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Abstract
In the current work, various concentrations of the aqueous extract of Ziziphus spina-christi were employed for the phytore-
duction of graphene oxide (GO). The green synthesized reduced graphene oxide (rGO) was characterized through UV-Vis 
spectrometry, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy, and energy-dispersive X-ray 
spectroscopy (SEM-EDX). Gas chromatography-mass spectrometry (GC-MS) denoted the presence of numerous phytocon-
stituents including ketones, terpenoids, fatty acids, esters, and flavonoids, which acted as reducing and capping agents. The 
obtained results indicated the increase in rGO yield and shape with increasing the extract concentration. The optimized rGO 
was instantaneously ~100% removed methylene blue (MB) from the water at 5 mg  L−1. However, the removal efficiency 
was slightly declined to reach 73.55 and 65.1% at 10 and 15 mg  L−1, respectively. A powerful antibacterial activity for rGO 
particularly against gram-negative bacteria with a high concentration of 2 ×  108 CFU  mL−1 was confirmed. Furthermore, 
rGO demonstrated promising and comparable antioxidant efficiency with vitamin C against DPPH free radical scavenging. 
While vitamin C recorded 13.45 and 48.4%, the optimized rGO attained 13.30 and 45.20% at 12 and 50 μg  mL−1, respectively.
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Introduction

Graphene is the basic structure of carbon materials (Allen 
et al. 2010). It is a noteworthy material due to its astonishing 
properties. It is the thinnest and strongest material on earth 
as well as possesses high electrical conductivity and great 
optical properties (Mahmoud et al. 2018b; Szőri et al. 2013). 
One of the exceptional properties of graphene is that it can 
be manipulated with other elements and metals to produce 

different materials with new superior properties (Radamson 
2017).

Such unique properties made graphene potentially useful 
in a broad range of applications for environmental, medici-
nal, and energy issues such as energy-electrical conversion 
(Weng et al. 2019), fuel cells (Farooqui et al. 2018), solar-
thermal conversion (Wu et al. 2019), photovoltaics (Das 
et al. 2019), photocatalysis (Raizada et al. 2019), water treat-
ment (Mahmoud et al. 2020), desalination (Homaeigohar 
and Elbahri 2017), gas adsorption (Szczęśniak et al. 2017), 
biosensors (Jiang et al. 2020; Mousazadeh et al. 2021), gas 
sensors (Stanford et al. 2019), light-emitting diodes (Chen 
et al. 2018), laser (Wang et al. 2018), transistors (Kireev 
et al. 2017), tissue engineering (Bai et al. 2018), imaging 
(Campbell et al. 2019), capacitors (Anandhi et al. 2022; Cor-
reas-Serrano et al. 2018), membranes (Mi 2019), conductive 
inks (Karagiannidis et al. 2017), high-frequency electronics, 
and flexible electrodes (Aliprandi et al. 2017). However, the 
main constrain that limits its use is the complicated scale-up 
production systems (Wang et al. 2019).

Reduced graphene oxide (rGO) is produced by chemi-
cal, physical, or thermal reduction routes. Chemical routes 
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require the usage of variety toxic reducing reagents (Saratale 
et al. 2018) such as hydroxylamine  (NH2OH), hydrazine 
 (N2H4.H2O), hydroquinone  (C6H4(OH)2), sodium boro-
hydride  (NaBH4), and hydrogen sulfide  (H2S) which are 
costly and not sustainable. In addition to the presence of 
impurities in the final product due to using these hazard-
ous chemicals (Mahmoud et al. 2018a). These issues reflect 
in the easily self-aggregates of the produced graphene and 
the limited scalability (Agudosi et al. 2020). Another route 
is the thermal reduction of GO which was applicable in a 
simple way by applying heat (thermal annealing reduction) 
(Xiang et al. 2022). However, it is not preferable for the mass 
production of graphene compared to other reduction routes 
which can be conducted at room temperature or slightly 
elevated temperature (Jiříčková et al. 2022).

Biological methods include the use of either microorgan-
isms or plants. The use of plant extracts, in particular, for 
the synthesis of rGO is of high interest as it is simple, safe, 
cost effective, non-toxic and gives higher yield than using 
bacteria and fungi (Mahmoud 2020b). Plants’ great potential 
in graphene synthesis is due to the wide variety of effective 
phytochemicals such as flavones, ketones, amides, terpe-
noids, phenols carboxylic acids, proteins, coenzymes, and 
carbohydrates that are able to effectively reduce graphene 
oxide into rGO (Verma and Chandel 2019). Various plant 
extracts were used to phytosynthesized rGO with the pur-
pose of different applications in environment and medicine 
(Akhavan et al. 2014), for instance, leaf extract of eucalyp-
tus species and rGO application in dye removal (Jin et al. 
2018), Cannabis sativa L, Punica granatum L, and Phoenix 
dactylifera to evaluate their reduction activity in preparation 
of rGO (Ousaleh et al. 2020), fruit of Phyllanthus emblica 
for rGO in supercapacitor application (Madhuri et al. 2021), 
bark extract of Alstonia scholaris and rGO application ani-
onic and cationic dyes decontamination (Ghosh et al. 2021), 
and green tea polyphenols and rGO application in cancer 
therapy (Akhavan et al. 2012). However, no literature is 
available on using the leaf extract of Ziziphus spina-christi 
for reducing graphene oxide.

