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Machine learning the Hohenberg-Kohn map
for molecular excited states

Yuanming Bai 1,2,3, Leslie Vogt-Maranto 3, Mark E. Tuckerman 2,3,4,5 &
William J. Glover 1,2,3

The Hohenberg-Kohn theorem of density-functional theory establishes the
existence of a bijection between the ground-state electron density and the
external potential of a many-body system. This guarantees a one-to-one map
from the electron density to all observables of interest including electronic
excited-state energies. Time-Dependent Density-Functional Theory (TDDFT)
provides one framework to resolve this map; however, the approximations
inherent in practical TDDFT calculations, together with their computational
expense, motivate finding a cheaper, more direct map for electronic excita-
tions. Here, we show that determining density and energy functionals via
machine learning allows the equations of TDDFT to be bypassed. The frame-
work we introduce is used to perform the first excited-state molecular
dynamics simulations with a machine-learned functional on malonaldehyde
and correctly capture the kinetics of its excited-state intramolecular proton
transfer, allowing insight into how mechanical constraints can be used to
control the proton transfer reaction in this molecule. This development opens
the door to usingmachine-learned functionals for highly efficient excited-state
dynamics simulations.

Electronic excitations underlie numerous biological and physical
processes of interest, including photosynthesis1,2, DNA damage3,4,
photodynamic therapy5, photopharmacology6,7, and solar energy
conversion8,9. Excited-state dynamics simulations are a powerful
tool to uncover the mechanism of photoresponse in these systems,
particularly when combined with ab initio electronic-structure cal-
culations, since the important molecular motions do not need to be
known a priori but are revealed by the dynamical trajectories10,11.
Given its reasonable accuracy within current approximations,
linear-response time-dependent density-functional theory (LR-
TDDFT)12,13 has become a work-horse method in the field; however,
its computational expense (formally scaling with system size as N 3)
and the need to solve the electronic-structure problem at every
simulation timestep limits the system size and timescale amenable
to study. Thus, a cheaper approach to electronic excitations and

excited-state dynamics is highly desirable but poses a significant
challenge.

One might question whether the expense of LR-TDDFT is needed
in the first place. For the ground state (GS), the first Hohenberg–Kohn
(HK1) Theorem14, which provides the foundation of DFT, establishes
the existence of a bijection from the ground-state electron density to
the external potential of amany-body system. As a consequence, there
exists a formal map from the ground-state electron density not only to
the ground-state energy but also to every property of the system. The
map from density to ground-state energy is encoded by an unknown
universal density functional; however, practical approaches make use
of the Kohn-Sham (KS) theory15, which expresses the functional via a
fictitious non-interacting system that shares the density of the true
system, allowing an exact treatment of kinetic energy and Coulomb
contributions to the functional and approximations to the remaining
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small exchange and correlation terms. While KS theory provides a
practical scheme for solving simultaneously for the ground-state
density and energy of a system, functionals thatmap from the ground-
state density to excited-state energies are currently unknown,
although, their formal existence is established by the HK1 theorem. As
an alternative, LR-TDDFT provides an indirect means to the excited-
state energies from knowledge of the ground-state density and its
response to an external driving field12,13. Given the expense of LR-
TDDFT, a direct map from density to excited-state energies would be
preferable.

Theoretical support for a direct route to excited-state energies
comes from a generalization of the HK1 theorem to an excited-state
density-energy bijection. While a universally general HK1 theorem for
excited stateswith arbitrary external potentials has been disproved16, a
special excited-state HK1 theorem for Coulombic external potentials
(i.e., molecular systems) has been argued to exist17 and has motivated
recent orbital-optimized DFT approaches to electronic excited
states18,19.

Alongside theoretical developments in excited-state DFT, there
has been significant recent progress in using data-driven approaches
to machine-learn ground-state density functionals20–28. Related to the
current work, there has also been progress in developing machine-
learning models to directly predict electronic excited-state energies,
gradients, and non-adiabatic couplings given a particular molecular
geometry, and the SchNarc approach by Westermayr, Marquetand
et al. has been demonstrated to predict non-adiabatic dynamics in
agreement with ab initio simulations using a reasonable amount of
trainingdata29–35. In the currentwork,we explore theproposition that a
multistate density functional can be machine learned via an excited-
state HK map. This new development establishes a framework that is
potentially more powerful than directly learning excited-state ener-
gies, since densities and density functionals can yield any desired
property.

