure 4C) are shown. For violin 

plots, average frequency are subtracted with average frequency in habituation days in each 

animal. Frequency of approach with tail behind decreases over time (p=2.8×10−11, t-test, 
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n=26 animals, beta coefficients of linear regression of frequency with time, Figure 2D). 

Frequency of approach with tail behind does not show significant linear change over time 

(p=0.20, t-test, n=26 animals, beta coefficients of linear regression of frequency with time, 

Figure 2E). In boxplot in Figure 3C, average frequency of approach with tail behind and 

approach with tail exposure on N1 for each animal are shown. Approach with tail behind on 

N1 is more frequent towards a novel object than an unexpected familiar object (p=0.0031, 

n=9 animals for each group, t-test), whereas approach with tail exposure on N1 is more 

frequent towards an unexpected familiar object than a novel object (p=0.0031, n=9 animals 

for each group, t-test). Frequency of approach with tail behind on N1 was not significantly 

different between sham and ablation animals (p=0.069, n=17 animals for each, t-test) and 

approach with tail exposure on N1 was significantly more frequent in ablation animals than 

sham animals (p=0.010, n=17 animals for each, t-test). The distribution shape of data points 

was not formally tested. In Figure 3D, fraction of animals with approach with tail behind 

towards novel or unexpected familiar objects in each approach bout were plotted (total 9 

animals).

Moseq analysis—Figure 5B shows fraction of video frames where each syllable is used 

in total video frames around retreat (−1s to 1s) in all approach bouts in all mice of the 

same condition. Syllable usage in each approach bout is shown above each plot. Figure 5C 

left shows fraction of approach bouts during which each syllable is used in all approach 

bouts in all novel object group at each time point. Syllable frequency is defined as frequency 

of emergence of each syllable regardless of duration of the syllable in the whole session 

(25 min), at all retreat (−1s to 1s), at retreat (−1s to 1s) of approach with tail behind, 

or at retreat (−1s to 1s) of approach with tail exposure in each animal (Figure 5C right). 

Figure 5E top shows average frequency of syllable usage in each group at each time point 

(mean ± SEM, n=9 animals for novel object and unexpected familiar object groups, n=17 

animals for sham and ablation group). Figure 5E boxplots show distribution of total syllable 

expression on N1 in each animal (novel object vs unexpected familiar object, p=4.9×10−4, 

syllable 79; p=4.9×10−4, syllable 14, n=9 animals for each; sham vs ablation, p=0.010, 

syllable 79; p=0.030, syllable 14, n=17 animals for each, K-S test). Expression of both 

syllables decreased over time (−0.10/min, p=6.8×10−15, F-statistic 9.0; syllable 79; −0.07/

min, p=2.0×10−12, F-statistic 7.2, syllable 14, linear regression of frequency of syllable 

usage with time and animals in the novel object group, degree of freedom 215). Figure 5F 

left shows fraction of each syllable expression following syllable 79 expression in sham and 

ablation animals. Figure 5F boxplots show distribution of fraction of syllable 14 expression 

following syllable 79 expression in sham and ablation animals (p=0.72, n=17 animals for 

each, t-test). Distribution shape of data points was not formally tested.

Fluorometry analysis—Z-scores were calculated using an entire recording session. 

Retreat start was defined as the time point when the animal’s nose was closest to the 

object within an approach bout. Only one retreat start was detected in each approach bout 

to avoid using multiple time points close each other. Approach start was defined as the time 

point when the distance between the animal’s nose and the object started decreasing before 

each retreat start. Retreat end was defined as the time point when the distance between the 

animal’s nose and the object started decreasing after each retreat start. Responses aligned at 

Akiti et al. Page 25

Neuron. Author manuscript; available in PMC 2023 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a behavioral event were calculated by subtracting the average baseline activity (−3s to −1s 

before the event) from the average activity of the target window (0–1s after the event). To 

show overall activity patterns (Figure 6A), the average activity (−3s to −1s before approach 

start) was used as baseline. Figure 6A bottom shows average dopamine sensor signals in all 

animals (mean ± SEM, n=15 animals). Figure 6B shows average dopamine sensor signals on 

N1 aligned to time of retreat in each animal.

