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Abstract

Nucleic acid nanoparticles, or NANPs, rationally designed to communicate with the human 

immune system, can offer innovative therapeutic strategies to overcome the limitations of 

traditional nucleic acid therapies. Each set of NANPs is unique in their architectural parameters 

and physicochemical properties, which together with the type of delivery vehicles determine 

the kind and the magnitude of their immune response. Currently, there are no predictive tools 

that would reliably guide the design of NANPs to desired immunological outcome, a step 

crucial for the success of personalized therapies. Through a systematic approach investigating 

physicochemical and immunological profiles of a comprehensive panel of various NANPs, our 

research team has developed and experimentally validated a computational model based on the 

transformer architecture able to predict the immune activities of NANPs. We anticipate that the 

freely accessible computational tool that we call an “artificial immune cell,” or AI-cell, will aid in 

addressing in a timely manner the current critical public health challenges related to safety criteria 

of nucleic acid therapies and promote the development of novel biomedical tools.
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Nucleic acid nanoparticles, or NANPs, can be utilized to communicate with the human immune 

system, but their immunostimulatory effects can only be evaluated after their design and assembly. 

AI-cell is a computational model serving as an “artificial immune cell” to drive NANP designing 

principles based on predictions built from a comprehensive panel of NANP physicochemical and 

immunological profiles.
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NANPs; RNA nanotechnology; immunology; immunorecognition; artificial intelligence; machine 
learning

INTRODUCTION

Therapeutic nucleic acids (TNAs) have enriched and diversified the landscape of 

nanomedicine1, and their clinical success brought about the development of a new 

biomolecular platform, based on nucleic acid nanoparticles, called NANPs2–3. NANP 

technologies aim to advance the programmability of TNAs, tune their physicochemical and 

biological properties, and optimize their formulation, storage, and handling processes. The 

bottom-up assembly of NANPs takes advantage of nucleic acids’ folding pathways along 

with several computational tools available for precise coordination of sequence design and 

an expanded repertoire of structural and interacting motifs4–9. A large number of NANPs 

has been engineered to vary in chemical composition, sizes, and shapes that range from 

three-dimensional assemblies down to linear nanoscaffolds. Individual oligonucleotides in 

NANP compositions may be additionally defined in certain lengths and GC content, while 
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also incorporating various TNAs (e.g., siRNAs, aptamers, and CpG DNAs), proteins, small 

molecules, and imaging agents suitable for biomedical applications10–14. Consequently, a 

growing library of functional NANPs has been shown to operate in response to other classes 

of biomolecules, or stimuli while executing therapeutic decisions based on environmental 

inputs15–17.

While the practicality of NANPs offers new ways to treat a broad spectrum of malignancies 

that span from cancers to infectious and cardiovascular diseases18, the intended clinical 

applications and routes of administration prioritize NANPs’ interactions with the human 

immune system to be carefully considered and understood for further translation of this 

technology into the clinic19–20. The immune recognition of these novel nanomaterials 

is inherent to the natural line of immune defense evolved for the detection of nucleic 

acids associated with pathogen invasion and cellular damage4, 21–24. However, NANPs’ 

unique architectural parameters and chemical compositions define their immunorecognition 

which cannot be extrapolated from the immune responses to pathogen- or damaged self-

associated nucleic acids and conventional TNAs21. The ability to predict how NANPs 

interact with the human immune system would allow for tailoring their formulations to the 

specific biomedical task with maximized therapeutic effects and controlled immunological 

activity, which collectively are required to achieve desired therapeutic efficacy and safety. 

In addition, as was revealed by numerous studies10–12, 21, 25–30, NANPs can function not 

merely as nanoscaffolds for TNAs but also as independent immunostimulatory therapeutics 

with conditional intracellular activation of intended functions beneficial for vaccines 

and immunotherapies. Over the last years, our team created a comprehensive library of 

NANPs, designed by our group and others, and subjected them to detailed physicochemical 

characterization, sterility and endotoxin assessments, and immunological assays carried out 

in model cell lines and in primary human peripheral blood mononuclear cells (PBMCs)26. 