In order to construct an ML excited-state density functional, we
work in the framework introduced in ref. 22, which uses a data-driven

MLmodel with a physically motivated representation of the molecule.
The fundamental object in this approach is a potential-to-density map,
n[v](r), which is machine-learned by computing the external potential
and corresponding density at a desired level of theory for a range of
nuclear geometries of the systemand then inputting these functions as
training data. For ground-state densities, this map is known as the
machine-learned Hohenberg–Kohn (ML-HK) map; once learned, it can
be used to compute any related quantities, including ground-state
energies, and other observables at the same level of theory22,23. It is
worth noting that the level of theory is not restricted to DFT but can
also be performed, for example, using coupled-cluster theory23. In this
work, we generalize the potential-to-density map to excited states in a
multistate Hohenberg–Kohn framework (ML-MSHK), allowing us to
learn excited-state densities and energies simultaneously with com-
parable accuracy to the ground state.

In order to test our ML-MSHK model, we consider the excited-
state proton transfer (ESPT) reaction in malonaldehyde (MA), a small
organic molecule exhibiting a non-trivial internal reaction that is sen-
sitive to electronic excitation. ESPT is at the heart of photoacidity and
is a key step in the photocycle of many photoactive proteins, such as
green fluorescent protein (GFP)36,37. Intramolecular proton transfer, as
inMA, serves as a useful model to study ESPT, since the reaction rate is
not limited by the diffusion of the proton donor and acceptor toge-
ther, and can therefore be probed by ultrafast spectroscopy38,39.

The structural simplicity of MA makes it an especially appealing
model of ESPT. In particular, one conformation of malonaldehyde is a
ring structure with an internal hydrogen bond that allows for a proton-
transfer reaction between the two oxygen atoms (see molecular gra-
phic in Fig. 1a). Excitation of this molecule from the S0 ground state to
the S2 singlet excited state (ππ*) leads to a substantial reduction of the
proton-transfer barrier from several kcal/mol in the ground state to an
essentially barrierless reaction in the excited state. However, the pre-
sence of a lower-lying singlet nπ* state in MA significantly complicates
its ESPT reaction, and ultrafast non-adiabatic transitions from S2 to S1
are believed to compete with the ESPT reaction40–42. The barrier to

Fig. 1 | Overview and performance of the multistate machine-learning (ML)
approach. aDFTmaps used in this paper. Theorangearrows represent adirectML-
MSKS map from the external potential, v, to total electronic energies, Ej, for each
state j. The black arrows represent ML-MSHK maps between v and electron den-
sities of each state, nj. The blue arrow represents a single multistate energy func-
tional that maps a density to its energy. The structure of the malonaldehyde (MA)
molecule studied here is shown in the top left of this panel.b Learning curves (on a
logarithmic scale), for MA’s S2 energy predictions from the ML-MSHKmodel (blue
curve) using the lowest three densities (n0, n1, n2) and ML-MSKS model (orange

curve). Training sets are formed starting from 2000 geometries sampled from S0
dynamics and sequentially adding geometries extracted from ab initio molecular
dynamics (AIMD) trajectories on the S2 state in the manner described in Supple-
mentary Note 1. c Errors of energy prediction against a TD-PBE0benchmark along a
minimum energy pathway for proton transfer of MA in the S2 state predicted with
ML-MSKS and ML-MSHKmaps using training sets of different sizes. For each fixed
value of proton-transfer coordinate, r− (see text for definition), geometries were
optimized on S2 at the TD-PBE0/aug-cc-pvdz level, subject to a constraint of
planarity.
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proton transfer on S1 is even higher than the ground-state40,43, and
furthermore, a three-state intersection is predicted to be energetically
accessible41, meaning the electronic excitation can be efficiently
quenched to the ground state. As a result, the ESPT reaction in MA is
largely hindered by competing processes and has yet to be directly
observed experimentally42.

One approach to suppressing the competingprocesses inMAand,
thereby, controlling the ESPT reaction is to raise the nπ* state energy
via functional group modifications. For example, the nπ* and ππ*

energetic ordering is reversed inmethyl salicylate (MS)44, which shares
the chelate ring of MA yet exhibits efficient ESPT, as the non-adiabatic
transitions to the nπ* state are removed38,45,46. In this work, using
excited-state dynamicswith ourML-MSHKmethod, we seek to explore
whether mechanical restrictions applied to MA can instead be used to
promote the ESPT reaction. Recognizing that the S2/S1 transition inMA
is brought about by torsional motions41, we propose that a restraint of
planarity on the molecule will allow the ESPT reaction to proceed
unhindered. This restraint can be viewed as biomimetic of a similar
mechanism in GFP whose protein environment enforces planarity of
the 4-(p-hydroxybenzylidene)imidazolidin-5-one chromophore, pre-
venting nonadiabatic transitions and enhancing its fluorescence
quantum yield47.