Figure 6C plots average dopamine sensor signals of each animal against time spent near 

the object, frequency of approach with tail exposure, or time of the first approach with 

tail exposure in session. Dopamine sensor signals negatively correlate with time spent near 

the object (R=−0.72, p=0.0022), negatively correlate with frequency of approach with tail 

exposure (R =−0.71, p=0.0028), and positively correlate with time of the first approach 

with tail exposure in session (R=0.80, p=3.2×10−4) (Pearson’s correlation coefficient, n=15 

animals). First approach with tail exposure for mice that never showed approach with tail 

exposure (3 animals) was set to 25min, the last time point.

Figure 6D shows time-course of dopamine sensor signals across approach bouts (“trials”) 

and time-course aligned to the first approach with tail exposure for each animal (total 15 

animals). Figure 5E shows average dopamine sensor signals in mice that never showed 

approach with tail exposure (mean ± SEM, n=3 animals) and in mice that showed approach 

with tail exposure (mean ± SEM, n=12 animals). Approach bouts in animals with approach 

with tail exposure were divided into phase 1 and phase 2 by time of first approach with 

tail exposure. On average, dopamine response at retreat (0 to 1s) was higher in phase 1 

than in phase 2 (p=0.0059, n=12 animals, paired t-test). Figure 6F shows dopamine sensor 

signals during phase 2 in mice that express approach with tail exposure (mean ± SEM, n=12 

animals). On average, dopamine responses at retreat (0 to 1s) were similar between approach 

types in phase 2 (p=0.90, n=12 animals, paired t-test). These numbers are indicated in the 

main text. The distribution shape of data points was not formally tested.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Novelty-induced behaviors are analyzed using modern machine-learning 

methods

• Novelty induces risk assessment which develops into engagement or 

avoidance

• Dopamine in the tail of striatum correlates with individual behavioral 

variability

• Reinforcement learning with shaping bonus and uncertainty explains the data
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Figure 1. Diversity of novelty behavior is captured in open arena
A. Trajectory of nose from an example animal in the first 10 minutes of each session. B. 
Time spent within object area (7cm radius). Left thick black, average value across mice. 

Right bottom, mean ± SEM. Time spent near object was significantly correlated across 

novelty days, but not between novelty and habituation days (R=−0.02, p=0.89, H1; R=0.29, 

p=0.13, H2; R=0.87, p=0.0000, N2; R=0.69, p=0.001, N3; R=0.66, p=0.0002, N4, Pearson’s 

correlation coefficient with N1, n=26 animals). C. Frequency of approaches. D. Duration of 

approach bouts.
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Figure 2. Stereotypic behavioral response to novelty.
A. Trajectory of nose or tail (in red and black, respectively) from an example mouse in the 

first 20 bouts of each session. B. Nose and tail position relative to object in an example 

animal. C. The closest position to object within each bout for nose and tail in an example 

animal. D. Frequency of approach bout with tail behind. Bottom, mean ± SEM. Right, 

average frequency normalized with baseline on habituation for each mouse. Tail behind 

approach frequency decreases over time (p=2.8×10−11, t-test, n=26 animals, beta coefficients 

of linear regression of frequency with time). E. Fraction of tail exposure.
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Figure 3. Suppression of post-assessment engagement with stimulus novelty.
A. Time spent near an object. Right, cumulative probability on N1. Mice spend less time 

near a novel object (p=0.018, n=9 animals for each group, Kolmogorov-Smirnov (K-S) 

test). B. Frequency of each approach type. Right, mean ± SEM. C. Average frequency of 

approaches on N1 for each mouse. Approach with tail behind is more frequent towards 

novel objects (p=0.0031), whereas approach with tail exposure is more frequent towards 

unexpected familiar objects (p=0.0031, n=9 animals for each group, t-test). D. Fraction of 

animals with approach with tail behind in each approach bout.
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Figure 4. Ablation of TS-projecting dopamine neurons promotes post-assessment engagement.
A. Coronal sections (bregma −1.5mm) from sham (left) and ablation (right) animals. 