PBMCs were chosen as the most accurate pre-clinical model that produced the most 

predictive results for cytokine storm toxicity in humans31.

Translating NANP materials from bench to the clinic requires quick coordination of design 

principles. The incorporation of a particular level of immunostimulation and matching 

it to the desired application requires feedback from the experimental analysis to the 

computational design phase, which in turn entails complete recharacterization of NANPs 

and can delay their production. To improve this pipeline, several design parameters based 

around a representative set of NANPs have been previously correlated with cytokine 

production in model cell lines to determine trends of the immune response29.

Deep learning has contributed to major advancements in several research fields ranging 

from computer vision to natural-language processing. It is also widely applied in biomedical 

research areas such as drug discovery and genomics32. In genomics, sequence-based deep 

learning models outperformed classical machine learning33 and also enabled efficient 

prediction of the function, origin, and properties of DNA and RNA sequences by training 

neural networks on large datasets34–39. A robust model that can predict immune responses 

will have an enormous benefit in the design of NANPs. Our earlier quantitative structure-

activity relationships (QSAR) modeling utilized a dataset collected for 16 NANPs which 
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were assessed in model cell lines, and demonstrated that computational prediction of 

experimentally observed immunomodulatory properties is feasible29.

Despite this progress, there is currently no reliable bioinformatics tool to computationally 

identify optimal NANP structures matched to the desired immunological outcome. Such 

a tool would tremendously accelerate NANPs design and selection for personalized 

immunotherapeutic approaches or immunologically safe nanoscaffolds for other indications 

in which the stimulation of the innate immune responses is not wanted. Therefore, 

our present study was conducted to improve the communication between biotechnology, 

immunology, and bioinformatics and to create a new tool which would enable the prediction 

of NANPs structure-activity relationships in order to better guide the overall designing 

principles (Figure 1A). In particular, we employed random forest (RF) and two different 

neural network architectures (a recurrent neural network and a transformer neural network) 

to develop models that predict immunomodulatory activity for a much larger set of 58 

representative NANPs that had been uniformly characterized using previously established, 

clinically relevant models26. Long-short-term memory (LSTM) architecture was used as the 

recurrent neural network. While the RF models use physicochemical properties derived from 

the constructed NANPs, the neural networks learn directly from the NANPs’ sequences. The 

neural network architectures investigated in this study facilitate discovery of hidden patterns 

via non-linear transformation of raw sequence data. These methods may also be applied to 

designing new NANPs (Figure 1B).

The top performing models resulted from this study are freely accessible to the research 

community via the online tool that was named an “Artificial Immune cell”, or AI-cell, and 

that now can be applied to predict the immunological responses of any novel nucleic acid 

architecture (https://aicell.ncats.io/).

METHODS

Preparation of NANP Training Set.

All sequences of tested NANPs are available in SI Tables S1C–D. A database was compiled 

from previously published NANPs adhering to standard methods of characterization as 

described below. For each NANP, the sequences of all strands included in the assembly 

along with the composition (DNA or RNA), quantity, and length (nts) of each strand were 

recorded. For each fully assembled NANP, the overall composition (DNA, RNA, or hybrid 

of the two), mass (g/mol), GC content (%), total number of strands in the assembly, number 

of helices in the structure, number of single-stranded bases, number of RNA bases, number 

of DNA bases, dimensionality (1D, 2D, or 3D), connectivity (origami or tectoRNA1), 

diameter (nm), melting temperature (°C), and production of IFN-α, IFN-β, IFN-ω, and 

IFN-λ (pg/mL) were denoted.

NANP Preparation.

All DNA sequences were purchased from Integrated DNA Technologies, Inc. All RNA 

sequences were purchased as DNA templates and primers which were PCR-amplified 

via MyTaq™ Mix, 2x (Bioline) and purified using DNA Clean & Concentrator® (Zymo 
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Research) for the preparation of double-stranded DNA templates containing a T7 RNA 

polymerase promotor. Templates underwent in vitro transcription with T7 RNA polymerase 

in 80 mM HEPES-KOH (pH 7.5), 2.5 mM spermidine, 50 mM DTT, 25 mM MgCl2, 

and 5 mM each rNTP for 3.5 hours at 37 °C and was stopped with the addition of RQ1 

RNase-Free DNase (Promega, 3u/50 μL) for 30 minutes at 37 °C. Strands were purified 

via denaturing polyacrylamide gel electrophoresis (PAGE, 8%) in 8 M urea in 89 mM 

tris-borate, 2 mM EDTA (TBE, pH 8.2) run at 85 mA for 1.5 hours. Bands in the gel were 

visualized by UV shadowing, cut, and eluted overnight in 300 mM NaCl, TBE at 4 °C. 