In this work, Ziziphus spina-christi leaf extract was 
employed as a green reducing agent to synthesize graphene 
oxide. This is a further step toward the empowerment of 
green chemistry approach. The objectives of this work are 
to test the reduction capability of Ziziphus spina-christi 
extract to reduce graphene oxide and depict the influence 
of plant extract on the shape and yield of the synthesized 
rGO. Furthermore, the catalytic, antimicrobial, and antioxi-
dant potentialities of the optimum synthesized rGO were 
evaluated.

Materials and methods

Chemicals and materials

All chemicals used without further purification in this 
work comprising graphite powder, potassium permanga-
nate  (KMnO4), hydrogen peroxide  (H2O2), sodium nitrate 
 (NaNO3), sulfuric acid  (H2SO4), sodium borohydride 
 (NaBH4), sodium hydroxide (NaOH), and methylene blue 
(MB) were purchased from Merck, USA.

Preparation of Ziziphus spina‑christi extracts

The collected leaves of Ziziphus spina-christi (Zi) were 
firstly collected from Alexandria city in Egypt. They were 
then dissected, washed, and rinsed using water and double 
distilled water (DI). The leaves were then oven dried for 72 h 
at 60 °C. The dried leaves were grounded in a stainless steel 
mixer to get fine powder.

In total, 500, 2500, and 5000 mg of Zi biomass were 
added to 100 mL of DI representing concentrations of 5, 
25, and 50 mg  mL−1, respectively. Each mixture was stirred 
at room temperature for 90 min with a stirring rate of 400 
rpm (magnetic stirrer; FALC, F91T, Italy) then filtered using 
Whatman 8-μm filter paper, and the filtered solution is kept 
at 4.0 °C for further usage.

Synthesis of reduced graphene oxide

Graphene oxide (GO) was synthesized adopting the modified 
Hummer method according to our previous work (Mahmoud 
et al. 2022). The GO solution (1 mg  mL−1) was sonicated 
for 1 h until a brownish color homogeneous dispersion was 
gained. Fifty milliliters of Zi extract was added to 50 mL of 
GO then the mixture was stirred and heated at 70 °C for 12 
h. Afterwards, a black colored solution was obtained then 
centrifuged at 5000 rpm and washed three times with DI. 
Furthermore, the washed solution was oven dried at 60 °C 
overnight to get dry rGO.

Characterization

UV-Vis spectroscopy was analyzed for 1 mg  mL−1 of GO 
and rGO suspensions. Subsequent to the preparation of the 
suspensions, they were diluted to assure translucency prior 
of the measurements using PG Ltd, UK. A scanning elec-
tron microscope (SEM; JOEL-JSM-IT200) with an energy 
dispersive X-ray spectroscope (EDX) was utilized to exam-
ine the surface morphologies and elemental composition of 
the samples. The prepared samples for SEM were coated 
with gold using ion sputter evaporator (JFC-1100E-JOEL). 
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Fourier transform infrared (FT-IR) spectra were measured 
by Cary 630 (Agilent Technologies, Germany) with attenu-
ated total reflectance (ATR) at 4  cm−1 resolution. An X-ray 
diffractometer (Brucker D2 Phaser, Germany; 5°–100° 
range and the rate of scanning = 5°  min−1) was used to pro-
vide information on the crystallite structure. The d-spacing 
(interlayer distance) was computed using the Bragg equation 
(eq. 1). In addition, the phytoconstituents of Zi extract were 
identified using gas chromatography-mass spectrometry 
(GC-MS; Thermo Scientific, USA). Details of the procedure 
can be found in Hosny et al. (2021). The measurements were 
performed three times to get replicate results and the identi-
fied constituents were compared according to their retention 
time and mass spectra with the database of WILEY 09 and 
NIST 11.

where λ = 0.154 nm, θ = the angle of diffraction.

Catalytic degradation of methylene blue (MB)

0.1 mL of the optimized rGO was added to 10 mL of various 
concentrations of MB ranging from 5 to 15 ppm (mg  L−1) 
which were prepared. Then 0.1 mL of the optimized rGO 
was applied with 0.1 mL of 0.06 M  NaBH4 solution to the 
mixtures stirred at room temperature. The time-dependent 
absorption spectra of these mixes at 664 nm were used to 
track the degradation progress of MB. Control experiments 
were carried out under the identical experimental conditions 
in the absence of rGO and  NaBH4. Monitoring the degrada-
tion of MB was done from 200 to 800 nm at specific time 
intervals at 25 °C, and it was measured by eq. 2 (Fungaro 
et al. 2021; Mahmoud 2020a; Mahmoud et al. 2021). The 
conducted experiments were done in duplicates.

where X0 and X represent the initial and final absorbance of 
MB, respectively.

