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A B S T R A C T   

Numerous machine learning and image processing algorithms, most recently deep learning, allow the recognition 
and classification of COVID-19 disease in medical images. However, feature extraction, or the semantic gap 
between low-level visual information collected by imaging modalities and high-level semantics, is the funda-
mental shortcoming of these techniques. On the other hand, several techniques focused on the first-order feature 
extraction of the chest X-Ray thus making the employed models less accurate and robust. This study presents 
Dual_Pachi: Attention Based Dual Path Framework with Intermediate Second Order-Pooling for more accurate 
and robust Chest X-ray feature extraction for Covid-19 detection. Dual_Pachi consists of 4 main building Blocks; 
Block one converts the received chest X-Ray image to CIE LAB coordinates (L & AB channels which are separated 
at the first three layers of a modified Inception V3 Architecture.). Block two further exploit the global features 
extracted from block one via a global second-order pooling while block three focuses on the low-level visual 
information and the high-level semantics of Chest X-ray image features using a multi-head self-attention and an 
MLP Layer without sacrificing performance. Finally, the fourth block is the classification block where classifi-
cation is done using fully connected layers and SoftMax activation. Dual_Pachi is designed and trained in an end- 
to-end manner. According to the results, Dual_Pachi outperforms traditional deep learning models and other 
state-of-the-art approaches described in the literature with an accuracy of 0.96656 (Data_A) and 0.97867 
(Data_B) for the Dual_Pachi approach and an accuracy of 0.95987 (Data_A) and 0.968 (Data_B) for the Dual_Pachi 
without attention block model. A Grad-CAM-based visualization is also built to highlight where the applied 
attention mechanism is concentrated.   

1. Introduction 

The advent of a pathological member of the coronavirus class called 
severe acute respiratory syndrome coronavirus-2 (SAR-CoV-2) was 
discovered around December 2019 and has since infected millions 
globally [1]. The syndrome characterized by SAR-CoV-2 is known as 
COVID-19 and was classified as a pandemic in February 2020 by the 
World Health Organization (WHO) [2]. The coronavirus family is made 
up of a lot of different viruses that can cause moderate-to-extreme res-
piratory illnesses like Middle East respiratory syndrome (MERS), among 
others [3]. Since the emergence of the virus, more than five million 
infections and 355,000 deaths have been recorded worldwide. 
COVID-19 is a highly contagious virus that mostly affects the lungs. Most 

people with COVID-19 have a fever, cough, tiredness, trouble breathing, 
etc. The disease can spread to the lower respiratory system and cause 
pneumonia, which is a severe inflammation of the lungs. People with 
this illness often result from cytokine release syndrome, which in turn 
leads to the failure of multiple organs causing Acute Respiratory Distress 
Syndrome (ARDS) which in many cases leads to death [4,5]. When this 
influx suddenly, a tremendous burden is mounted on the inadequate 
medical resources in most developing countries making the facilities 
inaccessible to the needy. Covid-19 spreads through aerosols or droplets 
that come out of an infected patient’s mouth or nose when they cough, 
talk, touch, etc. Therefore, to stop the spread of the infectious virus, 
medical practitioners have lined-up fundamental preventive measures 
like social distancing, mandatory face mask usage, constant hand 
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washing or sanitizing with alcoholic-based sanitizers, and quarantine 
[6] if necessary. With new strains and waves sweeping across various 
countries and wreaking havoc now and then, there is a need for a reli-
able and efficient system for detecting COVID-19 in the lungs. Effective 
testing and detection can help alleviate the spread eventually. Detecting 
Covid-19 in its early days was based on an antibody test and reverse 
transcription (RT) - polymerase chain reaction (PCR) [7] approaches. 
These approaches have seen many drawbacks, including the scarcity of 
testing kits, and false or negative results with RT-PCR-based approaches 
among others. An antibody test may only be performed after a specified 
length of infection and is not a safe choice [8]. Instead, computerized 
tomography (CT) scans and X-rays are employed for this procedure [9]. 
The radiation released by CT scans is much more damaging to an in-
dividual’s health than those emitted by advanced technological opera-
tions of radiographic imaging such as X-rays [10]. This is why, in 
contrast, chest X-rays are much more dependable, safe, and efficient. 

Deep learning (DL) techniques have grown in prominence in recent 
years due to their ability to learn without aid and produce previously 
unseen extremely efficient accuracy index [11]. As a result, DL is being 
used in several fields, including medical imaging, computer vision, etc. 
DL is used to forecast pneumonia using chest x-rays (CXRs), segment 
MRI images, and analyze CT scans [12–15] in the medical imaging 
domain. DL is therefore the most desired research field for identifying 
Covid-19 in chest X-rays. Currently, only specialized radiologists can 
analyze and interpret the complicated patterns of Chest X-rays data or 
images [16]. Sadly, this number remains insignificant, particularly in 
underdeveloped areas worldwide, compared to the enormous need for 
daily Coronavirus testing [17]. Therefore, it is necessary to develop a 
more efficient method to detect COVID-19 infections among mammals 
leading to timely recovery [18] and lessening the burden on physicians 
and radiologists across the world. Image preparation and preprocessing 
play a vital role in enhancing the performance of a classifier. Improving 
the image quality of the training data may help improve the accuracy of 
the algorithms. Several metaheuristic-based optimization approaches 
[19] have been shown to enhance image quality. Recently, studies have 
been conducted on multi-modal medical image fusion using 
meta-heuristic-based optimization [20] because it improves the quality 
of fused images while conserving vital information from the input 
images. 

Convolutional Neural Networks (CNN) models are very effective in 
computer vision and are often used in medical imaging [21]. This is 
because CNN models demonstrated effectiveness in predicting output by 
analyzing and mapping visuals to the desired output [22]. Different 
COVID-19 detections based on DL models have been developed and 
applied successfully [23]. Well-established CNN models such as incep-
tion, GoogleNet, and, Xception, have been adopted with advanced 
transfer learning (TL) technologies [24,25]. In using X-ray images, the 
authors of [26] proposed a network-based COVID model to detect 
COVID-19 patients. The proposed network model reached a good degree 
of precision and an average sensitivity; likewise [27], designing the 
COVID-CAPS model with better accuracy and a good detection rate. 
However, the above-mentioned models acquired a poor detection rate 
due to an inadequate number of COVID-19-labeled data sets. In 
biomedical imaging, enhancing computational efficiency is a vital tool 
for producing realistic mathematical results. However, DL methods are 
often computationally intensive, making their systems unfeasible. 
Therefore, TL has been added to state-of-the-art algorithms and 
fine-tuned using a chest X-ray dataset unique to solve these specific 
problems. In Ref. [28], a cutting-edge inception model using TL has been 
used to filter COVID-19 with a truncated accuracy of 89.5%. Similarly, 
the pre-trained ResNet-50 CNN has been used on a small number of 
samples and has attained a better accuracy [29]. The pre-trained models 
are trained on the massive “ImageNet” dataset, which includes over 14 
million input data and 1000 classifications. Using TL with these models 
yields successful outcomes, even when applied to distinct datasets. 
Recently, COVID-19 is being detected in mammals using ResNet18, 

DensNet20, and SqueezeNet. These models were calibrated again with 
TL on the "COVID-Xray-5k" dataset and returned a better accuracy [30]. 
All of the aforementioned models were implemented on a SoftMax 
classifier for detecting COVID-19 patients, and as a result, only the 
empirical risk reduction benefit was reached. 

This study saw the integration of the conventional and recent 
advancement deep learning models to tackle the issue of accurate and 
robust feature extraction in chest x-ray images termed Dual_Pachi: 
Attention Based Dual Path Framework with Intermediate Second Order- 
Pooling for Covid-19 Detection from Chest X-Ray Images. Specifically, 
Dual_Pachi is a four-block component deep learning model comprising 
dual-part CNN techniques, second-order pooling techniques and a multi- 
head attention mechanism. First, an enhanced texture and patterns of 
COVID-19-specific X-ray features are extracted using a dual-part CNN by 
first converting the RGB Input image to a CIE LAB separate coordinates 
(L and AB branch) in the first block. The L branch focuses on the texture 
and edge features of the Chest X-ray images while the AB channel 
focused on the color findings. The second block applies a global second- 
order pooling operation to the extracted output features of the first block 
thereby focusing on the high and low characteristics of the images After 
this comes the third block which applies the Multi-head self-attention to 
avoid highly complex parameter optimization and simulates the 
discriminative and relevant features before being applied to the fourth 
block which is the classification Block. Finally, the low-level visual in-
formation and the high-level semantics of Chest X-ray image features are 
used for the detection and result generalization without sacrificing 
performance. The primary contributions of our research are listed 
below;  

1. Dual_Pachi, an End-to-End framework that generalizes COVID-19, 
Pneumonia, Lung opacity and Normal images, is proposed for 
COVID-19 identification. Four extremely distinctive Block makes up 
the proposed Dual_Pachi. The first block consists of dual channel 
Convolution layers at the first three convolution layer which accepts 
transformed RGB images into CIE LAB coordinates (L and AB chan-
nels where the L channel focuses on the texture and edge of the chest 
X-ray images and the AB channel focuses on the color features). The 
first block is followed by the second block which is a global high- 
order pooling method that concentrates on the higher representa-
tion of the extracted block one feature enriching them before sending 
it to the third block which is the multi-head self-attention block and 
MLP block that focuses on the overlooked edges and tiny features of 
the chest x-ray images. The last block is the classification block 
where the learned features are used for the identification Dual_Pachi 
using the SoftMax activation function.  