Precipitation was performed in 2.5 volumes of 100% EtOH at −20 °C for 3 hours, followed 

by centrifugation at 10.0 G for 30 minutes with two 90% EtOH washes between 10 minute 

centrifugations at 10.0 G. The pelleted samples were dried in a CentriVap micro IR vacuum 

concentrator (Labconco) at 55 °C. Pellets were dissolved in HyClone™ Water, Molecular 

Biology Grade (Cytiva) and concentrations were determined by measuring the A260 on a 

NanoDrop 2000 (ThermoFisher). NANPs were assembled in HyClone™ Water, Molecular 

Biology Grade (Cytiva), by adding strands in an equimolar ratio. Each NANP assembly 

followed previously published respective steps2–5.

Assessment of Immunostimulation in Human PBMCs.

Human whole blood was obtained from healthy donor volunteers under Institutional 

Review Board-approved NCI-Frederick protocol OH9-C-N046. Each donor was assigned 

a random number. Vacutainers containing Li-heparin as an anticoagulant were used for 

blood collection. Research donor blood was processed to isolate PBMC within 2 hours 

after donation according to the protocol described earlier6. All NANPs were complexed 

with Lipofectamine 2000 (L2K) before addition to the cells as described earlier7. Culture 

supernatants were collected 24 hours after addition of NANPs-L2K, and stored at −80 °C 

before analysis for the presence of type I and type II I interferons using multiplex ELISA. 

The procedure for the interferon detection along with materials’ sources has been described 

earlier7. Some NANPs have been previously characterized and reported, whereas others 

were synthesized and tested de novo to support the computational modeling of the present 

study (e.g., SI Figures S1–4). More details about new and previously studied NANPs are 

available in SI Tables S1A–D.

Dataset for Modeling.

In this study, NANP sequences were used to construct computational models that predict 

their immune responses. Based on the levels of IFN- α, IFN-β, IFN- ω and IFN- λ, 

four types of immune responses were identified and were used as target variables in 

the development of models. The complete list of the associated IFN activities and their 

physicochemical properties are provided in SI Tables S1A–D. We employed 58 NANPs to 

train the models; evaluated by five-fold cross-validation procedure repeated 10 times.

Tokenization.

Tokenization is considered the first step that processes the input sequence data when 

building a sequence-to-sequence model. It involves transformation of text input into a 

sequence of tokens that generally correspond to ‘words’. The nanoparticle sequences were 

tokenized using the K-mer representation (K=3). The K-mer representation incorporates rich 
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contextual information for each nucleotide base by loosely encoding triplets as codons i.e., 

all possible combinations of 3-mers of the individual nucleotide bases (A, T, G, C, U). This 

resulted in a total of 125 codon combinations or tokens, which were then used to create 

a vocabulary. Each input sequence in the training dataset was then tokenized and passed 

through an embedding layer, which maps the 3-mers to vector representations.

Generating All Possible Combination of NANPs.

It has been widely acknowledged that different NANP compositions be engineered to 

produce desired immune responses5, 8. When translating biological activity (in this case 

an immune response) to sequence-based learning, it is impossible to be certain about the 

order in which individual strands of each nanoparticle should be connected to achieve a 

particular immune response. Thus, to address this limitation, we generated all possible 

configurations using the individual strands for each nanoparticle. For a nanoparticle with ‘n’ 

strands, a total of ‘n!’ different combinations can be generated. IFN activity values for each 

combination were assigned as observed for the respective nanoparticle. This process resulted 

in a significantly larger training dataset. The augmented dataset was used for the training the 

final models. The models generated using this approach are referred to as Transformer_M1. 