Antimicrobial test

The strains of gram-negative bacteria (Escherichia coli, 
Klebsiella pneumonia) and gram-positive bacteria (Bacil-
lus subtilis, Staphyllococus aureus (Mrsa)) were chosen in 
this work. The inoculum was prepared onto tryptic soy agar 
plates where the reference culture strain was subcultured in 
glycerol broth. Following overnight incubation, 3–5 colonies 
of pure culture were examined with Escherichia coli (ATCC 
8739), Klebsiella pneumonia (ATCC 1388), Bacillus subtilis 
(ATCC 6633), and Staphyllococus aureus (Mrsa) (ATCC 

(1)d =
�

2 sinθ
,

(2)Degradation percentage%of MB =
X0 − X

X0

× 100,

25923) where they were suspended in sterile test tube con-
taining 2 mL saline.

The density of the organism suspension was modified by 
adding either bacteria or sterile saline, and the turbidity of 
the suspended colonies was compared to the 0.5 McFarland 
turbidity standard (2 ×  108 CFU  mL−1).

Muller seeded agar was weighed and dissolved in DI 
before being divided into 25 mL in six flasks and auto-
claved. After cooling to 50 °C, tested reference strains (1%) 
are introduced to sterile agar. Shaken flasks were emptied 
into sterilized petri dishes and allowed to set. Each seeded 
agar plate has three wells (each 8-mm diameter) drilled with 
a sterile cork borer. After sterilization by filtration, the panel 
of rGO was deposited on the infected plates using a sterile 
automatic pipette straight into its designated well; the plates 
were then stored in the refrigerator overnight to allow rGO 
diffusion. Subsequently, the plates’ incubation, which took 
24 h, was carried out at 35±2 °C. The back of each Petri dish 
was viewed few centimeters on an unreflective surface and 
lightened with visible light to record the visual observations.

Antioxidant activity of rGO

The activity of the free radical scavenging was tested using 
2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay in order to 
measure antioxidant efficiency of rGO sample. Triplicates 
of the assay were performed. Then, 1 mL of rGO sample 
was combined with 1 mL DPPH with a concentration of 
0.2 mM which has been mixed together for 3 min in the 
absence of light along with DPPH control, which contains 
no nanoparticles.

The reduction in absorbance % of the mixture at 517 nm 
wavelength after 20 min is used to determine the quantity of 
radical compared to vitamin C (ascorbic acid) as a reference 
and the following equation was used for scavenging activity 
calculation.

where control abs. is the measured absorbance without anti-
oxidants and sample abs. is the measured absorbance with 
antioxidants (rGO or ascorbic acid) at 517 nm.

Results and discussion

Characterization

The reduction of GO has been investigated using various 
extract concentrations of Ziziphus spina-christi at tem-
perature 70 °C. The selected temperature was based on the 
maximum yield peak of rGO where the reduction process 

(3)
Radical scavenging activity% =

( Control abs. − sample abs.)

control abs.
× 100,
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can occur when temperature is less than 100 °C. Figure 1 
displays the effect of extract concentrations of Ziziphus 
spina-christi on the yield (absorbance peak) of rGOs. rGO 
yield increased to 270 nm with increasing the extract con-
centration subsequent to the GO reduction. This indicated 
the restored  sp2 network of graphene. Furthermore, the small 
shoulder of GO at 335 nm disappeared in rGO samples. A 
similar observation is reported using other plant extracts 

(Ghosh et al. 2021). Ding et al. (2011) mentioned the red 
shift of the absorption band at 230 to 260 nm and the disap-
pearance of the 300-nm band as an indication for the suc-
cessful green synthesis of rGO nanosheets. In addition, Jin 
et al. (2018) observed that by increasing the concentration of 
Eucalyptus leaf extract, which was used as a reducing agent, 
the UV peak of the phytosynthesized rGO was red shifted to 
273.5 nm. Such a result could be interpreted by the strong 
interaction between aromatic phytoconstituents of the leaf 
extract and the π-π bond in rGO (Wang et al. 2011).

The morphological appearance of the synthesized rGOs 
is displayed in Fig. 2. The concentration of the plant extract 
slightly affected the surface morphology of rGOs. Figure 2 
b and c show stacked layers with better restored surface than 
Fig. 2 a because of the removal of oxygen groups. How-
ever, it is noted that rGO surface was slightly corrugated and 
wrinkled. This may be due to the phytochemical constituents 
of the plant extract. Jin et al. (2018) observed the similar 
behavior when GO is reduced by Eucalyptus leaf extract.