2. An extensive experiment was carried out using two Loss functions 
(categorical cross-entropy and categorical smooth loss) and learning 
rates (0.001 and 0.0001) to examine the optimal performance of 
Dual_Pachi. 

This paper is divided into the following sections; section 2 contains 
the related studies while section 3 contains the detailed comprehensive 
working processes of the Dual_Pachi model. Section 4 contains the 
experimental results, data, data analysis and evaluation metrics while 
section 5 contains the results obtained. Section 6 is the result discussion, 
ablation studies and comparison with related works, limitations and 
future works and we conclude in section 7. 

2. Related works 

Ever since the WHO declared Coronavirus a pandemic in February 
2020, worldwide efforts from academia and medical research industries 
have been focused on developing scientific formulations and applica-
tions to detect the virus. DL algorithms have been applied to Chest X- 
rays extensively to efficiently detect Coronavirus but due to the un-
availability of covid-19-related datasets, most models proposed are 
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unrealistic in the real world. 
Jain et al. [31], compared and analyze the accuracy of InceptionV3, 

Xception, and ResNet models using the 6432 chest X-ray image dataset. 
The authors asserted that the Xception model had the best accuracy at 
97.97%. As a unique strategy, they used the LeakyReLU instead of the 
conventional ReLU as the activation function although they observed 
that there was overfitting during the training phase that lead to high 
accuracy. Jain et al. [31], in their conclusion, suggested further 
consideration of huge datasets to verify their proposed paradigm. TL was 
adopted in a multi-class approach by Apostolopoulos and Mpesiana 
[32], combining VGG19 and MobileNetV2 to classify COVID-19, Pneu-
monia, and Normal cases. The accuracy index established was far more 
encouraging than the contemporary studies at that time. Similar to 
Ref. [33], the authors presented Domain Extension TL (DETL) and af-
firms the need for a vast amount of data when training a CNN model 
from scratch. Following a 5-fold Cross-Validation, the stated accuracy 
for AlexNet was 82.98%, VGGNet was 90.13%, and ResNet was 85.98%. 
The authors also used the Grad-CAM (Gradient Class Activation Map) 
concept to determine whether or not a model paid more attention during 
classification. A TL-based nCovNet was designed by Panwar et al. [34], 
in a way that the input layer is followed by ReLU activation, 18 con-
volutional, and max-pooling layers from the pre-trained VGG16 model. 
The 2nd phase of nCovNet incorporated five (5) additional specific head 
layers. A total of 337 X-ray scans were used, of which 192 samples are 
scanned with COVID-positive images. The training accuracy saw a better 
performance index, whereas the validation accuracy on 
coronavirus-positive patients was 97.62%. Authors fear for data-leakage 
due to their manual annotation. In Ref. [24], Ozturk et al. also used the 
5-fold cross-validation on a pre-trained model based on 3 CNN archi-
tectures that obtained 98% accuracy. Sethy et al. [35], discovered that 
COVID-19 CXR sample categorization combining ResNet50 and SVM 
classifier achieved better accuracy. Asif et al. [36]. classified COVID-19 
infection in CXR samples using a deep CNN model. A Covid-19 detecting 
model based on ConvNet was labeled as “EfficientNet” using CXR images 
that recorded positive covid-19 accuracy of 93.9%, with 5–30 times 
fewer parameters recorded with no false prediction [37]. A dataset of 
13,569 X-ray samples of healthy individuals, COVID-19 pneumonia, and 
non-COVID-19 pneumonia cases was utilized to train the proposed 
techniques and the 5 competing designs. A hierarchical method and 
cross-dataset analysis were used. The evaluation of many datasets 
indicated that even the most sophisticated models lack generalization 
capability. As can be observed, this research only covered a limited 
number of photos of Covid-19-positive individuals. The authors evalu-
ated the performance of the proposed models on a large and diverse 
dataset. 

In addition, Hussain et al. [38], proposed a 22-layer CNN-based 
model labeled CoroDet and used both Chest X-rays and CT Scan Data-
sets for 2, 3, and 4 classes, i.e., COVID, Normal, non-COVID bacterial 
pneumonia, and non-COVID viral pneumonia. With the CoroDet Model 
on X-ray Dataset, they could get an accuracy of 99.1%, 94.2%, and 
91.2% for classifying 2,3, and 4 classes, respectively. Karakanis et al. 
[39] suggested two lightweight models, one for binary classification as 
well as one for three-class classification, and compared it to the ResNet8 
Pre-trained structure, which is the current state of the art. Due to the 
lack of datasets, they have also used Conditional Generative Adversarial 
Networks (cGANs) to produce synthetic pictures. They attained an ac-
curacy of 96.5% with the suggested binary class model and 94.3% with 
the multiclass model. Using cGANs, the accuracy of binary and multi-
class Models increased to 98.7% and 98.3%, respectively. Hammoudi 
et al. [40], proposed individualized DL algorithms for identifying 
pneumonia-infected individuals from chest X-rays. Cases of viral pneu-
monia detected during COVID-19 had a high risk of developing 
COVID-19 infections, according to the author. DenseNet169 obtained 
95.72% accuracy, surpassing other models such as ResNet34 and 
ResNet50. Recently, hybrid DL mechanisms have been explored for 
detecting Covid-19. Khan et al. [41], suggest two deep learning 

frameworks for detecting Covid-19: Deep Hybrid Learning (DHL) and 
Deep Boosted Hybrid Learning (DBHL). The dataset employed for binary 
classification in this study consisted of 3224 Covid-19 and 3224 Normal 
Chest X-ray pictures. The proposed DHL framework makes use of 
COVID-ResNet 1&2 models to extract deep features, which are then fed 
individually via an SVM classifier for Covid-19 identification. Edge- and 
region-based techniques are used in COVID-RENet models to extract 
region and boundary characteristics. In the proposed DBHL framework, 
the feature spaces are concatenated to fine-tune COVID-RENet models. 
According to the authors, the suggested approaches dramatically mini-
mize the number of false negatives and false positives in comparison to 
earlier research. In Ref. [42], Muhammad et al. used a 
reconstruction-independent component analysis (RICA) to supplement 
labeled data. Covid-19 was detected using CNN-BiLSTM. CNN helps 
extract high-level information, whereas augmentation offers 
low-dimensional features. BiLSTM classifies processed data. On three 
Covid-19 datasets, our new methodology outperformed earlier tech-
niques. Visualizing findings using PCA and t-SNE. A thorough perfor-
mance comparison study was conducted by V.K. Shrivastava and M. K. 
Pradhan [43] on 16 cutting-edge models that they trained using scratch 
learning, transfer learning, and fine-tuning. They conducted their 
investigation using two scenarios: multiclass classification and binary 
classification. Techniques for teaching that take into account costs were 
utilized to address the issue of class imbalance. Among all models taken 
into consideration, the InceptionResNetV2 model using a fine-tuning 
method earned the greatest classification accuracy, with a binary clas-
sification accuracy of 99.20%, and the Xception model with a multiclass 
classification accuracy of 89.33%. The DarkCovidNet model, which is 
built on CNN, was updated by D. K. Redie et al. [44] and they showed 
the experimental outcomes for two scenarios: binary classification (and 
multi-class classification. The model’s average accuracy for binary and 
multi-class classification was 99.53% and 94.18%, respectively. Exten-
sive feature extraction, twerking of pre-trained CNN, and end-to-end 
training of a built CNN model was employed by A. M. Ismael and A. 
Engür [45] to categorize COVID-19 and standard chest X-ray images. 
Deep CNN models (ResNet18, ResNet50, ResNet101, VGG16, and 
VGG19) that have already undergone training were employed for deep 
feature extraction, while the Support Vector Machines (SVM) classifier 
was used using a variety of kernel functions, including quadratic, 
gaussian, linear and cubic. The ensemble of the ResNet50 model with 
SVM classifier via Linear kernel function had the greatest classification 
accuracy (94.7%), followed by the twerked ResNet50 model with a 
result of 92.6% and the constructed CNN model with a result of 91.6% 
after end-to-end training. F. Demir [46] introduced a unique method 
based on the DeepCovNet deep learning model to categorize COVID-19, 
normal, and pneumonia classes in chest X-ray pictures. DeepCovNet is 
an ensemble of convolutional-autoencoder and an SVM classifier with 
various kernel functions. With an innovative and reliable approach 
called SDAR, the distinct features were chosen from the deep feature set 
and yielded an accuracy of 99.75%. 