When partitioning the augmented dataset during the 5-fold external cross-validation, to 

prevent the leakage of information from the training dataset to the validation dataset, all 

generated combination of a particular NANP were either present in the training set or the 

validation set during. Thus, the individual cross-validation runs had no overlap of NANP 

between the two set. In this scenario, the model statistics were calculated based on the ‘mean 

prediction values’ across each NANP.

Combining Physicochemical Properties with Sequence-Based Models.

Physicochemical descriptors derived from the constructures nanoparticles were previously 

reported to improved model performance due to their importance and relevance to the IFN 

activity (i.e., immune response) of nanoparticles2. Therefore, the physicochemical properties 

were used together with sequence data in development of sequence-based neural network 

models. For this purpose, the numerical descriptors were transformed into categories or bins 

(i.e., each bin encodes a value range) and added as tokens to the vocabulary previously 

described in the tokenization section. SI Table S3 provides the complete list of categories for 

each of the eight physicochemical descriptors. Further, when generating a numerical vector 

for the transformer model, the tokens related to the physicochemical properties were added 

to the original vector after converting the input sequence to a numerical vector. The models 

generated using this approach are referred to as Transformer_M2.

Modeling Approaches.

Two different modeling approaches were employed for the development of prediction 

models. In the first approach, the physicochemical properties of constructed nanoparticles 

were used as descriptors for creating a regression model using Random Forest (RF). RF is 

an ensemble of decision trees9 and is widely used in both classification and regression 

tasks. The number of trees was arbitrarily set to 100, and due to the robustness of 

RF10, no parameter optimization was performed. In the second approach, two different 

neural network architectures: LSTM and transformers; were employed to build prediction 
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models that use nanoparticle sequences as input data. LSTM (Long Short-Term Memory) 

networks are specialized recurrent neural networks that are designed to avoid long-term 

dependency problem by remembering information for an extended period of time using a 

gating mechanism11. The readers are encourage to refer to the literature for further reading 

on LSTM networks12. Transformer networks have been recently introduced in the field of 

natural language processing13 and were reported to outperform recurrent neural networks 

architectures such as LSTM and Gated Recurrent Unit (GRU) in several NLP benchmarks 

on automatic speech recognition, speech translation and text-to-speech14. Transformers 

use attention mechanism and positional embeddings and facilitate encoding of multiple 

relationships within a sentence and process complete sentences by learning relationships 

between the words. The neural network architecture and the parameters used for training 

each of these models is provided in SI Tables S4A–B.

Evaluation of model statistics.

To evaluate the predictive performance of the developed models, a 5-fold external cross-

validation procedure (5-CV)15 was employed. In this procedure, the initial data set was 

randomly divided into five parts. In each fold, four parts of the data were used as training 

set for model building and the fifth part was used as test set for assessment of external 

predictive performance. To be more robust and ensure that the performance obtained is not 

due to chance correlations, the 5-CV procedure was repeated for a total of 10 times. The 

performance of each model was assessed on the basis of root mean squared error (RMSE) 

(Eq. 1), and determination coefficient R2 (Eq. 2),

RMSE = 1
n ∑

i

n
Y i − Y i

2
(1)

R2 = 1 −
∑i

n Y i − Y i
2

∑i
n Y i − Y 2 (2)

Yi(cap) is the predicted value for each particular sequence; Yi is the observed value for 

each particular sequence; Y(bar) is the mean activity value from all the sequences; n is the 

number of sequences.

Statistical analysis.

Statistical analysis was performed using GraphPad Prism software version 9.0.0 for 

Windows, GraphPad Software, San Diego, California, USA (www.graphpad.com). The 

difference between the model performances was evaluated using a nonparametric statistical 

test (Friedman) to compare pairwise if one approach significantly outperforms the other. 

All data were presented as mean of several repeats with the sample size (n) specified for 

each dataset and error bars denoted mean ± SD; p values of less than 0.05 were considered 

statistically significant.
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RESULTS

Representative NANP Database.