The elemental composition of rGOs was confirmed using 
EDX and is illustrated in Fig. 2. The spectra show the exist-
ence of C and O elements where the ratio of O:C of the rGOs 
was dramatically decreased than graphene oxide after the 
reduction procedure as follows: rGO-Zi-5 (0.54), rGO-Zi-25 
(0.51), and rGO-Zi-50 (0.52). Additionally, it revealed the 
absence of any impurities in the prepared samples.

The vibrational spectra of the raw and the prepared sam-
ples are illustrated in Fig. 3 to prove the role of the Zi extract 
as a reductant and capping agent. −OH group appeared at 

Fig. 1  UV-Vis spectra of GO and rGO with different concentrations 
of Ziziphus spina-christi (Zi) leaf extract

(a) (b) (c)

Fig. 2  SEM micrographs and EDX of reduced graphene oxide (rGO) with a 5 mg  mL−1, b 25 mg  mL−1, and c 50 mg  mL−1 Ziziphus spina-
christi leaf extract
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3276.3  cm−1 and 3255.8  cm−1 in the spectra of Zi and GO, 
respectively, then its intensity decreased in rGO-Zi-5 sample 
and completely disappeared in rGO-Zi-25 and rGO-Zi-50 
confirming the reduction of GO and this result is concomi-
tant with Coros et al. (2020).

C–H stretch band appeared at 2916 and 2848  cm−1 only 
in the spectrum of Zi. Carboxylic acid (C=O) band group 
existed in GO sample at 1712  cm−1. Subsequent to reduc-
tion, the peak at 1712  cm−1 was diminished with rGOs, 
demonstrating decomposition of the carboxyl groups after 
the reduction of GO with plant extracts. Chen et al. (2014) 
detected different functional groups on GO such as O-H, 
C=O, C=C, C-OH, and C-O bonds.

It is worth noting that C=C group showed at 1630  cm−1 in 
the case of Zi but it was at 1617  cm−1 in GO sample which 
shifted to lower wavenumbers and their intensity decreased 
in the rGO samples. Such behavior confirmed  sp2 carbon 
network restoration as indicated in Johra and Jung (2015) 
and Raja et al. (2021) who detected small intense peak posi-
tion at 1555  cm−1 in rGO. Furthermore, ether group (C-O) at 
1161.1  cm−1 is not detected in the spectra of rGOs compared 
to GO spectrum. Even the epoxy group (C-O) intensities 
that appeared in GO spectrum at 1011.9  cm−1 decreased 
especially in rGO-Zi-25 and rGO-Zi-50 samples confirming 
the reduction of GO.

The results of the current investigation are compatible 
with other literature such as Nhlane et al. (2021) and Huang 
et al. (2019). As a result, it was possible to deduce that the 
phytoconstituents found in Zi’s aqueous extract were respon-
sible for the reduction of GO into rGO. Thus indicating the 
potential use of Zi extract as an alternative and sustainable 
way for rGO synthesis.

The diffraction peak of GO was detected at 2θ = 11°; 
(111) plane which corresponds to d-spacing of 0.80 nm 
(Fig. S1). This finding is consistent with Tambe (2022) who 
reported that the d-spacing of GOs synthesized with Hum-
mers method and with additional  KMnO4 were 0.71 and 
0.86 nm, respectively. Subsequent to reduction with different 
plant extract concentrations, rGO-Zi-5 showed a broad peak 
at 2θ = 16.5° which corresponds as a shifting peak from GO 
sample. Similar behavior of such peak was detected in GO 
prepared by Aliyev et al. (2019), Gupta et al. (2017), Yogesh 
et al. (2020) where the peak position differs from 11° to 17° 
according to the amount of absorbed water. Besides, a sharp 
peak was observed at 2θ = 29° with d-spacing of 0.31 nm 
which revealed the reduction of the GO.

With increasing the plant extract concentration (Fig. S1), 
the peak at 2θ = 16.5° was almost decreased in intensity 
with broading peaks at 2θ = 28° (d-spacing of 0.32 nm) 
and 26° (d-spacing of 0.34 nm) corresponding to the (002) 
plane for rGO-Zi-25 and rGO-Zi-50, respectively. The small 
peak at 2θ = 42° revealed the successful reduction of rGO. 
Dominic et al. (2021) found the diffraction peak of rGO was 
at 2θ = 25° (d-spacing of 0.36 nm) that was prepared from 
the leaf extract of Plectranthus amboinicus. The high value 
of d-spacing of GO rather than rGO reflects the existence 
of water molecules and the oxygen functional groups (Yang 
et al. 2021). It is noteworthy that rGO peaks became broad-
ing and the values of d-spacing were different that may be 
due to the formations of rGO layers or sheets and restacking 
of graphene layers (Siddarth et al. 2019; Thakur and Karak 
2012).