Results
Theory
There is a growing recognition of the importance of using physics-
based principles in choosing descriptors and models for machine-
learning molecular properties48,49. The blessing, and perhaps curse, of
MLmodels is their greatflexibility to predict almost any quantity given
sufficient data. This can lead to a loss of physical insight, and concerns
of overfitting must always be addressed. By using physical principles,
fundamental constraints are automatically introduced into the model
that mitigate these problems. In the context of learning electronic
structure, a very natural physical framework relies on the connections
between the electron density, n(r), external potential, v(r), and energy,
E, of a many-body quantum system. These connections are formalized
by theHK1 theorem,which proves the existenceof a bijection from the
ground-state electron density to the external potential of amany-body
system: n0(r)↔ v(r)14. The electron density, which gives the probability
for finding an electron at a certain location in space, is a particularly
convenient quantity to work with since, unlike the many-body wave-
function, it is a three-dimensional scalar field regardless of the number
of electrons and is, therefore, straightforward to represent numeri-
cally. For molecular systems, the external potential is simply the
Coulombic scalar potential arising from the nuclear charges:
vðrÞ= �PN

a Za=∣r� ra∣. Since the external potential uniquely defines
the molecular electronic Hamiltonian (for a given spin state and
number of electrons), the electronic energy must also be uniquely
determined from knowledge of the external potential or, per HK1, the
density14. These maps from external potential to density and energy
are realized as functionals, e.g., n[v](r), which inspired the framework
for a previous approach that machine-learned density functionals for
ground-state energy predictions (ML-HK)22. Part of the success of the
ML-HK approach can be attributed to the uniqueness of the external
potential and density as molecular descriptors, a property not shared
by some other choices50.

We now demonstrate how these ideas can be extended to elec-
tronic excited states. As mentioned in the introduction, an excited-
state extension ofHK1 has been argued to exist for Coulombic external
potentials17, meaning that the map from external potential to
each state’s density is encoded as a functional, nj[v](r), where
j = 0, 1, 2, . . . . labels each excited state. Furthermore, a property of the
(unknown) exact universal functional is that each extremal density of
the energy functional corresponds to an electronic eigenstate with the
functional returning the exact (excited-state) eigenvalue, Ej = E[nj]51.

This motivates amachine-learning approach that leverages an excited-
state Hohenberg–Kohn mapping.

Learning excited states with ML-MSHK
The first step of our ML model is to learn multiple electronic state
densities. We start by expanding the densities in an orthonormal

basis set,ϕl(r), asnML
j ½v�= PL

l = 1 u
ðlÞ
j ½v�ϕlðrÞ, andwe learn the set of basis

coefficients fuðlÞ
j g by training on a set of input potentials corresponding

to different geometries of a system. We allow for the learning of
ground- and excited-state densities with a unique map to each state j.
Various ML models, including artificial neural networks and kernel
methods, have been used to learn total energies from electronic-
structure calculations22,23,30,52–59. However, learning excited-state HK
maps is unique to our approach, and we follow the ground-state ML-
HK functional’s successful use of the kernel ridge regression (KRR)
method60. In principle, the functionals could instead be learned with
neural networks, but a comparison of different methods is beyond the
scope of this manuscript.

With a set of learned densities, a second KRR model is used to
learn ground- or excited-state energies from a set of input training
densities. We consider two types of energy functionals, depending on
the nature of the input used. The first relies on the proven existence of
a single functional that maps ground or excited-state densities to their
respective energy eigenvalues51. We thus learn a single map from
density to energy and use multiple states in the training of this map:

EML�MSHK½nj�=
XM
i = 1

X
k

αi,kKðui,j ½v�,ui,k ½vi�Þ, ð1Þ

where K(ui,j[v],ui,k[vi]) is the kernel, k runs over the states used in the
training of the model, and {αi,k} are the coefficients learned in the
energy functional model. Since energy predictions from this model
rely on training with multiple electron densities for a given molecular
geometry, we call the combination of the two types of maps the
multistate Hohenberg–Kohn approach (ML-MSHK). Learning Eq. (1)
comes at the cost of retaining multiple densities for each training
example, increasing storage needs; however, the advantage is the
resulting energy functional is not state specific.We note thatwhile this
work focuses on the planar S2 state, we also train on densities from the
S1 excited state to demonstrate that including additional densities
does not degrade the performance of the ML-MSHK model.

The second energy functional we consider is of the external
potential itself, without using the density as an intermediate descrip-
tor. Following the naming of a similar approach for ground-state
energies22, we call this the multistate Kohn-Sham map (ML-MSKS):

EML�MSKS
j ½v�=

XM
i = 1

γi,jK vi,v
� �

, ð2Þ

where {γi,j} are the coefficients learned in the ML-MSKS energy
functional model. Such functionals must also exist since the external
potential uniquely defines the molecular electronic Hamiltonian and,
therefore, also its eigenstates14. Eq. (2) has the advantage that it uses
only external potentials rather than densities, reducing computational
storage requirements compared to Eq. (1). However, a disadvantage is
that the energy maps in this model are state specific, which we expect
will introduce errors near electronic crossings30.