We designed a library of representative NANPs to study key structure-activity relationships 

that define NANP interactions with the cells of the human immune system (Figure 2 and 

SI Tables 1A–D). Our dataset included different functional and non-functional NANPs 

made of either DNA or RNA, having planar, globular, or fibrous structures, different sizes, 

flexibilities, thermodynamic stabilities, and connectivity rules. Some of these datasets have 

already been published10–11, 21, 30, 40–41, whereas others were newly generated to support 

the development of the current AI algorithm (all NANPs are itemized in the SI Tables 

S1A–D).

To study the influence of architectural parameters, the immune responses to 1D fibers were 

compared to 2D planar and to 3D globular NANPs, designed by two different approaches 

that define the connectivity of NANPs. The first approach, represented by RNA/DNA 

fibers and all polygons and cubes, relies solely on intermolecular canonical Watson-Crick 

interactions with all NANP sequences designed to avoid any intramolecular structures42–43. 

These design principles are characteristic for DNA nanotechnology and DNA origami44–45 

and allow for any RNA strand in the NANP’s composition to be substituted with DNA 

analog. The second approach, called tectoRNA46–47, is exemplified by RNA rings and fibers 

that employ naturally occurring structural and long-range interacting motifs (e.g., kissing 

loops) that are rationally combined, similarly to Lego® bricks, to achieve topological control 

in the bottom-up assembly of NANPs43.

To study the role of chemical composition, origami-like RNA NANPs were compared 

to their DNA and RNA/DNA analogs. This compositional blend allowed for changes in 

NANPs’ physicochemical and biological properties in a highly predictable and controlled 

manner. For example, the responses of individual NANPs to heating become different 

(Tm~36°C of the DNA cubes vs Tm~55.5°C of the RNA cubes21) and a new version 

of Hyperfold48 can accurately predict the experimental results10. The chemical makeup 

also influenced the relative chemical stabilities of NANPs in blood serum and towards 

degradation by different nucleases10, 21, 25, 49.

To assess the effect of structural flexibility, we included gapped ring structures50 and cubes 

with different numbers of single-stranded uracils at their corners21, 51, all designed to control 

the dynamic behavior of 2D and 3D NANPs, respectively. Both experimental results and 

MD simulations supported the notion that the stability and dynamicity of NANPs can be 

modulated by changing the number of single-stranded regions in their structures30, 51.

The effect of functionalization was assessed via the addition of Dicer substrate (DS) RNAs52 

to the 1D, 2D, and 3D NANPs and for the size contributions, different polygons29 were 

compared. DS RNAs are widely used for Dicer-assisted intracellular release of siRNAs. 

The sequence effects were studied through the inclusion of several reverse complement 

structures (denoted as “anti-“) for 1D40, 2D10, and 3D10 NANPs. All physicochemical 

properties of NANPs have been assessed under the equivalent conditions and their relative 

immunostimulation was measured in PBMCs isolated from fresh blood drawn from healthy 
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donors with at least three donors per each NANP. All data have been combined in a single 

dataset shown in SI Tables S1A–D with all sources for experimental results cited.

IFN Modeling Results.

With a diverse library of NANPs in the dataset, three different methods were employed 

to build models that predict the immunological activities of NANPs in PBMCs (Figure 3). 

First, an RF method was applied using the physicochemical descriptors derived from the 

input sequences. The physicochemical properties of the studied NANPs along with their 

immune responses are provided in SI Table S1A. Next, the neural network architectures 

LSTM and transformers were applied that directly learn on the NANP sequences. In 

both neural network models, the first step involves tokenization of the input sequences. 

Tokenization was performed using the ‘K-mer’ representation (K=3), which is usually 

employed for nucleotide sequences and the encoded sequences can be loosely considered 

as codons. Generating all possible combinations of 3-mers of the individual nucleotide bases 

(A, T, G, C, U) resulted in a total of 125 codon combinations or tokens. Each model was 

evaluated using five-fold cross-validation (5-CV) that was repeated 10 times. Figures 4A 

and 4B provide a comparison of the average performance (R2, RMSE) for different models 

generated in this study. According to the 5-CV results presented in Figure 4, the models 

developed using the transformer architecture significantly outperformed other models. The 

detailed model performance statistics can be found in SI Tables S2A–D.