rGO synthesis mechanism

Figure 4 illustrates the chromatogram of major compounds 
originating from Zi. The identified phytoconstituents may 
be involved in GO reduction as shown in Table 1. Ketones, 
terpenoids, fatty acids, esters, and flavonoids are the phyto-
constituents that functioned as reducing and capping agents. 
It is also reported that the extract of this plant species con-
tains flavonoids, tannins (polyphenols), and lipids (Abalaka 
et al. 2010). Asgarpanah and Haghighat (2012) reported that 
hexadecanol and ethyl octadecenoate are detected in the leaf 
extract of Zi. A simplified mechanism illustrating the phyto-
fabrication of rGO via the aqueous extract of Ziziphus is 
presented in Fig. 5. It confirms the successful contribution of 
Ziziphus phytoconstituents in the reduction of GO into rGO.

GO is hydrophilic due to the presence of different oxygen 
functional groups such as −OH and −COOH (Mahmoud 
et al. 2018a). The hydrophilic GO could simply be converted 
to relatively hydrophobic rGO and confirmed by the low 
ratio values of O/C in the range of 0.54–0.52 (refer to Fig. 2 
and Fig. 3). The synthesized rGOs were relatively hydropho-
bic because of some remaining functional groups. Similar 

Fig. 3  FT-IR spectra of Ziziphus spina-christi leaves (Zi), graphene 
oxide (GO), and reduced graphene oxide (rGO) using 5, 25, and 50 
mg  mL−1 of Ziziphus spina-christi leaf extract
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behavior was reported in Xiang et al. (2022). This could 
be preferable in environmental applications due to its easy 
separation from the aqueous solutions with centrifugation 
or filtration.

Catalytic degradation of methylene blue (MB)

The environmental application of rGO was evaluated 
through the degradation of MB to leuco MB in the presence 
of the reducing agent  NaBH4. 0.1 mL of green synthesized 
rGO with 0.1 mL of 0.06 M  NaBH4 could degrade MB as 
illustrated in Fig. 6. The attained results showed the instanta-
neous disappearance of the blue color of 5 and 10 ppm MB.

The degradation efficiencies were recorded as ≃100% and 
73.55% for 5 and 10 ppm, respectively as illustrated in Fig. 6 
a and b. On the other hand, 15 ppm of MB took almost 20 
min to reach a degradation efficiency of 66.53% (Fig. 6c). 
It is worth noting that there was no recorded degradation 
of MB in the control experiments conducted in the absence 
of rGO or  NaBH4, showing that the green synthesized rGO 
is required for the catalytic degradation of MB. Keeping in 
mind that the international standard dye concentration in 
the discharged wastewater should be ˂ 1 ppm (Katheresan 
et al. 2018).

As  NaBH4 is both electron donor and a prerequisite for 
photocatalytic degradation, an e-transmission mechanism 

exists between MB and  NaBH4 via rGO where rGO suc-
cessfully transported electrons from  NaBH4 into MB. 
Therefore, rGO could degrade MB in short time and con-
vert  NaBH4 to gaseous products. Arnawtee et al. (2022) 
demonstrated the similar findings for photocatalytic MB 
degradation with multiwalled carbon nanotubes/kraft 
lignin/Pd nanocomposite catalyst and  NaBH4.

When the degradation efficacy of the green synthesized 
rGO in this work was compared to literature, it was figured 
out that the synthesized rGO was significantly better in 
performance. CoTPP (tetramethoxyphenylporphyrin)/rGO/
MWCNTs (multiwalled carbon nanotubes) nanocomposite 
that was prepared by Kiran et al. (2020) resulted in 50% 
degradation of 5 ppm MB in 70 min. Ghosh et al. (2021) 
showed that rGO, prepared by the bark extract of Alstonia 
scholaris, can degrade 12 ppm MB with 94.67% in 210 
min. Consequently, the synthesized rGO possesses well 
efficiency in line with other phytosynthesized rGOs so it 
is thought to be a good catalyst for catalytic degradation of 
MB and other hazardous organic pollutants in wastewater.

Figure 7 depicts a mechanism that elucidates the active 
function of rGO in degrading MB into leuco MB, where 
rGO successfully transported electrons from  NaBH4 into 
MB, resulting in its quick removal. Table 2 also provides 
a comparison of rGO and other nanocatalysts, highlighting 
key aspects in the degradation process.