The above-mentioned studies so far have a common factor: it has 
been implemented on datasets that were insufficient in size owing to the 
lack of unavailable data. This becomes impractical in real-world 
implementation, even if the performance accuracy is convincing. In 
other circumstances, even though the dataset was big enough, the 
model’s accuracy and efficiency were not well balanced. However, in 
this study, we presented a well-designed architecture with a remarkable 
and efficient performance index in identifying covid-19 using a standard 
Chest X-ray dataset which will be feasible in a real-world 
implementation. 

3. Proposed methodology 

This section illustrates the flow chart of the Dual_Pachi imple-
mentation in Fig. 1. The process begins with data split to train/valida-
tion and test set. The train set undergoes data transformation before 
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being fed into Dual_Pachi for feature extraction, model parameter error 
correction to the use of the learned features for prediction by the clas-
sifier. The Dual_Pachi model is saved as a.tf file before introducing the 
test set for evaluation and result comparisons. Further details on the 
proposed methodology are described below. 

3.1. Dual_Pachi model 

Fig. 2 illustrates the Dual_Pachi architecture. The Dual_Pachi model 
is broken down into four Blocks. The first block emulates the inception 
v3 variation proposed by Toda & Okuras [47]. The identified property of 

the inception v3 variation got rid of the last 5 mixed layers out of 11 
layers. The second Block emulates the Global second-order pooling 
which adds a variety of neighboring features via covariance matrix to 
the conventional second-order pooling thus learning the attention filter. 
The third block is the encoder which comprises multiple self-attention 
heads MLP blocks both of which are built utilizing a shortcut connec-
tion and normalizing layer. The fourth and last block is the classification 
block which makes use of the extracted and learned feature for 
prediction. 

Block One: First, the RGB input image is transformed to CIE LAB 
coordinates where the L channel is been treated separately and the AB 
channel is treated likewise before the features are joined together. From 
the diagram, the first three layers of the Inception V3 architecture [47] 
are modified into two branches to accept the L and AB channels inde-
pendently. This approach saves from 1/3 to 1/2 of the parameters in the 
separated branches. After the L and AB features are treated separately by 
the first three convolutional layers, the features are concatenated and 
the rest of the network setting remains the same as the Inception V3 
architecture. 

Block Two: we also refer to this block as the Global Second-Order 
Pooling block which defers from the traditional Second-Order Pooling 
by the addition of neighborhood pixels. A covariance matrix is applied to 
all the nearby pixels to learn the attention filters while a l 2 normali-
zation was first introduced to reduce the input features scale 
dependency. 

Q=Fx1st F⊺
x1st (1)  

Where Q = node-sets neighborhood pixels’ covariance matrix mathe-
matically represented as Q ∈ RM×M The similarity between each neigh-
boring pixel and the core pixel is determined via an adaptable cosine 
neighborhood function with the description of the corresponding 
formula; 

ρi=
Qi ∧ Q⊺

0

‖Qi‖
⃦
⃦Q⊺

0

⃦
⃦

(2) 

The stochastic pixel vector close by is denoted as Qi when the core 
pixel vector inside the neighborhood is denoted as Q0, where i ∈ {1,2,3,
……, n}, and ∧ ∈ Rn×n is an additional symmetric matrix making Q 
trainable. It is believed to be more effective to utilize pixel vectors from 
Q to compute ρ as Q offers information on the spatial frequency simi-
larity of two pixels at various places. The attention weights are then 

Fig. 1. Flow Chart of the Dual_Pachi implementation. In the data splitting, we 
split int train set, validation set and test set. the trained model is saved as a. 
tf file. 

Fig. 2. Proposed Dual_Pachi Architecture. The proposed architecture consists of four blocks as seen in the diagram. The 1st block is the dual inceptionv3 variation, 
block 2 is the global second-order pooling, the 3rd is the Encoder which comprises the multi-head self-attention network and the MLP layer while the last Block i.e the 
4th block is the classification layer. 
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standardized into a single without unit addition using a SoftMax func-
tion, which is demonstrated to produce higher convergence. 

wi =
eρi+bi

∑n
j=1eρj+bj

(3)  

Where b = bias, W ∈ Rn×n = diagonal weight matrix created based on 
∑

wi = 1 for i ∈ {1,2,3,……,n}. The entire parameter implementation of 
Block two is mathematically expressed as; 

Second Block=(WFx1st )
⊺
(WFx1st ) (4)  

= F⊺
x1st W2Fx1st (5) 

The second Block expresses second-order information while simply 
introducing the variability of surrounding pixels by using a data- 
adaptive and trainable weighting scheme. Smaller weighted pixels 
have less of an effect on this process while larger weighted pixels are 
more significant. Block three is diagrammatically represented as seen in 
Fig. 3. 

Block Three: The dimension of the second block output is tweaked 
to enable the encoder to accept the features. The final features to be 
input into the encoder are implemented using two separate layers, the 
Multi-Head Self-Attention layer and the MLP layers, both of which are 
built utilizing a shortcut connection and normalizing layer as shown in 
Eq. (6). 

хi+1 = fLN(хi + f (хi)) (6) 

In Eq. (6), xi is the layer i input and layer i − 1 output, fLN is the 
normalization layer, f(•) is either the multi-head attention fATT(•) or 
MLP fFFN(•). The multi-head self-attention layer is based on scaled dot- 
product attention (Fig. 4), which attempts to query information from 
the source sequence that is relevant to the target sequence as shown in 
Eq. (7). 

fScaled Dot− Product Attention(Q,K,V)= softmax
(

QKT
̅̅̅̅
m

√

)

V (7)  

Where the row-wise SoftMax is represented softmax(•). One scale dot- 
product attention attends only one position in each row hence to 
attend to multiple positions, the multi-head attention was employed via 
multiple scaled dot-product attention in parallel as shown in Fig. 4. B 
and mathematically represented as; 

fATT(Q,K,V)= [head1,⋯, headh]W(O) (8)  

Where headi = fScaled Dot− Product Attention(QW(Q)

i ,KW(K)
i ,VW(V)

i ), h depicts the 
number of attention heads, W(•) represent the learnable entities. From 
Fig. 4. C. the MLP block is of two layers; the non-linear function ∅(•) and 
the parameters W(•) mathematically calculated as thus; 

fFFN(х)=∅
(
хW(1))W(2) (9) 

From Equation (5), the extracted feature i coming from Block one is 
depicted as xi, the attention layer configuration calculates outputs as 

Fig. 3. The first Block’s obtained features after dimension reduction form the input tensor of the second block which computes the covariance matrix before 
completing two successive operations of sequential convolution and quasi-activation to produce the output tensor (Multiplication of the input along the channel axis). 

Fig. 4. A illustrates the Scale Dot Product attention, B. illustrates the implemented Multi-head Self-Attention network showing the several attention layers running in 
parallel and C. shows the implemented MLP Block. 
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shown in equation (10) whereas the MLP layer configuration calculates 
the output as shown in equation (11). 

x2i+1 = fLN(x2i + fATT(x2i, x2i, x2i)) (10)  

x2i+2 = fLN(x2i+1 + fFFN(x2i+1)) (11) 

Block Four: The GeLu activation [49] function was employed after a 

1D Global Average Pooling, whereas the SoftMax activation function 
was utilized after Batch Normalization [48] in the second block, as 
shown in Fig. 4 (C). The Adam and SGD optimizers serve as the opti-
mization method whereas the categorical smooth loss and a categori-
cally cross-entropy loss serve as the loss function.   

Step 1: 

Step 2. 

Step 3: 

Step 4: 
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4. Experiments 

A thorough analysis of the dataset, data preparation, evaluation 
metric, and experimental settings are done in this part. 

4.1. Dataset 

Some existing works use proprietary datasets to evaluate their ap-
proaches, while others mix data from many publicly available sources. 
Two huge publicly available datasets were used in this work, as stated 
below:  

• Data A: This dataset (COVID-19 Radiography Dataset [50]) contains 
four unique classes of medical Chest X-ray images: Normal, Pneu-
monia, Lung Opacity, and COVID-19, which were collected by re-
searchers from Qatar University Doha Qatar, University of Dhaka, 
Bangladesh, and medical professionals and researchers from 
Pakistan and Malaysia. It contains 3616 COVID-19 samples, 10,192 
Normal samples, 6012 Lung Opacity samples, and 1345 Pneumonia 
samples. The images have a resolution of 299 x 299 pixels and are in 
the Portable Network Graphics file format. In this paper, only 3000 
images per class were collected for training, 300 for validation, and 
300 for testing. We used the Python Augmentor process to augment 
the data to get the number of samples needed for the experiment 
because the Pneumonia samples were less than 3000.  

