Skip to main content
. 2022 Nov 4;9:1005920. doi: 10.3389/fmed.2022.1005920

Algorithm 1.

Phases to measure the COVID similarity with other abnormalities

  START
  INPUT: ECG_Samples
  OUTPUT: Similarity score
  ECG_Samples: Images from classes
  I(x)= COVID samples
  Similarity score: estimation of COVID
  similarity with other four classes
  ECG_samples ← [x,y]
  // Preprocessing step
  Crop_ECG_samples ← Crop (ECG_samples)
  Processed_ECG_samples
  BackGroudRemoval (Crop_ECG_samples)
  Enhanced_ ECG_samples ← Morphological
  Operation(Processed_ECG_samples)
  Resized_ECG_samples
  imresize(Enhanced _ECG_samples)
  // Similarity Estimation
  Dataset ← Path of Resized_ECG_samples
  from saved directory
  DestinationFolder ← Path to save the
  results
  filePattern ← fullfile(Dataset,
  ‘*.jpg’);
  jpegFiles ← dir(filePattern);
  for k = 1: length(jpegFiles)
     baseFileName ← jpegFiles(k).name;
     fullFileName ← fullfile(Dataset,
     baseFileName);
     ECG_sample[J]
     imread(fullFileName);
     Estimated_Similarity(k)
  sqrt(sum((I(:) - ECG_sample(:)) .∧ 2));
  End
  SaveResult() and output Similarity
  score
  FINISH