Fig. 4  GC-MS chromatograms of Ziziphus spina-christi leaf extract
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Table 1.  Phytoconstituents in Ziziphus spina-christi leaf extract using GC-MS with the retention time (RT) and the area

Compound name Chemical structure RT (min) Area (%)

Acetic acid, ethoxy-, ethyl ester 4.64 3.78

Benzenementhanamine, 2- Chloro-

à -(2-Quinoxalinylmethylene)

6.33 1.82

Ethanon 4.94 1.95

2(4H)-Benzofuranon 0.31 1.39

Neophytadien

1e

2e

2e 7.29 6.78

2-Pentadecanone, 6,10,14-

trimethyl

27.43 17.27

2,2-Dideutero octadecanoal 28.97 6.57

Hexadecanoic acid, ethyl ester 

(Ethyl hexadecanoate)

30.43 6.04

Phytol 32.68 8.05

cis-Vaccenic acid 33.21 2.22

Octadecanoic acid, ethyl ester 

(Ethyl octadecenoate)

34.15 1.91
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Antimicrobial study

The development of antimicrobial drugs is always challeng-
ing and costly (Prasad et al. 2017). Hence, nanomaterials 
and graphene materials may be able to fill this gap to com-
bat the antibiotic resistance. Ahmad et al. (2020) stated that 
graphene-based nanomaterials demonstrated tremendous 
antibacterial resistance with mild cytotoxicity.

The efficacy of green synthesized rGO (100 mg  L−1) as 
an antibacterial agent at a concentration of 100 mg  L−1 in 
inhibiting various sorts of bacteria was detected by measur-
ing the inhibition zones (Fig. 8).

Our results exhibited that there was no growth revealed 
in both Escherichia coli and Klebsiella pneumonia demon-
strating that rGO was very effective against gram-negative 
bacteria. rGO, on the other hand, had no effect on gram-
positive bacteria.

In literature, the Ziziphus spina-christi callus extract was 
used for the biosynthesis of SeONPs and ZnONPs then eval-
uated in antibacterial activity (lashin et al. 2021). Further-
more, a promising wide-spectrum antimicrobial activity was 
exhibited by both SeONPs and ZnONPs. However, lashin 
et al. (2021) added that the tested microbial strains, includ-
ing E. coli, Pseudomonas aeruginosa, S. aureus, B. subtilis, 
Candida albicans, Cryptococcus neoformans, Aspergil-
lus niger, and Aspergillus. fumigatus showed no inhibition 
zones. Recently, Chinnappa et al. (2022) reported that the 

Reduced graphene oxide 
(rGO)

Fig. 5  Simplified mechanism for the green synthesis of rGO using the 
leaf extract of Ziziphus spina-christi 

Fig. 6  Catalytic degradation of 
methylene blue (MB); a 5 ppm, 
b 10 ppm, c 15 ppm using 0.1 
mL of the optimized rGO
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composite of rGO-Ag nanoparticles have antimicrobial 
activity to E. coli with 22 mm inhibition zone.

As indicated in previous research (Liu et  al. 2011; 
Sengupta et al. 2019), the antibacterial activity of rGO is 
associated to modifying the shape of the cell membrane 
and impeding normal budding due to a loss of membrane 
integrity.

Oxidative stress is an antibacterial mechanism where it 
is induced by the reactive oxygen species (ROS) produced 

by rGO or disturbing/oxidizing the cell membranes with-
out ROS production (Liu et al. 2011). Nanomaterials could 
induce substantial oxidative stress resulting in DNA dam-
age due to OH•,  O2−, and  H2O2 generation in bacterial 
cells leading to oxidation of polyunsaturated phospholip-
ids (Kumar et al. 2011). Recently, the oxygen has a role in 
the nanobubble form with the rGO or its nanocomposite 
presence as a nanoshuttle that could effectively impact the 
cellular interactions (Jannesari et al. 2020). rGO and oxy-
gen nanobubbles can capture electrons from the bacteria’s 
respiratory chain. This can be done by rGO to directly trap 
electrons from the cell membranes and passing the captured 
electrons to the  O2 NBs for ROS formation, indirect electron 
capturing.

As the determined surface charge of rGO was − 24 ± 2.55 
mV, there was a charge transfer between rGO and bacteria 
leading to antibacterial efficiency. The rGO edges could trig-
ger a pore creation in bacterial cell wall causing osmotic 
imbalance and the cell death as indicated by Pham et al. 
(2015) even in the dark as reported in Lakshmi Prasanna and 
Vijayaraghavan (2015).

Herein, the possible mechanisms involved in the antibac-
terial activity are:

(1) Direct physical connection between the rGO edges 
and bacterial cells can trigger physical damage to the 
cell membrane, resulting in disrupting cell metabolism 
(Akhavan and Ghaderi 2010). Liu et al. (2011) empha-
sized the irreversible damage of E. coli cells after direct 
contact with either GO or rGO. rGO stimulates mem-
brane stress on bacterial cells where E. coli cells were 
embedded in rGO aggregates.