In all cases, models are trained against ab initio densities and
energies following the procedure described in section “Methods”. A
schematic of the different maps used in this study is shown in Fig. 1a.

Excited-state energy predictions
In order to test the performance of the excited-state machine-learned
density functionals, we start by considering learning curves for
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training S2 excited-state energies of MA, shown in Fig. 1b, in which the
lowest three densities (n0, n1, n2) were used for the ML-MSHK model.
The smallest training set considered contains 2000 molecular con-
formations of MA generated from a ground-state AIMD trajectory,
propagated as described in section “Training and test set generation”.
A training set similar to this was previously found to yield a ML-HK
potential that accurately described the proton-transfer reaction on the
ground state22. From Fig. 1b, however, we see somewhat large out-of-
sample mean absolute errors (MAEs) of 0.5 and 0.8 kcal/mol for the
ML-MSHK and ML-MSKS models, respectively, with this training set.
Furthermore, for the ML-MSKS model, the error is seen to vary
strongly with geometry, as revealed by the orange curve in Fig. 1c,
which showsenergyprediction errors along aminimal-energy pathway
for the ESPT reaction as a function of the proton-transfer coordinate,
r− = rHO1 − rHO2, where rHOi is the distance of the proton from oxygen
atom i. Using the same 2000 training geometries, the ML-MSHK error
(dashed blue curve) is more uniform than the ML-MSKS predictions,
demonstrating the advantage of the former.

In order to use the ML-MSHK model for excited-state dynamics,
we must further reduce its prediction errors; however, we found
essentially no improvement upon adding more samples from the
ground-state trajectory. As we will see below, the remaining source of
error in models trained only with ground-state samples is that the S2-
initiated ESPT involves nuclear responses also in modes orthogonal to
thedirectproton transfermode, and these are not adequately sampled
by the ground-state trajectory. Thus, we extended the training set by
including geometries extracted from 30 S2 excited-state AIMD trajec-
tories, in a manner described in Supplementary Note 1, yielding the
learning curves shown in Fig. 1b.

After including geometries extracted from excited-state trajec-
tories in the training (ground and excited-state samples), both ML
models perform significantly better than the ML model constructed
using only ground-state samples in the training. Interestingly, the ML-
MSKS map (Fig. 1b, orange curve) always performs worse than the
MSHK map (blue curve). Similar behavior was noted in the ground-
state ML-HK study of ref. 22. The rest of this work pertains to the ML-
HK models since learning the densities as an intermediate step yields
the models that outperform the direct potential-to-energy approach,
and the inclusion of density learning has other benefits such as the
capability of density-based delta-learning to add corrections from
high-level wavefunction theory23. Encouragingly, the out-of-sample
error forML-MSHK converges below0.2 kcal/mol once the sample size
reaches M = 5000. This error is comparable to that found in the pre-
vious ground-state study of MA22, suggesting that ML-MSHK will be
suitable for molecular dynamics simulations (confirmed below). Hav-
ing found convergence at M = 5000, our final training set generation
follows the protocol described in section “Training and test set gen-
eration”. For the adiabatic excited-state dynamics considered in this
work, it is possible to train state-specificML-HKmodels to return the S2
energies using only ground-state or S2 densities as input (see Supple-
mentary Fig. 1). While we do not include any non-adiabatic transitions
in this study, we note that the state-specificmodels are worse thanML-
MSHK in the vicinity of electronic crossings (see Supplementary
Note 5). Given the excellent performance of the ML-MSHK model and
its ability to capture multiple electronic states simultaneously, we
focus exclusively on this model for the remainder of this work.

Excited-state density predictions
Equally important to energy predictions is the question of howwell the
model reproduces electron densities. This is explored in Fig. 2, which
shows electron densities for the CS-symmetric ground-state optimized
geometry of MA (similar results for the proton transfer transition state
are shown in Supplementary Fig. 4). In order to highlight the changes
in bonding structure, excited-state densities are displayed as density
differences with respect to the ground state. For all states considered,

there is no discernible difference between the ML-MSHK predicted
densities (left) and ab initio TD-PBE0 densities (right), even though the
ground-state optimized structure was not included in the training set.
Indeed, the out-of-sample integrated MAE in the total electron den-
sities is very small (0.012 e).