• Data B: The ChestX-ray-15k dataset was acquired by Badawi et al. 
[51] from eleven different sources. This dataset contains a balanced 
amount of Chest X-ray images for training/validation and testing, 
with 3500 and 1500 images, respectively. The three unique chest 
X-ray categories are normal, COVID-19, and pneumonia. The images 
in this category are all in portable network graphics format, however 
at varied spatial resolutions. The validation set included 500 images 
from each test set class. 

These datasets are utilized to perform a multi-class prediction study 
for COVID-19 detection and to address the multi-class scarcity problem. 
All of the images were scaled to 224 by 224 pixels using bilinear inter-
polation. To increase the number of images in each class, the data 
transformations zoom range = 0.2, rotation range = 1, and horizontal 
flip = True were carried out. For each of the classes, Fig. 5 displays 
multiple illustrations of different visual views. The distribution splits of 
the dataset by class are shown in Table 1. For each class, a random se-
lection from the dataset is used to determine the training set, validation 
set, and testing set. 

4.2. Evaluation metrics 

Several assessment metrics were used to gauge how robust the pro-
posed model was. ROC curve, PR curve, F1-score, specificity, accuracy, 
and precision. True Positive, False Positive, True Negative and False 
Negative are all abbreviated as TP, FP, TN, and FN, respectively. The 
probability curve created by plotting at various threshold levels is 
referred to as the ROC (Receiver Operating Characteristic). The 
following are the metrics we used; 

Accuracy=
TP + TN

(TP + TN) + (FP + FN)
∗ 100 (12)  

Precision=
TP

TP + FP
∗ 100 (13)  

Specificity=
TN
N

∗ 100 =
TN

TN + FP
∗ 100 (14)  

Sensitivity=
TP
P

∗ 100 =
TP

TP + FN
∗ 100 (15)  

F1 score=
(

SEN − 1 + PRC− 1

2

)− 1

=
2 ∗ TP

2 ∗ TP + FP + FN
(16)  

4.3. Experimental setup 

This experiment was carried out on Desktop Computer with 64.0 GB 
RAM and an NVIDIA GEFORCE RTX-3060 12 GB graphics processing 
unit with a CPU (AMD RYZEN 9 5900X). This paper utilizes the open- 
source library of Keras and TensorFlow for implementation. Table 2 
summarized the training hyperparameters used in this study. This study 
further explored the effects of the following hyperparameters on the 
proposed model. 

4.3.1. Loss function (Lf) 
Simply put, the Lf calculates how well the model can forecast using a 

given set of inputs. The difference between the model’s estimate using a 
set of specified values and the measured ground truth is the computed 
result, which is the loss or failure. Categorical cross-entropy loss and 
categorical smooth loss function were employed in this study’s analysis. 

4.3.2. Optimizer (Opt) 
By making model parameter updates in response to the results of the 

loss function, the Opt executes loss function minimization, producing a 
global minimum with the smallest and most accurate result. This paper 
utilized the Stochastic Gradient Descent (SGD) and Adaptive Moment 
Estimation (Adam). 

4.3.3. Learning rate (Lr) 
The Lr is a parameter that determines how much the model should 

modify each time the model weights are changed in response to the 
projected mistake. In this paper, the Lr of 1 × 10− 4 and 1 × 10− 3 are 
explored. 

5. Results 

This section discusses the classification results of the various ap-
proaches implemented in this paper starting with the classification 
performance of the base model (Inception v3), followed by the proposed 
approach result down to the Ablation studies and lastly comparison with 
the state-of-the-art models. 

5.1. Baseline experiment 

As stated earlier, this paper studied the behavior of dual optimizer, 
learning rate and loss function on the proposed model. However, we will 
report only the hyperparameter settings that give promising results 
hence we set an accuracy of 90% as a benchmark in reporting the 
various performance of the model. Since Dual_Pachi’s first block is a 
modified inceptionV3 model, this report starts with the performance of 
the original InceptionV3 as the performance baseline. Table 3 shows the 
obtained result which was recorded using accuracy, sensitivity, speci-
ficity, precision, F1-score and AUC. Various hyperparameter settings 
with that of Adam optimizer recorded an accuracy above 90% except for 
the settings with 10− 4 learning rate and categorical cross-entropy loss 
while that of SGD optimizer all recorded an accuracy lower than 90% 
except that of categorical cross-entropy loss and 10− 3 learning rate. 
From the experimented settings the setting using Adam optimizer, Cat-
egorical Cross-Entropy loss and 10− 3 Lr yielded the best classification 
performance with an accuracy of 0.91973, sensitivity of 0.84466, 
specificity of 0.94713, precision of 0.85426, F1-score of 0.84114 and 
AUC of 0.89426 while the rest recorded settings in Table 3 also per-
formed well with accuracy above 90% with the minimal difference 
among their results. Comparing the performance of the two-loss func-
tions, the categorical entropy loss is preferred to that of the categorically 
smooth loss as it yields much better accuracy. 
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5.2. Dual_Pachi experimental result (Data_A) 

Attention mechanisms have gained a lot of focus in computer vision 
tasks recently hence Dual_Pachi Block 3 incorporates a multi-head self- 
attention network and MLP block. During our experiment, we imple-
mented the proposed Dual_Pachi model with and without the Attention 
block (Block 3) to analyze how trustworthy attention mechanism per-
formance is in vision tasks. Table 4 illustrates the recorded results on the 
Adam optimizer using accuracy, sensitivity, specificity, precision, F1- 
score and AUC. Only the hyperparameter settings performance above 
90% accuracy is recorded for discussion. The results show the effect of 

the tuning parameters in the yielded results. Using the 10− 3 learning rate 
and categorical_smooth_loss function vs. categorical cross-entropy loss, 
the Dual_Pachi performance is good with minimal difference. However, 
its superiority was significant when using the 10− 4 Lr and categorical 
cross-entropy loss function with an accuracy of 0.90134, sensitivity of 
0.8057, specificity of 0.93499, precision of 0.83318, F1-score of 
0.80354 and AUC of 0.86999 over 0.82441 accuracy, 0.65074 sensi-
tivity, 0.88223 specificity, 0.76553 precision, 0.63804 F1-score and 
0.76446 AUC of the Model without the attention Block (Block 3). The 
best performance of the Dual_Pachi without Block 3 (Attention Block) is 

Fig. 5. Sample of the employed dataset.  

Table 1 
Employed dataset distribution.   

Partition Normal Pneumonia COVID-19 Lung Opacity Total Total 

Data_A Training 3000 3000 3000 3000 12000 14400 
Validation 300 300 300 300 1200 
Testing 300 300 300 300 1200 

Data_B Training 3500 3500 3500 – 10500  
Validation 500 500 500 – 1500 1500 
Testing 1000 1000 1000 – 3000   

Table 2 
Experiment with hyperparameters optimization and settings.  

Hyperparameters and Settings 

Loss Function Categorical Smooth Loss Categorical Cross-Entropy 

Optimizers Adam SGD Adam SGD 

Learning rate 0.0001 0.001 0.0001 0.001 0.0001 0.001 0.0001 0.001 

Batch size 8 8 8 8 
Reduce Learning Rate 0.2 0.2 0.2 0.2 
Epsilon 0.001 0.001 0.001 0.001 
Patience 10 10 10 10 
Verbose 1 1 1 1 
Es-Callback (Patience) 10 10 10 10 
Clip Value 0.2 0.2 0.2 0.2 
Epoch 100 100 100 100 
Patch Size (2, 2) (2, 2) (2, 2) (2, 2) 
Drop Rate 0.01 0.01 0.01 0.01 
Number of Heads 8 8 8 8 
Embed_dim 64 64 64 64 
Num_MLP 256 256 256 256 
Window Size Window Size//2 Window Size//2 Window Size//2 Window Size//2 
Input Size (224 x 224) (224 x 224) (224 x 224) (224 x 224)  
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seen using the learning rate of 10− 4 and categorical_smooth_loss func-
tion with an accuracy of 0.95819, sensitivity of 0.91672, specificity of 
0.97106, precision of 0.92882, F1-score of 0.92002 and AUC of 0.94211. 
In summary of the Adam optimizer settings, the Dual_Pachi performed 
much better than when the attention block is removed with a 
+0.01–0.05% difference in all the implemented evaluation metrics 
supporting the claims of the superb contribution of the attention 
mechanism in vision tasks. 