Fig. 7  A degradation mechanism of methylene blue (MB) using the 
optimized rGO

Table 2.  A comparison between the catalytic degradation efficiency of the optimized rGO and literature reported for methylene blue (MB)

Catalyst Dye concentration 
(mg  L−1)

Degradation 
efficiency (%)

Time (min) Ref.

 nZVI-  Fe3O4/rGO. 50 98.00 60 (Yang et al. 2015)
Mn/rGO nanocomposite 50 70.40 30 (Liu et al. 2018)
Mn-Co/rGO nanocomposite ≃100
rGO-stabilized MnO/N-doped carbon nanofibers 20 100 180 (Chen et al. 2017)
rGO/CoFe2O4 20 100 24 (Wu et al. 2016)
 (rGO-Ag) nanocomposite – 71.42 8 (Sahu et al. 2019)
MoS2 200 98 30 (Zou et al. 2019)
  (MoS2-rGO) nanocomposite 10
rGO/Fe3O4 nanocomposite 30 47.47 60 (Vinothkannan et al. 2015)
Graphene/MnO2 hybrids 50 ≃100 5 (Qu et al. 2014)
CoTPP/rGO/MWCNTs nanocomposite 5 50.00 70 (Kiran et al. 2020)
rGO-SiW nanocomposite 35 ≃100 34 (Ucar et al. 2017)
rGO 5 ≃100 Instantaneously The current work

10 73.55
15 65.10
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Fig. 8  Antibacterial effect of 
reduced graphene oxide (rGO) 
against a Escherichia coli and b 
Klebsiella pneumonia 

Table 3.  Comparison of the antibacterial efficacy of phytosynthesized rGO in the current work and that reported in literature.

Sample Sample concentra-
tion (mg  mL−1)

Bacterial strain Zone of inhibition (mm) References

rGO – Bacillus subtilis 2 (Rani et al. 2019)
Escherichia coli 1.9

rGO-Cu2O Bacillus subtilis 3.5
Escherichia coli 3

rGO 100 Escherichia coli 18 (Vatandost et al. 2020)
Staphyllococus aureus 23

 GO Escherichia coli Resistant
Staphyllococus aureus Resistant

Pd-RGO-ZnO nanocomposite – Klebsiella pneumonia 11 (Rajeswari and Prabu 2020)
Pseudomonas aeruginosa 10

  Ag-rGO nanocomposite 100 Staphyllococus aureus 8 (Rajeswari et al. 2017)
Bacillus subtilis 9
Escherichia coli 18

GO 100 Bacillus subtilis 9 (Thiyagarajulu and Arumugam 2021)
Escherichia coli 8
Pseudomonas aeruginosa 6

 rGO Bacillus subtilis 16
Escherichia coli 12.5
Pseudomonas aeruginosa 7.5

rGO-ZnO nanocomposite 200 Klebsiella pneumonia 14 (Rajeswari and Prabu 2018)
Pseudomonas aeruginosa 14.5

GO 100 Bacillus subtilis 9 (Thiyagarajulu et al. 2020)
Escherichia coli 8
Pseudomonas aeruginosa 6

rGO Bacillus subtilis 18
Escherichia coli 14
Pseudomonas aeruginosa 7.5

Au-rGO nanocomposite 150 Klebsiella pneumonia 23.4 (Saikia et al. 2016)
Pseudomonas aeruginosa 24.4
Staphyllococus aureus 21.4

 rGO – Escherichia coli 11 (Joshi et al. 2020)
 rGO 100 Escherichia coli No growth (sensitive) The current work

Klebsiella pneumonia No growth (sensitive)
Bacillus subtilis Resistant
Staphyllococus aureus
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(2) rGO usually leads to increasing the ROS, resulting in 
shrinkage and loss of cell membrane integrity, oxidative 
stress, impairment of DNA replication, and eventually 
apoptosis (Yang et al. 2019). It is found that nanoparti-
cles were embedded with the cell membrane of bacteria 
by ROS (Lakshmi Prasanna and Vijayaraghavan 2015). 
Dutta et al. (2015) found that rGO generates ROS under 
visible light in air through a singlet oxygen–superoxide 
anion radical pathway to kill Enterobacter sp.

(3) The bacteria could be also trapped within the aggre-
gated rGO sheets as a kind of inactivation without any 
opportunity for increase in a culture medium. Further 
details could be referred to Akhavan et al. (2011).

As a result of the findings, rGO is a promising antibac-
terial with a high efficacy against gram-negative bacteria 
at high concentrations (2 ×  108 CFU  mL−1). In addition, 
Table 3 shows a comparison of the antibacterial potency of 
rGO and other nanomaterials, demonstrating that rGO has a 
high antibacterial effectiveness that is superior to previously 
reported data.