Each NANP is represented by multiple sequences or strands: for example, dA, dB, dC, 

dD, dE, and dF are the individual sequences that form DNA cube. By default, these 

sequences were joined in a sequential manner for the purpose of learning. However, it 

is uncertain if this is the only possible configuration (i.e., arrangement of sequences) for 

DNA cube. To avoid any bias during learning, the best performing models based on the 

transformer architecture were evaluated on all possible combinations based on the different 

strands present in each NANP. This data augmentation step led to a significant increase 

in the training dataset size. The models generated using this approach are referred to as 

Transformer_M1. The model performance improved, particularly in the case of IFN-α, 

where the R2 improved from 0.53 to 0.87. Using this approach (Transformer_M1), all 

models provided an R2 > 0.80 and RMSE < 0.03 (Figure 4).). The difference between 

the model performance (R2 and RMSE) was evaluated using the Friedman nonparametric 

statistical test. SI Tables S5A–D provide the pairwise comparison between the different 

machine learning methods to compare if one approach significantly outperforms the other.

It is also known that the physicochemical properties of NANPs are important for 

their immune response29. Therefore, to evaluate the contribution of the physicochemical 

properties to model performance, we pursued a third approach in which the physicochemical 

properties were combined with the sequence data to build sequence-based models. To 

achieve this, the numerical descriptors were converted into categories and added as tokens 

to the vocabulary. Tokenization was performed in the same manner on triplets. The models 

generated using this approach are referred to as Transformer_M2. As shown in Figure 4A–

B, inclusion of the descriptors to the sequence-based models further improved the model 

performance (R2 > 0.85). The best prediction performance was obtained using a model 
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that combined physicochemical properties together with sequence-based models. As seen 

from Figure 4A–B, the sequence information alone demonstrated high predictivity using 

transformer models (Transformer_M1), especially for IFN-β responses, and thus might play 

a significant role in predicting the behavior of polygons with more diverse shapes and 

structures.

Model Interpretability and Implementation.

Since the best-performing model developed in this study involves generating all possible 

combinations of the input NANP strands and using the K-mer representation (K=3) for 

tokenization (cf. methods section for details), it is not feasible to determine the importance 

of individual tokens (K-mer) and thus to obtain the interpretability of our best performing 

model (Transformer_M1). However, to help the research community to better guide the 

overall designing principles for the NANPs, and to overcome this limitation, we provide 

online tool with implementation of the best developed model (https://aicell.ncats.io/). This 

implementation helps the user to predict the immunological responses of novel nucleic acid 

architectures while enabling alteration of nucleic acid. Depending on the number of input 

strands, their sequences and lengths, it takes on average between two and four seconds to 

predict the immune responses (induction of IFN-α, IFN-β, IFN-ω, and IFN-λ). In contrast, 

evaluation of the IFN responses using human immune cells takes at the minimum three days; 

this further emphasizes the convenience and cost-benefit for researchers to use the newly 

developed on-line model. In addition, our implementation also provides an uncertainty of 

prediction in terms of the standard deviation calculated from the prediction of all possible 

combinations of the input nanoparticles strands (cf. the methods section for details). Thus, 

the online tool can be used for NANPs design to achieve the desired immunological 

outcome.

DISCUSSION

Machine learning and artificial intelligence (AI) have been increasingly applied in 

various domain such as computer vision53–54, natural language processing55–57, drug 

discovery58–59, QSAR60–62, and genomics63–65. AI methods such as convolutional 

neural networks (CNNs)66 and recurrent neural networks (RNNs)67 that are extensively 

used in computer vision and natural language processing have been investigated for 

identifying protein binding sites in DNA and RNA sequences, and achieved state-of-the-art 

performance68–70. More recently, transformer neural networks were reported to provide 

superior performance in the field of drug discovery and QSAR71–73 and demonstrated 

state-of-the-art results on neural machine translation task74–75 including direct and single-

step retrosynthesis of chemical compounds76. The Transformer architecture incorporates 

the mechanism of self-attention together with positional embedding77, which makes them 

heavily successful in the field of natural language processing (NLP) tasks78–79. Transformer-

based models have also been effective in predicting novel drug–target interactions from 

sequence data and significantly outperformed existing methods like DeepConvDTI80, 

DeepDTA81, and DeepDTI82 on their test data set for drug–target interaction (DTI)83. 