Table 5 shows the Receiver operating characteristics (ROC) curve 
and the precision-recall curve (PR) for the individual class performance 
of the analyzed Table 4. For the Dual_Pachi without Block 3 model, the 
class performance is affected by the training hyperparameters. For the 
categorical_smooth_loss, training with 10− 4 learning rate, the Lung 
opacity had a better area (0.98) followed by COVID-19 (0.96), while the 
Normal and the Pneumonia class had the same area (0.92). Training 
with 10− 3 learning rate, the COVID-19 class had an area of 0.94 followed 
by Lung opacity (0.93), Pneumonia class (0.89) and lastly the Normal 
class (0.78). For the categorical cross-entropy loss function, and 10− 3 

learning rate, the Lung opacity class have the best area (0.99) followed 
by the COVID-19 class (0.95), and the Normal class (0.92) while the 
pneumonia class had the least area (0.91). The AP performance of the 
Dual_Pachi without Block 3 is in synchronization with the ROC Perfor-
mance. However, the Highest AP in all the implemented settings is seen 
in the Lung opacity class (0.92) via 10− 4 learning rate and catego-
rical_smooth_loss function while the least AP is seen in the Normal Class 
with an AP of 0.55 via 10− 3 learning rate and categorical_smooth_loss. 

The Dual_Pachi ROC and AP are also seen in Table 5. For the cate-
gorical_smooth_loss, training with 10− 4 learning rate, the COVID-19 
class had a better area (0.98), followed by the Lung opacity (0.96), 
Normal class (0.95) and the Pneumonia class (0.94). However, training 
with 10− 3 learning rate, the Lung opacity class and the Pneumonia class 
are the two preferred as they had an area of 0.97 and 0.96 respectively. 
The COVID-19 class followed with an area of 0.95 while the Normal 
yielded the least area (0.89). For the categorical cross-entropy loss 
function, and learning rate of 10− 3, the pneumonia class had a better 
area (0.97), followed by the COVID-19 class (0.95), the Lung Opacity 
class (0.94) and the Normal class (0.93). The Precision-Recall curve of 
the Dual_Pachi models depicts that the COVID-19 class had a better AP 
(0.95) followed by the Lung opacity class (0.92), the Pneumonia class 
(0.89) and the Normal class with (0.80) for the 10− 4 learning rate and 
categorical_smooth_loss which is the highest recorded AP in this 
experiment. 

Analyzing the performance of the Dual_Pachi performance using the 
SGD Optimizer, we only recorded the best performance of the model 
which is found to be at the learning rate of 10− 3, and categorical cross- 
entropy loss function. Dual_Pachi recorded an accuracy of 0.95151, a 
sensitivity of 0.90316, a specificity of 0.96772, a precision of 0.90625, 
an F1-score of 0.90127 and an AUC of 0.93545 as seen in Table 6. A huge 
difference is noted between Dual_Pachi’s performance and when 
Dual_Pachi is trained without the attention Block. The SGD Optimizer 
Receiver Operating Characteristic (ROC) and Precision-Recall (PR) of 
the Dual_Pachi are also seen in Table 6. The best ROC Area is seen in the 

Pneumonia class (0.97) while the Normal class (0.93) recorded the least. 
In general, the Dual_Pachi model recorded an area of 0.95 for the 
COVID-19 class, 0.94 for the lung opacity class, 0.97 for the Pneumonia 
class and 0.93 for the Normal class. The best Class Ap is seen in the 
Pneumonia class (0.95) while its worst AP is in the COVID-19 class 
(0.80). In general, Dual_Pachi yielded an AP of 0.95 for the pneumonia 
class, 0.88 for the lung opacity class, 0.80 for the COVID-19 class and 
0.88 for the Normal class. Fig. 6 depicts the best ROC and Ap perfor-
mance of the proposed aproach on data_A for both Adam and SGD 
optimizer. 

5.3. Dual_Pachi experimental result (Data_B) 

This section explains the result of the implemented models on 
Data_B. In line with the performance evaluation of Data_A, the same 
evaluation metrics and implementation stargates were used here. Just as 
in dataset_A, the Dual_Pachi model without the attention Block perfor-
mance was improved with little to no change using the Adam Opt, 10− 3 

learning rate (Lr), and categorical smooth loss function. However, when 
using Adam Opt, 10− 3 Lr and categorical cross-entropy loss function, its 
superiority was significant with an accuracy of 0.968, a sensitivity of 
0.95203, specificity of 0.97594, precision of 0.95234, F1-score of 
0.95208, and AUC of 0.96391 over 0.93067 accuracies, 0.89867 sensi-
tivity, 0.94839 specificities, 0.90341 precision, 0.89684 F1-score and 
0.92258 AUC. The Adam Opt, 10− 3 Lr and categorical smooth loss 
function provide the best performance. With a +0.01–0.04% difference 
in each of the implemented evaluation measures, the Dual_Pachi model 
outperformed the without attention Block model in all of the Adam 
optimizer (Opt) experiments. 

With the SGD Opt, 10− 4 Lr and categorical smooth loss function, 
Dual_Pachi exhibits the best performance with an accuracy of 0.95822, a 
sensitivity of 0.93667, specificity of 0.96869, precision of 0.93759, F1- 
score of 0.93631, and AUC of 0.95304. According to Table 7, the best 
performance for the Adam Opt Dual_Pachi model is at 10− 3 Lr and 
categorical smooth loss and 10− 4 Lr and categorical cross-entropy loss 
whereas the greatest performance for SGD is at the 10− 4 Lr. and cate-
gorical cross-entropy loss and 10− 4 Lr and categorical smooth loss. 

Table 8 shows the class performance of each model using the 
Receiver operating characteristics (ROC) curve and the precision-recall 
curve (PR) via the Adam Optimizer. For the categorical_smooth_loss, 
training with 10− 4 Lr, The Pneumonia class had a better area (0.97) 
followed by the COVID-19 class (0.96) and lastly the Normal class (0.95) 
which follows the same performance with 10− 3 Lr. For the categorical 
cross-entropy loss function, and 10− 4 Lr, the Pneumonia class had the 
best area (0.96), followed by the Normal class (0.90), and lastly the 
COVID-19 class (0.89) while training with 10− 3 Lr, the Normal class and 
the Pneumonia class had the same area (0.92) while the COVID-19 class 
had a better area (0.97). The AP performance is in synchronization with 
the ROC Performance. However, the Highest AP in all the implemented 
settings is seen in the COVID-19 class (0.95) via 10− 3 Lr and catego-
rical_smooth_loss function and categorical cross-entropy. Also, the 
Pneumonia class (0.95) 10− 3 Lr and categorical_smooth_loss function 

Table 3 
Baseline classification result. Opt signifies optimizer, Lr signifies learning rate, Adam signifies adaptive moment estimation while SGD signifies stochastic gradient 
descent, and Lf signifies loss function.  

Models Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 Score AUC 

Opt: Adam, Lf: Categorical Smooth Loss, Lr: 10− 4 

Baseline 0.90468 0.81116 0.93631 0.83653 0.81355 0.87373 
Opt: Adam, Lf: Categorical Smooth Loss, Lr: 10− 3 

Baseline 0.9097 0.81579 0.93941 0.83356 0.81979 0.87881 
Opt: Adam, Lf: Categorical Cross-Entropy, Lr: 10− 3 

Baseline 0.91973 0.84466 0.94713 0.85426 0.84114 0.89426 
Opt: SGD, Lf: Categorical Cross-Entropy, Lr: 10− 4 

Baseline 0.90301 0.80312 0.93645 0.81609 0.80225 0.8729  
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while the least AP is seen in the Normal Class with an AP of 0.75 via 10− 4 

Lr and categorical cross-entropy. 
For the without-attention Block approach, using catego-

rical_smooth_loss, training with 10− 4 and 10− 3 Lr, the Pneumonia class 
had a better area (0.97), followed by the COVID-19 class (0.96) and then 
the Normal class (0.95). For the categorical cross-entropy loss function, 
and 10− 4 Lr, the normal class had the least area (0.92) with the COVID- 
19 class having the highest (0.98), followed by the Pneumonia class 
(0.90). Using the Lr of 10− 3, the COVID-19 and Pneumonia class had a 
better area (0.94), while the Normal class yielded the least result (0.89). 
The Precision-Recall curve depicts that the Pneumonia and the COVID- 
19 class had the highest AP recording an AP of 0.95 respectively but in a 

different training settings. The least AP was the Normal class (0.75) at 
the Lr of 10− 4 and categorical cross-entropy function. Generally, the best 
AP was seen at the Lr of 10− 3 and categorical_smooth_loss function with 
the COVID-19 class recording an AP of 0.92, Pneumonia recoding 0.95 
and the normal class recording 0.90 while the worst AP is seen at the Lr 
of 10− 3 and categorical cross-entropy function with an AP of 0.81 
(COVID-19), 0.80 (Normal class) and 0.91 (Pneumonia class). 