Knowledge of the density differences also provides insight into
the nature of the electronic excitations. From Fig. 2, S1 clearly corre-
sponds to annπ* transitionwith adepletionofdensity fromtheproton-
accepting oxygen’s px orbital and an accumulation on the backbone π*

orbital. S2, on the other hand, is a ππ* transition, as identified by a
depletion of density on the central conjugated carbon’s pz orbital.

Excited-state MD using ML potentials
Having demonstrated that our ML-MSHK model provides a quantita-
tive prediction of excited-state electron densities and total energies
within our test set of geometries, we next consider its ability to gen-
erate a functional for use in excited-state MD. We thus initiated non-
equilibrium MD trajectories of MA on its S2 state following vertical
excitation from the ground state. 1000 ML-MSHK and 50 AIMD tra-
jectories were run and compared. It should be noted that the com-
putational effort associated with propagating dynamics on the ML-
MSHK surface is negligible compared to AIMDdynamics. Thus, for the
cost of 50excited-state AIMD trajectories used to generate the training
and test sets, we gain the ability to perform excited-state dynamics
with 1000 ML-MSHK trajectories using the resulting machine-learned
functional to converge the excited-state non-equilibrium averaged
properties.

We consider three metrics to assess the quality of the machine-
learned functional. The first concerns how well ML-MSHK is able to
interpolate the energy between geometries explicitly included in the
training. This is accomplished by evaluating ML-MSHK energies along

ML-MSHK n0
Ab ini�o n0

ML-MSHK n1-n0 Ab ini�o n1-n0

ML-MSHK n2-n0 Ab ini�o n2-n0

Fig. 2 | Ground and excited-state electron densities for the CS ground-state
minimum energy structure of MA. 1st row: S0 ground-state densities. 2nd row:
density differences between S1 and S0. 3rd row: density differences between S2 and
S0. An isosurface of 0.1 e/Bohr3 was used for plotting densities and density differ-
ences. Left column: ML predictions, right column: ab initio TD-PBE0 predictions.
Each density is represented by an isosurface plot. For density differences, red
means an accumulation of electronic charge in the excited state and blue means a
depletion.
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an AIMD excited-state trajectory from which some geometries were
included in the training. The result is shown in Fig. 3a, where we see
almost perfect agreement between ML-MSHK and the AIMD TD-PBE0
energies. Note that only 32 geometries out of 481 from this trajectory
were used in the training set of the ML-MSHK model, highlighting the
fidelity to which ML-MSHK is able to interpolate the functional
between training points. Second, we assess how well ML-MSHK pro-
pagates thedynamics starting fromageometry included in the training
set, shown in panel b, where again we see almost perfect agreement
with AIMD energies evaluated on the ML trajectory snapshots. Finally,
we check how well the machine-learned functional does on arbitrary
geometries by evaluating ab initio TD-PBE0 energies along an ML-
MSHK trajectory where no geometry was included in the training set,
shown in panel c. Here, slightly larger deviations between ML-MSHK
and TD-PBE0 energies are seen; however, the difference is within the
expectedMAE bounds from the learning curve and does not growwith
time, showing that ML-MSHK faithfully reproduces the excited-state
energy functional, at least in the configurational space sampled during
non-equilibrium dynamics. The error could be reduced by further
increasing the training set; however, we found this unnecessary since
this small error does not influence the dynamical predictions as we
show below.

ESPT in planar MA
Having seen that ML-MSHK provides an accurate description of the S2
excited-state functional of MA, we next consider the predictions of
excited-state dynamics of the ESPT reaction using this functional. To
that end, we compute the following non-equilibrium response func-
tion:

SðtÞ= r�ð0Þr�ðtÞ
� �

=∣r�ð0Þr�ðtÞ∣, ð3Þ

where t =0 corresponds to the instance of vertical excitation from an
equilibrium configuration on the S0 state to the S2 state, and the

overbar indicates a non-equilibrium average over initial conditions.
S(t) thusmeasures thememory of which reaction basin the proton is in
(reactant or product). A value of S = 1 means the proton is in the
reactant basin, a value of S = − 1 means the proton is in the product
basin, and a value of S =0meansmemoryhas been lost. SinceMAhas a
symmetric proton donor and acceptor, S =0 indicates the reaction is
complete.

Figure 4a shows the ESPT reaction’s non-equilibrium response
function, S(t), computed for 50 AIMD trajectories (red) and 1,000 ML-
MSHK trajectories (blue). Shaded areas represent the 95% confidence
intervals computed with the bootstrap method61, as implemented in
SciPy v. 1.7.162. The results show that the AIMD and ML-MSHK agree
within statistical certainty, highlighting the predictive power of ML-
MSHK. Furthermore, an interesting feature of S(t) becomes clear in the
ML-MSHK results: apart from a ~10% fraction of trajectories that
undergo almost immediate proton transfer, there is a waiting period
of ~40 fs before the remainder of ESPT reaction proceeds, which is
then rapidly completed by 60 fs. This behavior is hinted at in the AIMD
results but becomesmuchmore apparent in theML-MSHKpredictions
due to averaging over many more trajectories.