Another attractive task that remarkably benefits from the transformer architecture is 

generative molecular design. It was recently shown that transformer-based generative 
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models demonstrated state-of-the-art performance when compared to previous approaches 

based on recurrent neural networks84. Additionally, a recent study demonstrated the 

application of a transformer architecture is development of a SMILES canonicalization 

approach that extracts information-rich embedding and exposes them for further use in 

QSAR studies76; however the applicability of this approach to therapeutic nucleic acids 

and NANPs is unknown. Given the importance of nanoparticles in the field of drug 

delivery and the ability of NANPs to act as active pharmaceutical ingredients; offering 

innovative therapeutic strategies and overcoming the limitations of traditional nucleic acid 

therapies and the lack of predictive tools that would reliably guide NANPs design to 

the desired immunological outcome, we adopted transformer-based models to predict the 

immunological activities of the nanoparticles. An earlier study by Johnson et al.29 reports 

the use of random forest (RF) based QSAR models; however, considering that the nature 

of input data is sequence/text, transformer neural networks are able better learn the patterns 

within the data in comparison to other methods used in this study such as random forests.

To the best of our knowledge this is the first study to evaluate and implement the use 

of state-of-the-art transformer neural networks to predict immunological activity and thus 

advance the current understanding of the NANP properties that contribute to the observed 

immunomodulatory activity and establish corresponding designing principles. Our results 

demonstrate the benefit (significant improvement in prediction statistics; R2 and RMSE) 

of using a transformer framework that is solely based on sequence data vs. RF models 

(Figure 4, SI Tables S2A–D). The data augmentation (Transformer_M1) led to a further 

increase of the model performance. In the case of QSAR modeling, the importance of data 

augmentation has been shown to be critical for the Transformer models to achieve their 

high performance85–86. Transformer models extract semantic information in NLP tasks by 

jointly conditioning on both left and right contexts in all layers75. This is particularly an 

essential feature in context to biological sequences, which are multidirectional in nature. The 

inclusion of robust sequence embeddings facilitated the proposed models to score well with 

the performance metrics (Figure 4). We expect this hybrid architecture will be continually 

explored for the purpose of studying NANPs.

In summary, we applied a systematic approach to connect physicochemical and 

immunological properties of a comprehensive panel of various NANPs and developed 

a computational model based on the transformer architecture. The resulting AI-cell tool 

predicts the immune responses of NANPs based on the input of their physicochemical 

properties. This model overcomes the limitations of the previous QSAR model and is 

imperative for responding timely to critical public health challenges related to drug overdose 

and the safety of nucleic acid therapies by streamlining the selection of optimal NANP 

designs for personalized therapies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Conceptual representation of artificial immune cell (or AI-cell) tool. (A) The initial design 

and synthesis of nucleic acid nanoparticles (NANPs) is followed by their physicochemical 

characterization and assessment of immunostimulatory potential to then be applied for 

predictive computational analysis of the NANPs immune responses. (B) The experimental 

workflow used for the development of AI-cell.
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Figure 2. 
Representative NANPs chosen to collectively address the influence of their physicochemical 

properties and architectural parameters on their immunorecognition in human PBMC to 

further the development of AI-cell.
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Figure 3. 
Schematic representation of the quantitative structure–activity relationship (QSAR) 

methodology used in this project. (A) Modeling workflow: three machine learning 

approaches are evaluated using five-fold cross-validation (5-CV) repeated 10 times. (B) 

Overall workflow and the training procedure for prediction of nanoparticle sequence using 

transformer-based approach: tokenization, embedding followed by transformer modeling 

and prediction.
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Figure 4. 
Average performance (A) R2 and (B) RMSE for different modeling approaches over 5-fold 

cross-validation and repeated 10-times. The error bar represents the standard deviation of 

the average performance over 5-folds cross-validation repeated 10-times (n=50). Detailed 

statistical analysis is shown in SI Table S5.
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