Table 9 shows the ROC area and the AP of the Dual_Pachi using the 
SGD optimizer. The highest ROC area was seen in the Lr of 10− 4 and 
categorical_smooth_loss function which also yielded the best AP. How-
ever, the least ROC area was seen Lr of 10− 3 and categorical_smooth_loss 
function which also had the least AP. Among all the implemented setups, 

Table 4 
Classification Performance of Dual_Pachi on Data_A using the Adam Optimizer. The Analyzed hyperparameter includes; learning rate (Lr): 10− 4 and 10− 3, loss function 
(Lf); categorical_smooth_loss and categorical cross-entropy.   

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 Score AUC 

Opt: Adam, Lr: 10− 4, Lf: categorical_smooth_loss 
Without Bl. 3 0.95819 0.91672 0.97106 0.92882 0.92002 0.94211 
Dual_Pachi 0.96656 0.93315 0.97774 0.93905 0.93389 0.95547 
Opt: Adam, Lr: 10− 3, Lf: categorical_smooth_loss 
Without Bl. 3 0.9097 0.82806 0.94174 0.82548 0.81511 0.88349 
Dual_Pachi 0.95318 0.90794 0.96911 0.90699 0.90518 0.93822 
Opt: Adam, Lr: 10− 3, Lf: categorical cross-entropy 
Without Bl. 3 0.95485 0.91232 0.96878 0.92109 0.9132 0.93756 
Dual_Pachi 0.95987 0.91747 0.97255 0.93502 0.92233 0.9451  

Table 5 
Receiver Operating Characteristic (ROC) and Precision-Recall (PR) performance of Dual_Pachi on the Adam Optimizer (Opt). The parameter employed includes 
learning rate (Lr); 10− 4 and 10− 3, Loss function (Lf); Categorical_smooth_loss and categorical cross-entropy.  

ROC (Area) Macro-Average Micro-Average COVID-19 Lung Opacity Normal Pneumonia 

Opt: Adam, Lr: 10− 4, Lf: categorical_smooth_loss 
Without Bl. 3 0.94 0.94 0.96 0.98 0.92 0.92 
Dual_Pachi 0.96 0.96 0.98 0.96 0.95 0.94 
Opt: Adam, Lr: 10− 3, Lf: categorical_smooth_loss 
Without Bl. 3 0.88 0.88 0.94 0.93 0.78 0.89 
Dual_Pachi 0.94 0.94 0.95 0.97 0.89 0.96 
Opt: Adam, Lr: 10− 3, Lf: categorical cross-entropy 
Without Bl. 3 0.94 0.94 0.95 0.99 0.92 0.91 
Dual_Pachi 0.95 0.95 0.95 0.94 0.93 0.97  

Precision-Recall (AP) Micro-Average COVID-19 Lung Opacity Normal Pneumonia 

Opt: Adam, Lr: 10− 4, Lf: categorical_smooth_loss 
Without Bl. 3 0.86 0.90 0.92 0.79 0.87 
Dual_Pachi 0.89 0.95 0.92 0.80 0.89 
Opt: Adam, Lr: 10− 3, Lf: categorical_smooth_loss 
Without Bl. 3 0.72 0.67 0.85 0.55 0.84 
Dual_Pachi 0.84 0.84 0.84 0.77 0.93 
Opt: Adam, Lr: 10− 3, Lf: categorical cross-entropy 
Without Bl. 3 0.85 0.87 0.92 0.79 0.86 
Dual_Pachi 0.87 0.80 0.88 0.88 0.95  

Table 6 
Data_A SGD Optimizer Receiver Operating Characteristic (ROC) and Precision-Recall (PR) Result. The parameter employed includes Learning rate (Lr): 10− 3, cate-
gorical cross-entropy.  

Opt: SGD, Lr: 10− 3, Lf: categorical cross-entropy 

Without Bl. 3 0.85284 0.71417 0.90233 0.70741 0.70447 0.80465 
Dual_Pachi 0.95151 0.90316 0.96772 0.90625 0.90127 0.93545  

ROC (Area) Macro-Average Micro-Average COVID-19 Lung Opacity Normal Pneumonia 

Without Bl. 3 0.80 0.81 0.73 0.81 0.80 0.90 
Dual_Pachi 0.95 0.95 0.95 0.94 0.93 0.97  

Precision-Recall (AP) Micro-Average COVID-19 Lung Opacity Normal Pneumonia 

Opt: SGD, Lr: 10− 3, Lf: categorical cross-entropy 
Without Bl. 3 0.57 0.52 0.53 0.55 0.71 
Dual_Pachi 0.87 0.80 0.88 0.88 0.95  
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the COVID-19 and the Pneumonia class had the highest area (0.97) each 
while the COVID-19 recorded the best AP. Fig. 7 depicts the best ROC 
and Ap performance of the proposed aproach on data_A for both Adam 
and SGD optimizer. 

6. Discussions 

This paper focused its discussion mainly on the effects of the 
hyperparameters used in the training of the models. As seen in Fig. 2, 
Dual_Pachi is made up of four blocks the attention mechanism being the 
3rd block. As discussed earlier, in the field of computer vision, attention 
mechanisms have proven to be a promising approach to tackling the task 
with feature extraction difficulties. Thus, we experimented on the pro-
posed Dual_Pachi with and without the attention mechanism block to 
verify its contribution to the performance of the Daul_Pachi model. 
Fig. 8 summarizes all the results. From Table 4, it was noticed that the 
Dual_Pachi model without the attention block performs much better on 
Data_A when trained with the Adam optimizer, with a learning rate of 
10− 4 on both categorical_smooth_loss and categorical cross-entropy loss 
functions. However, the Dual_Pachi outperformed the without-attention 
block approach in all the experiments (Adam and SGD optimizer.). The 
best Dual_Pachi without the attention block result on data_A yielded an 
accuracy of 0.96656, sensitivity of 0.93315, specificity of 0.97774, 
precision of 0.93905, F1-score of 0.93389 and AUC of 0.95547 while 

that of Dual_Pachi yielded an 0.95987 accuracy, 0.91747 sensitivity, 
0.97255 specificity, 0.93502 precision, 0.92233 F1-score and 0.9451 
AUC. 

Notwithstanding, the Dual_Pachi results show that the optimal best 
hyperparameter settings were not met as the different implementation 
setups all yielded an accuracy of 0.95 except for the Adam optimizer, a 
learning rate of 10− 4, categorical cross-entropy loss function with all the 
SGD optimizer experiments exclusively of SGD optimizer, a learning rate 
of 10− 3 and categorical cross-entropy loss. Dual_Pachi model results 
indicate that little finetuning of the number of heads and MLP will yield 
a better result as recorded in the table. Comparing the Area and AP of the 
individual classes, the COVID-19 class was in competition with the lung 
opacity class for the best results in all the experiments carried out while 
pneumonia and the normal class remain the least AP and area although 
the Pneumonia class was much better than the normal class. This also 
entails that the proposed model is robust enough to classify the classes 
differently. 

The results obtained on Data_B are also in line with the results of 
Data_A. The without-attention block approach using the Adam opti-
mizer, a learning rate of 10− 4 on both categorical_smooth_loss and cat-
egorical cross-entropy loss function is in uniformity with the Dual_Pachi 
model with +0.01%–0.02%. However, the Dual_Pachi supersedes all 
other experimental setup results. the best and worst result for the 
without attention block is seen at the Adam optimizer, a learning rate of 

Fig. 6. The selected best ROC and Precision-Recall Curve of the Dual_Pachi on Data_A. A & B depicts the ROC and AP using the Adam optimizer, a learning rate of 
10− 4, and categorical smooth loss while C & D depicts that of SGD Optimizer, a learning rate of 10− 3, and categorical cross-entropy loss. 

Table 7 
Dual_Pachi Data_B classification Result. The optimizers employed include Adam and SGD, Lr; 10− 4 and 10− 3, Loss function; Categorical_smooth_loss and categorical 
cross-entropy.   