Antioxidant study

Byproducts as dangerous and toxic ROS are typically gener-
ated by common metabolism processes that are considered 
critical for the survival and protection of living organisms 
(Lakra et al. 2022; Saxena et al. 2022). Free radicals usu-
ally lead to oxidative stress and other health issues. DPPH 
is considered to be a significant and prevalent free radicals 
that can adversely influence human cells (Biela et al. 2022; 
Mohan et al. 2021). Because the free electrons are delo-
calized throughout the entire molecule, it is classified as 
a persistent free radical that is not easily degraded like the 
majority of other free radicals (Zhang et al. 2019). Since it is 
a free uncharged radical that can consume hydrogen or free 
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Fig. 9  Antioxidant efficiency of reduced graphene oxide (rGO) and 
ascorbic acid (positive control) against DPPH

Table 4  Comparison of the 
antioxidant efficiency of rGO 
synthesized in the current work 
to graphene-based materials 
mentioned in literature

Antioxidant Concentration (μg 
 mL−1)

Scavenging activ-
ity (%)

References

Graphene oxide (GO) 400 40 (Baali et al. 2019)
 ZnO-rGO nanocomposite 22
(rGO) 5000 80 (Suresh et al. 2015c)
 (rGO QDs) quantum dots 160 80 (Murugesan et al. 2018)
GO 5000 25 (Suresh et al. 2015b)
rGO 2000 75
rGO – 73.83 (Vatandost et al. 2020)
rGO-ZnO nanocomposite 200 45 (Rajeswari and Prabu 2018)
GO 200 20 (Mahmudzadeh et al. 2019)
rGO 30
GO 750 25 (Al-Ani et al. 2019)
rGO 60
rGO-ZnO nanocomposite 500 30 (Jafarirad et al. 2018)
(rGO-ZnO-Ag) nanocomposite 25
 rGO-ZnO-Nd nanocomposite 15
rGO 200 25 (Rajeswari and Prabu 2020)
rGO-ZnO nanocomposite 45
 Pd-rGO-ZnO nanocomposite 55
rGO 4000 90 (Suresh et al. 2015a)
rGO – 25 (Umekar et al. 2020)
(rGO-TiO2) nanocomposite 45
rGO 50 45.2 The current work
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electrons, DPPH has been used for many years to test the 
free radical capabilities of antioxidants to produce a steady 
diamagnetic molecule (Singh et al. 2021). The reduced form 
of DPPH could be created when it is mixed with a material 
or a nanomaterial either metallic or graphene-based materi-
als that can give a hydrogen atom (antioxidant) which reflect 
an effective role against DPPH. This was demonstrated by 
the removal of the characteristic violet color (Flieger et al. 
2021; Majumder and Gangopadhyay 2022).

When the concentration of rGO increased from 12.5 to 
50 μg  mL−1 in the current work, the scavenging percent 
of DPPH grew consistently from 13.3% to roughly 45.2% 
(Fig. 9) which is postulated to be promising. It was found 
that 12.5, 25, and 50 μg  mL−1 of vitamin C achieved 13.45, 
31.9, and 48.4% of DPPH (Fig. 9) which are slightly higher 
than that of rGO. As a result, the current findings validated 
rGO’s excellent antioxidant capability against DPPH, as well 
as its potential application in the scavenging of additional 
free radicals in future research. Table 4 shows a comparison 
of rGO and other nanomaterials in terms of DPPH scav-
enging efficiency, demonstrating rGO’s strong antioxidant 
efficacy, which is concomitant with most of previously 
reported results. Few literature, Umekar et al. 2020, Suresh 
et al. 2015c, and Murugesan et al. 2018, reported higher 
antioxidant efficiency. However, they consumed from 3 up 
to 100 fold the plant concentration used herein (Table 4).

Conclusion and recommendations

The adopted concentrations of the aqueous leaf extract 
of Ziziphus spina-christi were successfully utilized as 
a reducing and stabilizing agent in the phytoreduction 
of graphene oxide for the first time. SEM micrographs 
revealed that rGO had stacked layers with better restored 
surface when using the higher concentrations of plant 
extract, 25 mg  mL−1. Moreover, the ratio of O:C of the 
synthesized rGOs were substantially diminished com-
pared to graphene oxide after the reduction procedure as 
indicated by EDX. GC-MS as well as FT-IR denoted the 
presence of several phytoconstituents in the plant extract 
such as ketones, terpenoids, fatty acids, esters, and flavo-
noids, which are assumed to be effectively participating in 
rGO synthesis. Powerful catalytic degradation efficiencies 
ranging from 65.1 to 100% were instantaneously achieved 
when the optimized rGO was applied in the removal of 
MB with varying concentrations. Additionally, rGO exhib-
ited a powerful antibacterial activity particularly against 
gram-negative bacteria with a high concentration of 2 × 
 108 CFU  mL−1 by inhibiting the growth of Escherichia 
coli and Klebsiella pneumonia. Likewise, rGO demon-
strated promising antioxidant efficiency as it reached up 
to 98.9% compared to that of vitamin C at 12 μg  mL−1. 

Consequently, it was concluded that the aqueous extract 
of Ziziphus spina-christi could be efficiently utilized in 
the phytosynthesis of rGO, which could be harnessed in 
a variety of different environmental and medical applica-
tions, in a facile, eco-friendly, and simple manner.
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