The observed 40-fs waiting period arises from important
responses of the heavy atoms following excitation to S2. This can be
seen for example in the average oxygen–oxygen distance, dOO, plotted
in Fig. 4b, which exhibits a decrease from ~2.57Å to ~2.42Å in the first
30 fs following excitation. This timescale is comparable to the waiting
period of the ESPT reaction, suggesting that the oxygen–oxygen
motion gates the reaction, which does not proceed rapidly until a
distance of dOO ≤ 2.45Å is reached.

The response of dOO following excitation to S2 can be understood
from changes in the electron density shown in Fig. 2. The reduction in
π-bonding character lessens the rigidity of the conjugated system,

Fig. 3 | Predictions of electronic energies along trajectories. ML-MSHK predic-
tions (blue curves) and TD-PBE0 reference values (red curves) are shown along
three different representative trajectories taken from: a an ab initio molecular
dynamics (AIMD) trajectory and b an ML-generated excited-state trajectory, both
initiated from geometries in the training set, and c an ML-generated excited-state
trajectory initiated from a geometry out of the training set.

Fig. 4 | The non-equilibrium response of the excited-state proton transfer
reaction and its relationship to the time varying oxygen–oxygen distance of
MA. a Non-equilibrium response function of the proton’s location (reactant or
product basin according to Eq. (3)), S(t), that reflects the progress of the excited-
state proton transfer reaction. The solid curves are the expectation values of S(t)
and the shaded area shows the 95% confidence intervals estimated from bootstrap
analysis using 50 trajectories for ab initio molecular dynamics (AIMD) (red) and
1000 trajectories (blue) for ML-MSHK. The converged S(t) of the ML-MSHK model
shows good agreement with the result from AIMD simulations. b The average
oxygen–oxygen distance is shown as a function of time following photoexcitation.
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allowing the chelating ring to contract and the oxygen atoms to
become closer. Bringing together the proton donor and acceptor
oxygen atoms then reduces the barrier to ESPT, thus explaining the
gating mechanism. This is explored explicitly in Fig. 5, which plots the
potential energy profile of theminimum energy pathway of ESPT on S2
for a series of fixed dOO distances. Encouragingly, quantitative agree-
ment between ML-MSHK (blue curves) and TD-PBE0 (dashed red
curves) is seen, despite none of the minimum energy pathway geo-
metries being included explicitly in the training set. For the initial
average dOO distance (~2.57Å), a proton-transfer barrier of >2 kcal/mol
is seen, explaining why only a small fraction of excited trajectories
undergo ESPT in the first 20 fs. The S2 potential is downhill formotions
that reduce dOO to a value of 2.45 Å (following the minimum of the
potential energy profile as a function of dOO),which alsobrings about a
reduction of the barrier to proton transfer, having a value of 0.3 kcal/
mol atdOO = 2.45Å. The barrier disappears completely for dOO = 2.35Å;
however, this oxygen–oxygen distance is disfavored due to an overall
increase in the potential, explaining why the initial reduction in dOO is
seen to reverse at t = 30 fs in Fig. 4b.

Discussion
In this paper, we developed a multistate Hohenberg–Kohn machine-
learning framework for the accurate prediction of excited-state den-
sities and energies. We demonstrated that excited-state energies,
which are expressible as a single functional of multiple state densities,
can be learned as accurately as the ground-state energy, even for the
moderately sized molecule malonaldehyde, which exhibits a non-
trivial excited-state proton transfer reaction. The resulting machine-
learned functional is faithful to the underlying excited-state AIMD
trajectories on which the model was based, allowing accurate non-
equilibrium excited-state molecular dynamics trajectories to be per-
formed with a 10-fold computational saving compared to AIMD. Fur-
thermore, our study yielded new insight into the excited-state proton
transfer reaction in malonaldehyde. This was aided by the low-cost of
ML-MSHK energy predictions that allowed us to converge the non-
equilibrium dynamics with 1,000 excited-state trajectories, revealing
the 40-fs waiting period following photoexcitation, after which ESPT
promptly completed.