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 Score AUC 

Opt: Adam, Lr: 10− 4, Lf: categorical_smooth_loss 
Without Bl. 3 0.95111 0.92693 0.96355 0.92656 0.92635 0.94532 
Dual_Pachi 0.96356 0.94526 0.97239 0.94721 0.94578 0.95859 
Opt: Adam, Lr: 10− 3, Lf: categorical_smooth_loss 
Without Bl. 3 0.968 0.95206 0.97582 0.95273 0.95236 0.96373 
Dual_Pachi 0.97867 0.96786 0.984 0.96803 0.96787 0.976 
Opt: Adam, Lr: 10− 4, Lf: categorical cross-entropy 
Without Bl. 3 0.92356 0.88615 0.94285 0.89449 0.88529 0.91428 
Dual_Pachi 0.96356 0.94466 0.97263 0.94825 0.94431 0.95895 
Opt: Adam, Lr: 10− 3, Lf: categorical cross-entropy 
Without Bl. 3 0.93067 0.89867 0.94839 0.90341 0.89684 0.92258 
Dual_Pachi 0.96800 0.95203 0.97594 0.95234 0.95208 0.96391  

Opt: SGD, Lr: 10− 4, Lf: categorical_smooth_loss 
Without Bl. 3 0.92533 0.88855 0.94388 0.89242 0.88831 0.91581 
Dual_Pachi 0.95822 0.93667 0.96869 0.93759 0.93631 0.95304 
Opt: SGD, Lr: 10− 3, Lf: categorical_smooth_loss 
Without Bl. 3 0.88000 0.82111 0.91016 0.82465 0.81777 0.86524 
Dual_Pachi 0.91556 0.87352 0.93677 0.87937 0.86920 0.90516 
Opt: SGD, Lr: 10− 4, Lf: categorical cross-entropy 
Without Bl. 3 0.93422 0.90223 0.95093 0.90577 0.90115 0.92640 
Dual_Pachi 0.95022 0.92666 0.96309 0.92807 0.92547 0.94464 
Opt: SGD, Lr: 10− 3, Lf: categorical cross-entropy 
Without Bl. 3 0.91822 0.87731 0.93854 0.87891 0.87610 0.90781 
Dual_Pachi 0.91911 0.87253 0.93767 0.89032 0.87594 0.90651  
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10− 3 and categorical_smooth_loss and SGD optimizer, a learning rate of 
10− 3 and categorical smooth loss which is also the same as that of the 
Dual_Pachi. An obvious remark is seen between the performance of the 
without attention block and the Dual_Pachi which is the lowest yielded 
result of the Dual_Pachi is +0.1–0.5% higher. We summarize this dis-
cussion by strongly believing that the Dual_Pachi model when trained 
with its optimal hyperparameters supersedes the without-attention 
block approach. 

6.1. Ablation studies of the implemented models (Data_A) 

The quantitative ablation studies are examined in this section be-
tween the baseline, the without attention block and the Dual_Pachi 
model as shown in Table 10. Data_A is chosen for this experiment as 
models tend to perform poorly when multiple classes with fewer samples 
are used for training. Hence robust models are designed to perform well 
irrespective of the number of training samples involved. The quantita-
tive studies also saw the differently implemented hyperparameters 
(optimizer, learning rate and Loss function). From Table 10, there are 
significant contributions with +0.03512 in accuracy, +0.07574 in 
sensitivity, +0.02281 in specificity, +0.06488 in precision, +0.07308 in 
F1-Score, and +0.07971 AUC by the without attention block. 3 while the 
Dual_Pachi had a +0.05351 in accuracy, +0.10556 in sensitivity, 
+0.03475 in specificity, +0.09229 in precision, +0.10647 in F1-score 
and +0.06838 in AUC. For the experiment using the Adam optimizer, 
the contribution of the two approaches is a significant sequel to the 
training setups. 

We further visualize the role of the implemented attention mecha-
nism of the Dual_Pachi model as shown in Fig. 9. The implemented 
attention mechanism is a multi-head attention mechanism and it 

involved dividing the input images into patches and embeddings. The 
embedding retains the potions of the images that were divided into 
patches by so doing helps the model to remember the initial input 
structure during output. 2D learnable convolutions were used for the 
patch conversions. In addition, the attention mechanism proximity in-
creases as the depth of the network increase too. Fig. 9 depicts the area 
where the attention mechanism model focuses via the input image 
relevant for recognition and classification. 

6.2. Comparison with the state-of-the-art deep learning models 

Comparison with the state-of-the-art was done with the optimal 
setting result of the implemented models. We compared the models on 
Data_A and Data_B results. With the Dual_Pachi model, we recorded 
0.96656 accuracy, 0.93315 sensitivity, 0.97774 specificity, 0.93905 
precision, 0.93389 F-1 score and 0.95547 AUC score on Data_A and 
0.97867 accuracy, 0.96786 sensitivity, 0.984 specificity, 0.96803 pre-
cision, 0.96787 F-1 score and 0.976 AUC score on Data_B while the 
without attention block model achieve 0.95987 accuracy, 0.91747 
sensitivity, 0.97255 specificity, 0.93502 precision, 0.92233 F-1 score 
and 0.9451 AUC score on Data_A and 0.968 accuracy, 0.95206 sensi-
tivity, 0.97582 specificity, 0.95273 precision, 0.95236 F-1 score and 
0.96373 AUC score on Data_B. We first compared with models that used 
the same dataset as ours as shown in Tables 11 and 12. 

A comparison of Data_A utilizing accuracy, precision, sensitivity, and 
F1-score is shown in Table 11. For COVID-19 multiclassification, Wang 
et al. [26] recommended using COVIDNet, but Khan et al. [52] sug-
gested using CoroNet. However, the COVIDNet model beats the CoroNet 
model, with an accuracy of 90.78%, precision of 91.18%, and F1-Score 
of 90.81% compared to 89.68%, precision of 90.08%, and F1-Score of 
89.88%. However, in terms of sensitivity, the CoroNet model beat the 

Table 8 
Dual_Pachi Adam optimizer implementation Receiver Operating Characteristic 
(ROC) and Precision-Recall (PR) classification Result. The parameter employed 
includes Lr: 10− 4 and 10− 3, Lf: Categorical_smooth_loss and categorical cross- 
entropy.  

ROC (Area) Macro- 
Average 

Micro- 
Average 

COVID- 
19 

Normal Pneumonia 

Opt: Adam, Lr: 10− 4, Lf: categorical_smooth_loss 
Without Bl. 

3 
0.95 0.95 0.94 0.93 0.96 

Dual_Pachi 0.96 0.96 0.96 0.95 0.97 
Opt: Adam, Lr: 10− 3, Lf: categorical_smooth_loss 
Without Bl. 

3 
0.96 0.96 0.96 0.95 0.97 

Dual_Pachi 0.98 0.98 0.98 0.97 0.98 
Opt: Adam, Lr: 10− 4, Lf: categorical cross-entropy 
Without Bl. 

3 
0.91 0.91 0.89 0.90 0.96 

Dual_Pachi 0.96 0.96 0.98 0.92 0.97 
Opt: Adam, Lr: 10− 3, Lf: categorical cross-entropy 
Without Bl. 

3 
0.92 0.92 0.94 0.89 0.94 

Dual_Pachi 0.96 0.96 0.97 0.96 0.96  

Precision-Recall 
(AP) 

Micro- 
Average 

COVID- 
19 

Normal Pneumonia 

Opt: Adam, Lr: 10− 4, Lf: categorical_smooth_loss 
Without Bl. 3 0.88 0.86 0.87 0.92 
Dual_Pachi 0.91 0.93 0.89 0.91 
Opt: Adam, Lr: 10− 3, Lf: categorical_smooth_loss 
Without Bl. 3 0.92 0.92 0.90 0.95 
Dual_Pachi 0.95 0.95 0.94 0.95 
Opt: Adam, Lr: 10− 4, Lf: categorical cross-entropy 
Without Bl. 3 0.82 0.84 0.75 0.89 
Dual_Pachi 0.91 0.95 0.89 0.90 
Opt: Adam, Lr: 10− 3, Lf: categorical cross-entropy 
Without Bl. 3 0.84 0.81 0.80 0.91 
Dual_Pachi 0.92 0.95 0.91 0.91  

Table 9 
Dual_Pachi SGD optimizer implementation Receiver Operating Characteristic 
(ROC) and Precision-Recall (PR) classification Result. The parameter employed 
includes Lr; 10− 4 and 10− 3, Loss function; Categorical_smooth_loss and cate-
gorical cross-entropy.  

ROC (Area) Macro- 
Average 

Micro- 
Average 

COVID- 
19 

Normal Pneumonia 

Optimizer: SGD, Lr: 10− 4, Lf: categorical_smooth_loss 
Without Bl. 

3 
0.92 0.92 0.93 0.88 0.93 

Dual_Pachi 0.95 0.95 0.97 0.92 0.97 
Opt: SGD, Lr: 10− 3, Lf: categorical_smooth_loss 
Without Bl. 

3 
0.86 0.87 0.90 0.82 0.88 

Dual_Pachi 0.90 0.91 0.94 0.84 0.93 
Opt: SGD, Lr: 10− 4, Lf: categorical cross-entropy 
Without Bl. 

3 
0.93 0.93 0.96 0.90 0.92 

Dual_Pachi 0.94 0.94 0.93 0.93 0.97 
Opt: SGD, Lr: 10− 3, Lf: categorical cross-entropy 
Without Bl. 

