Algorithm 1.
Phases to measure the COVID similarity with other abnormalities
|
START INPUT: ECG_Samples OUTPUT: Similarity score ECG_Samples: Images from classes I(x)= COVID samples Similarity score: estimation of COVID similarity with other four classes ECG_samples ← [x,y] // Preprocessing step Crop_ECG_samples ← Crop (ECG_samples) Processed_ECG_samples ← BackGroudRemoval (Crop_ECG_samples) Enhanced_ ECG_samples ← Morphological Operation(Processed_ECG_samples) Resized_ECG_samples ← imresize(Enhanced _ECG_samples) // Similarity Estimation Dataset ← Path of Resized_ECG_samples from saved directory DestinationFolder ← Path to save the results filePattern ← fullfile(Dataset, ‘*.jpg’); jpegFiles ← dir(filePattern); for k = 1: length(jpegFiles) baseFileName ← jpegFiles(k).name; fullFileName ← fullfile(Dataset, baseFileName); ECG_sample[J] ← imread(fullFileName); Estimated_Similarity(k) ← sqrt(sum((I(:) - ECG_sample(:)) .∧ 2)); End SaveResult() and output Similarity score FINISH |