The observed gating mechanism of proton transfer in planar MA
by heavy atom motion has been seen previously in other intramole-
cular ESPT reactions which are not precluded by ultrafast non-
adiabatic transitions. In particular, the lack of isotope effect for ESPT

in methyl salicylate was explained by a delocalization of the reaction
coordinate to modes other than the donor OH stretch38. Later studies
in related ESPT molecules found the reaction path was dominated by
anharmonic low-frequency backbone modes that modulated the
donor-acceptor distance63–65. Thus, by enforcing planarity in MA, we
have suppressed nonadiabatic transitions that compete with ESPT and
find the mechanism of proton transfer is indeed multidimensional in
nature and follows the concensus picture that has emerged for intra-
molecular chelate ring structures. That we correctly captured the
multidimensional nature of ESPT from a limited training of excited-
state trajectories is a testament to the power of ourML-MSHKmethod.

This work can be extended in a number of directions. As an
example, we removed the restraint of planarity onmalonaldehyde (see
Supplementary Note 5). Models using additional non-planar training
geometries show that the multistate density functional outperforms
the state-specific functionals near S2/S1 state crossings, which is vital
for running future non-adiabatic MD trajectories. In addition, the LR-
TDDFT training data could be replaced with high-level wavefunction-
based electronic structure for input to train the ML-MSHK density and
energy maps. A similar approach was recently shown to be successful
for the ground-state ML-HK method to learn coupled-cluster
energies23. Based on the promising results presented in this work, we
are optimistic that ML-MSHK will find practical use in excited-state
non-adiabatic simulations with the costly electronic-structure steps
done only once to build the training set.

Methods
Machine-learning model
In order to predict the excited-state energies of a molecule using
electron densities via the ML-MSHK map introduced in section
“Learning excited states with ML-MSHK”, we start by using a basis
expansion of the densities:

nML
j ½v�ðrÞ=

XL
l = 1

uðlÞ
j ½v�ϕlðrÞ, ð4Þ

where j indexes an electronic state (j = 0 is the ground state, j = 1 is the
first excited state, etc). Following the ground-state ML-HK method22,
we choose a Fourier basis. In Eq. (4), l indexes a basis function, ofwhich
there are L. In this work 50 functions are used in each dimension
(125,000 = 50× 50× 50 in total). The coefficients of the basis set
expansion are learned using KRR. In particular, uðlÞ

j are represented as a
kernel expansion of the form

uðlÞ
j ½v�=

XM
i= 1

βðlÞ
i,j κ½vi,v�: ð5Þ

Here, βðlÞ
i,j parameterizes the kernel model, and the kernel functional κ

has a Gaussian form

κ½vi,v�= exp � 1
σ2

Z
dr vðrÞ � viðrÞ

� �2� �
, ð6Þ

where σ is a kernel width hyperparameter. The external potentials,
vi(r), i = 1, . . . ,M, are unique to each of theM training geometries, and
are paired with M training densities, ni,j(r), for each state j. Like the
density, we use a basis representation of the external potential; how-
ever, caremust be taken to avoid the Coulomb singularities in v(r). We
therefore use a Gaussian representation of the potential:

vðrÞ=
XN
a

Zae
�∣Ra�r∣2=2σ2

pot , ð7Þ

where Ra is the position of the ath nucleus, Za is its corresponding
nuclear charge, and σpot is a width parameter22,66. The potential from

Fig. 5 | S2 potential energy surfaces of MA along the H-transfer coordinate, r−,
for a series of fixed oxygen–oxygen distances, doo. All coordinates except r− and
doo are optimized at the TD-PBE0/aug-cc-pvdz level for S2, subject to a constraint of
planarity, following the procedure described in Supplementary Note 3. We see
excellent agreement between ab initio results (dashed red curves) and ML-MSHK
predictions (solid blue curves).
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Eq. (7) is then formed on a 3D grid surrounding the molecule and
stored as a vector, vi, for each sample i to be used in Eq. (6).
60 × 50× 30 grid points were used with a spacing of 0.2 Å, commen-
surate with the shape of the molecule. We used previously optimized
values of σpot = 0.2 Å and a grid spacing for MA from ref. 22.

As a final step, we train a multistate total energy functional:

EML�MSHK½nj �=
XM
i= 1

X
k

αi,kκ½ui,k ,uj �, ð8Þ

where k sums over the states of the densities used in the training and κ
is another Gaussian kernel.

Reference ab initio electronic structure
Reference calculations on MA’s excited states were performed at the
LR-TDDFT level using the PBE067,68 approximate exchange and corre-
lation functional. This level of theory, whichwe abbreviate as TD-PBE0,
was chosen as a compromise between accuracy and efficiency in this
first demonstration of our ML-MSHK method. In particular, PBE0
provides qualitatively correct ground-state thermochemical proper-
ties of MA, yielding proton transfer barrier height of 2.0 kcal/mol
compared to the predicted barrier from high-level theory of 4.1 kcal/
mol69,70. In addition, TD-PBE0 provides reasonable spectroscopic
quantities forMA,with a S0-S2 vertical excitation of 5.3 eV compared to
the experimental value of 4.7 eV71. Electronic structure calculations
were performed in CPMD v. 4.3.072 using a plane-wave basis with a
kinetic energy cutoff of 90Rydberg. Core electronswere replacedwith
Troullier-Martins norm-conserving pseudopotentials73.