Dopamine axons were labeled with anti-tyrosine hydroxylase (TH) antibody. BLA, 

basolateral amygdala; CeA, central amygdala. B. Time spent near object. Right, cumulative 

probability on N1. Ablation vs sham, p=0.030 (K-S test). C. Frequency of each approach 

type bouts. Right, mean ± SEM. D. Average frequency of approach with tail behind (left; 

p=0.069, t-test) and approach with tail exposure (right, p=0.010, t-test) on N1. n=17 animals 

for each group. See also Figure S1 and Figure S2.
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Figure 5. Behavioral segmentation of novelty responses using MoSeq
A. MoSeq workflow. B. Top, syllable usage across all approach bouts on N1 in all mice. 

Bottom, fraction of syllable usage at retreat (−1s to 1s). C. Syllable usage in novel object 

group. D. Top, example image series and superimposed images (full videos in Video S1 and 

S2). Bottom, spatial expression. E. Syllable usage in each group. Top, time-course (mean 

± SEM). Bottom, total syllable expression (novel object vs unexpected familiar object, 

p=4.9×10−4, syllable 79; p=4.9×10−4, syllable 14, n=9 animals for each; sham vs ablation, 

p=0.010, syllable 79; p=0.030, syllable 14, n=17 animals for each, K-S test). Expression 

of both syllables decreased over time (−0.10/min, p=6.8×10−15, F-statistic 9.0; syllable 79; 

−0.07/min, p=2.0×10−12, F-statistic 7.2, syllable 14, linear regression with time and animals 

in the novel object group, degree of freedom 215). F. Left, fractional expression of each 

syllable after syllable 79. Right, fraction of syllable 14 expression following syllable 79 

expression (p=0.72, n=17 animals for each, t-test). See also Figure S3.
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Figure 6. Individual variability in behavior correlates with dopamine in TS.
A. Dopamine signals in each trial in an example animal (top) and mean ± SEM (bottom, 

n=15 animals). Tick marks, approach start (cyan), retreat start (red), and retreat end (green). 

B. Average dopamine signals on N1 in each animal. C. Average dopamine signals of each 

animal plotted against behavioral measurements and Pearson’s correlation coefficient, n=15 

animals. First tail exposure for mice that never showed tail exposure (3 animals) was set to 

25min. D. Time-course of dopamine signals across trials for each animal (top) or aligned to 

the first tail exposure (bottom). E. Dopamine signals in mice that never showed approach 

with tail exposure (left, n=3 animals) and in other mice (right, n=12 animals). mean ± SEM. 

F. Dopamine signals during phase 2. mean ± SEM, n=12 animals. See also Figure S4.
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Figure 7. Basic reinforcement learning model with constant threat.
The time-course of variables within each trial (left) and over trials (right). Color, Trial 

1–161, every 20 trials.
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Figure 8. Reinforcement learning model with shaping bonus and uncertainty.
A. The time-course of variables within each trial (left) and over trials (right). Color, trial 

1–321, every 40 trials. B. Components to determine behaviors. Left, threat prediction 

near object (t=8). Second from left, threat uncertainty near object. Third from left, threat 

prediction plotted together with threat uncertainty (shading). Black dotted line, threat 

threshold. Right, threat prediction distribution in example trials (trial 1 and trials shown 

with blue and cyan dotted line in third from left). C. Development of behaviors based on 

different degrees of shaping bonus. See also Figure S5.
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KEY RESOURCES TABLE

REAGENT or 
RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-tyrosine 
hydroxylase (TH)

EMD 
Millipore

RRID: AB_390204

Alexa Fluor 594 
goat anti-rabbit 
secondary 
antibody

Invitrogen RRID: AB_2534079

Bacterial and virus strains

AAV9-hSyn-
GRABDA2m

Vigene 
Biosciences

YL002009-AV9-PUB

AAV5-CAG-
tdTomato

UNC 
Vector 
Core

AAV In Stock
Vectors: Ed Boyden

AAV5-CAG-GFP UNC 
Vector 
Core

AAV In Stock
Vectors: Ed Boyden

Chemicals, peptides, and recombinant proteins

6-
Hydroxydopamine 
hydrochloride

Sigma-
Aldrich

H4381

Deposited data

Matlab codes This paper GitHub 
(https://github.com/ckakiti/Novelty_paper_2021)

Video tracking 
and dopamine 
fluorometry data

This paper Dryad 
(doi:10.5061/dryad.41ns1rnh2)