3 
0.91 0.91 0.93 0.87 0.92 

Dual_Pachi 0.91 0.91 0.93 0.87 0.92  

Precision-Recall 
(AP) 

Micro- 
Average 

COVID- 
19 

Normal Pneumonia 

Opt: SGD, Lr: 10− 4, Lf: categorical_smooth_loss 
Without Bl. 3 0.83 0.81 0.79 0.88 
Dual_Pachi 0.90 0.93 0.86 0.91 
Opt: SGD, Lr: 10− 3, Lf: categorical_smooth_loss 
Without Bl. 3 0.73 0.75 0.71 0.75 
Dual_Pachi 0.80 0.85 0.76 0.81 
Opt: SGD, Lr: 10− 4, Lf: categorical cross-entropy 
Without Bl. 3 0.85 0.86 0.79 0.89 
Dual_Pachi 0.88 0.89 0.82 0.93 
Opt: SGD, Lr: 10− 3, Lf: categorical cross-entropy 
Without Bl. 3 0.81 0.83 0.77 0.83 
Dual_Pachi 0.81 0.81 0.79 0.84  
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COVIDNet model (96.4%). The Mag-SD model was suggested by Li et al. 
[53] who also attained 92.35% accuracy, 92.50% precision, 92.20% 
sensitivity, and 92.34% F1-Score. The use of an attention mechanism 
was suggested by Mondal et al. [54] and Shi et al. [55] to enhance 
feature extraction understanding of Chest X-ray images. The 
Teacher-Student Attention Scale was presented by Shi et al. [55]. The 
accuracy was higher than with the earlier methods, reaching 91.38%. 
The Local-Global Attention Network was developed by Mondal et al. 
[54] and surpassed earlier state-of-the-art models in terms of classifi-
cation accuracy (95.87%), precision (95.56%), sensitivity (95.99%), and 
F1-score (95.74%). The author of Ref. [56] utilized the same dataset and 
two different CXr classification algorithms in this work. The 

EfficientNetB1 (Strategy 2) produced the greatest classification results, 
with 92% accuracy, 91.75% precision, 94.50% sensitivity, and 92.75% 
F1-Score. Both strategies used NasNetMobile, MobileNetV2, and Effi-
cientNetB1. As seen in Table 11, the model we used in this investigation 
performed better in terms of accuracy. However, due to the number of 
training sets used from this dataset, we obtained an acceptable sensi-
tivity, Precision and F1-Score. 

The EfficientNet-B0 was used by Luz et al. [37], however, the 
recorded result is not encouraging. The COVID-Transformer network 
was utilized by Shome et al. [57] to achieve 92% accuracy, 93% pre-
cision, 89% sensitivity, and 91% F1 score. Seven pre-trained deep 
learning models were used by Huang et al. [58] in two situations. He 

Fig. 7. The selected best ROC and Precision-Recall Curve of the Dual_Pachi on Data_B. A & B depicts the Adam optimizer ROC and AP while C & D depicts the 
SGD optimizer. 

Fig. 8. Graphical illustration of the optimal hyperparameters for the two proposed approaches on both datasets.  

Table 10 
Dual_Pachi Quantitative Ablation studies illustrate the contribution of each part in the model performance using Data_A.   

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 Score AUC 

Opt: Adam, Lr: 10− 4, Lf: categorical_smooth_loss 
Baseline 0.90468 0.81116 0.93631 0.83653 0.81355 0.87373 
Without Bl. 3 +0.05351 +0.10556 +0.03475 +0.09229 +0.10647 +0.06838 
Dual_Pachi +0.06188 +0.12199 +0.04143 +0.10252 +0.12034 +0.08174 
Opt: Adam, Lr: 10− 3, Lf: categorical cross-entropy 
Baseline 0.91973 0.84466 0.94713 0.85426 0.84114 0.89426 
Without Bl. 3 +0.03512 +0.06766 +0.02165 +0.06683 +0.07206 +0.0433 
Dual_Pachi +0.04014 +0.07281 +0.02542 +0.08076 +0.08119 +0.05084  

Opt: SGD, Lr: 10− 4, Lf: categorical_smooth_loss 
Baseline 0.88294 0.76244 0.92221 0.78338 0.76471 0.84442 
Without Bl. 3 +0.03512 +0.07574 +0.02281 +0.06488 +0.07308 +0.07971 
Dual_Pachi +0.05184 +0.10519 +0.03412 +0.09559 +0.10359 +0.06823  
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first adjusted without paying attention to how to make the models’ 
computations simpler, and then he did so while paying attention to the 
models’ computational complexity. His results showed that the less 
computationally difficult model produced better outcomes than the 
traditional approach, which is a step forward for the medical industry. 
The Dual_Pachi first block is designed keeping in mind the goal of 
creating models with a lower computational cost while producing better 
accuracy and precision. In conclusion, the Dual_Pachi showed the 
greatest degree of precision, indicating that the proposed classifier 
seldom misclassifies negative samples as positive values. The classifier 
can recognize the majority of positive samples that belong to each class, 
as evidenced by the fact that we obtained the highest recall score. When 
compared to baseline techniques, the recommended method has the 
highest F1 score, which suggests that it is the most balanced in terms of 
precision and sensitivity. 

6.3. Limitations and future works 

Notwithstanding, this paper identified some limitations of the pro-
posed approach. First, the result of the Dual_Pachi shows that the 
optimal sensitivity parameter setting was not met for the performance of 
the model due to the available resources for the experiment. Secondly, 
the suggested model did not take any Image Feature enhancement ap-
proaches into account such as Multi-Scale Retinex with Color Restora-
tion (MSRCR), Contrast Limited Adaptive Histogram Equalization 
(CLAHE) and Multi-Scale Retinex with chromaticity preservation 
(MSRCP). Thirdly, the severity of COVID-19 illness was not considered a 
sub-classification (mild, moderate, or severe disease). We also observe 
that the chest X-ray dataset only shows one series for a patient, sup-
porting the claim made by Ref. [34] that a small dataset (one chest x-ray 
series for a patient) cannot be used to predict whether a patient would 
develop a radiographic abnormality as the disease advances. 

As a future study, this study will address the highlighted shortcom-
ings. Before using feature extraction models, image-enhancing tech-
niques such as Contrast Limited AHE (CLAHE), Canny edge detection, 
import local binary pattern, and so on will be applied to the input image. 
Other medical image modalities will be used to assess the robustness of 
the model in medical image disease classification. Furthermore, we will 
incorporate the use of automatic data annotation [59] by utilizing dis-
cretization learning and contemporary Neural Network topologies to 
evaluate prediction variance as well as demonstrate the ability of the 
proposed model in classifying distorted images after being trained on a 

real image. 

7. Conclusion 

In this study, a new Attention Based Dual Path Framework with In-
termediate Second Order-Pooling termed Dual_Pachi is proposed for 
early detection and accurate feature extraction of Chest X-ray images for 
COVID-19 detection. Two new architectures are explored in this study. 
Dual_Pachi with attention block and Dual_Pachi without attention block. 
These two models were experimented with using two large publicly 
available datasets; COVID-19 Radiography Dataset [48] (Data_A) and 
ChestX-ray-15k dataset [49] (Data_B) and evaluated using accuracy, 
sensitivity, specificity, precision, F1-score and AUC evaluation metrics. 
The proposed model performance supports the claims of its robust 
feature extraction of the chest X-ray Images. The two-branch channel 
treatment (L channel and AB channel) in addition to the global 
second-order pooling and attention mechanism (Multi-head 
self-attention) focused on the low-level visual information and the 
high-level semantics of Chest X-ray image features without sacrificing 
performance. According to the experimental results, the proposed 
models yielded an acceptable result with an accuracy of 0.96656 
(Data_A) and 0.97867 (Data_B) for the Dual_Pachi approach and an ac-
curacy of 0.95987 (Data_A) and 0.968 (Data_B) for the Dual_Pachi 
without attention block model. From the established result, we saw the 
contribution of the attention mechanism in the proposed Dual_Pachi 
model. According to the results, the proposed models outperform 
traditional deep learning models and other state-of-the-art approaches 
described in the literature in terms of COVID-19 identification. A 
Grad-CAM-based visualization is also built to highlight where the 
applied attention mechanism is concentrating for suitable low and 
high-level semantic feature extraction of the chest x-ray images. 

Code availability/Availability of data 

Both https://github.com/abeerbadawi/COVID-ChestXray15k-Data 
set-Transfer-Learning (retrieved: August 17, 2022). and https://www. 
kaggle.com/datasets/tawsifurrahman/covid19-radiography-database 
(retrieved: 12 August 2022) provides access to the dataset utilized in this 
study. The TensorFlow/Keras code we utilized in our experiment is not 
currently accessible to the general public, but it will be when the study is 
published. 

Fig. 9. The proposed attention mechanism helps the model to focus on the semantic information in the Chest X-Ray image that is relevant for identification.  
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