AIMD excited-state molecular dynamics
Ab initio excited-state Born-Oppenheimer MD simulations of a gas-
phase malonaldehyde molecule were performed in CPMD using the
same TD-PBE0 level of theory discussed above. 50 independent non-
equilibrium trajectories were initiated on the S2 state following vertical
excitations spaced every 100 fs from an AIMD ground-state trajectory
sampled at 300K taken from ref. 22. Excited-state dynamics were
propagated in themicrocanonical ensemblewith a 0.25 fs timestep for
120 fs, which takes 5027min for one simulation with all cores (24) of
dual Intel Xeon E5 2650 v4 (2.2 GHz) CPUs. Planarity was maintained
with the following added restraining potential: Vrest: =

PN
a

1
2 kaðzaÞ2,

where ka is the strength of each restraint and is 9 kcal/(mol bohr2) for
hydrogen and 40kcal/(mol bohr2) for heavy atoms. za is the
z-coordinate of each atom. The planarity restraints were chosen to be
stiffer for the heavy atoms, since backbone torsions have been iden-
tified as bringing about the S2/S1 electronic crossing in MA41.

Training and test set generation
It has been shown that exploiting molecular point group symmetries
helps to increase the effective dataset size significantly without
performing additional quantum chemical calculations23. We thus
generated training sets for malonaldehyde that included reflection
about the mirror symmetry plane perpendicular to the molecular axis,
σv0, of an idealized planar C2v structure, since this symmetry operation
ensures the equivalence of the two oxygen atoms as proton donors/
acceptors. To achieve a symmetrization of the training sets while
avoiding unnecessary duplication of samples, we combined symme-
terization with a clustering of molecular geometries. For example,
the training set for MD runs was formed by starting with 2000 struc-
tures taken from a previous ground-state AIMD trajectory22 and
14,400 structures taken every timestep from 30 independent ab initio
excited-state trajectories described in section “AIMD excited-state
molecular dynamics”. Next, all geometries were aligned to a reference
geometry representing the planar proton-transfer transition state with
C2v symmetry (see Supplementary Note 4). Then, following alignment,

any molecular structures with a negative proton-transfer coordinate,
r−, were reflected in the σv0 plane, i.e., to ensure r− >0. The training set
was then clusteredwithK-Means74 tomake a set of 2500 samples, using
a metric related to the L2 deviation of the external potential,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

dr viðrÞ � vjðrÞ
	 
2

r
, where vi represents the potential from Eq. (7).

Finally, the training set was doubled in size by applying the reflection
operator in the σv0 plane to yield the production training set of 5000
geometries. The test set contains 240 aligned snapshots extracted
every 10 fs from 20 independent ab initio excited-state trajectories
described in section “AIMD excited-state molecular dynamics”.

The electronic-structure calculations for excited-state energies
and densities take 40min with 8 cores of an Intel Xeon E5 2650 v4 (2.2
GHz) CPU for one geometry and the training takes 10min using the
same number of cores with hyperparameters given.

ML excited-state molecular dynamics
To generate initial conditions to perform excited-state dynamics on
the ML S2 potential, a ground-state AIMD trajectory was run in CPMD
using the PBE exchange and correlation functional67 with the same
kinetic energy cutoff and pseudopotentials discussed above. This
trajectory was run in the canonical ensemble at 300K using massive
Nosé-Hoover chain thermostats with a timestep of 0.5 fs75. 1000
independent non-equilibrium trajectorieswere initiated on the S2 state
following vertical excitations spaced every 100 fs from the ground-
state trajectory. Excited-state dynamics were propagated in the
microcanonical ensemble with a 0.25 fs timestep using the atomistic
simulation environment v.3.19.076. Atomic forces were evaluated
numerically using central differences with a step length of dx =0.001
Å. Dynamicswerepropagated for 60 fs,whichwas sufficient toobserve
the ESPT reaction. The propagation of one 60-fs dynamics simulation
takes 20min with 2 cores of an Intel Xeon E5 2650 v4 (2.2GHz) CPU.

Data availability
The molecular coordinates, electronic densities and energies for
ground and excited states used in this study are available in Zenodo
[https://doi.org/10.5281/zenodo.7064211]. The source data of the fig-
ures areprovided in the SourceDatafile. Sourcedata areprovidedwith
this paper.

Code availability
Codes used in this work are available at https://doi.org/10.5281/
zenodo.7064211.
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