Experimental models: Organisms/strains

Mouse: C57BL/6J Jackson 
Laboratory

RRID: IMSR_JAX:000664

Software and algorithms

DeepLabCut Mathis et 
al., 2018

https://github.com/DeepLabCut/DeepLabCut

MoSeq Wiltschko 
et al., 2015

https://dattalab.github.io/moseq2-website/index.html

MATLAB MathWorks RRID:SCR_001622

LabView National 
Instruments

RRID:SCR_014325

Other

Novelty object: 
LEGO

Mega 
Bloks

DCH63

Novelty object: 
rubber toy

Kong 
Classic, M

https://www.kongcompany.com/kong-classic

Lighting in 
Novelty arena

Home 
Depot

https://www.homedepot.com/p/Westek-Indoor-Outdoor-6-ft-White-LED-Rope-Light-Kit-LROPE6W/312080910?source=shoppingads&locale=en-US#overlay

Camera in 
Novelty arena

Xbox [discontinued] https://www.target.com/p/xbox-one-stand-alone-kinect-sensor/-/A-16504446?
AFID=google_pla_df&CPNG=PLA_Electronics%20Shopping&LID=700000001170770pgs&adgroup=SC_Electronics&device=c&gclid=EAIaIQobChMIybe75biQ3QIVCFYNCh2wtADUEAQYAiABEgJ0XvD_BwE&gclsrc=aw.ds&location=9001999&network=g&ref=tgt_adv_XS000000

Camera adaptor Xbox https://www.amazon.com/perseids-Adapter-Windows-Interactive-Development/dp/B07CWQK6XG/ref=sr_1_5?ie=UTF8&keywords=inect%20adapter%20pc&qid=1535484053&sr=8-5
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REAGENT or 
RESOURCE SOURCE IDENTIFIER

Novelty arena: 
Frame

McMaster-
Carr

https://www.mcmaster.com/47065T101

Novelty arena: 
Walls/floor 
(outside)

McMaster-
Carr

https://www.mcmaster.com/8505k744

Novelty arena: 
Walls (inside)

McMaster-
Carr

https://www.thorlabs.com/thorproduct.cfm?partnumber=BFP1

Novelty arena: 
Floor (inside)

McMaster-
Carr

https://www.walmart.com/ip/Five-Star-2-Pocket-Stay-Put-Plastic-Folder-Red-72109/310380845

Repository with 
instructions for 
running code

This paper https://github.com/ckakiti/Novelty_paper_2021

Neuron. Author manuscript; available in PMC 2023 November 16.

https://www.mcmaster.com/47065T101
https://www.mcmaster.com/8505k744
https://www.thorlabs.com/thorproduct.cfm?partnumber=BFP1
https://www.walmart.com/ip/Five-Star-2-Pocket-Stay-Put-Plastic-Folder-Red-72109/310380845
https://github.com/ckakiti/Novelty_paper_2021

	SUMMARY
	eTOC blurb
	INTRODUCTION
	RESULTS
	Novelty triggers diverse behaviors with stereotypical risk assessment response
	Post-assessment engagement is suppressed by stimulus novelty
	Ablation of TS-projecting dopamine neurons biases post-assessment behavior towards approach
	Behavioral segmentation of novelty-driven behaviors
	TS dopamine response to novelty reflects individual variability in behavior
	Reinforcement learning model with a shaping bonus and uncertainty for novelty response

	DISCUSSION
	Shaping bonus and neophobia
	Diversity of dopamine neurons

	STAR Methods
	RESOURCE AVAILABILITY
	Lead contact
	Materials availability
	Data and code availability

	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Animals

	METHOD DETAILS
	Behavioral apparatus
	Experiment workflow
	Handling
	Pre-exposure
	Habituation
	Novelty testing

	Video recording and analysis
	Recording
	DeepLabCut analysis
	MoSeq analysis

	Surgical procedures
	6OHDA surgical procedure
	Dopamine sensor surgical procedure

	Histology and immunohistochemistry
	Fluorometry (photometry) recording
	Overview
	Handling
	Recording
	Signal analysis
	Synchronization

	Modeling
	Reinforcement learning of threat prediction
	Uncertainty
	Behavioral choice
	Reinforcement learning of salience prediction


	QUANTIFICATION AND STATISTICAL ANALYSIS
	Time-course of behaviors
	Moseq analysis
	Fluorometry analysis


	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Table T1

