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Dietary long‑chain omega 3 
fatty acids modify sphingolipid 
metabolism to facilitate airway 
hyperreactivity
Andrea Heras1,7, Rika Gomi1,7, Madeline Young1,7, Chuchun L. Chang2, Emily Wasserman1,3, 
Anurag Sharma1, Wenzhu Wu1, Jinghua Gu3, Uthra Balaji3, Rachel White1, Perdita Permaul1, 
Ibrahim Janahi4, Tilla S. Worgall5,7 & Stefan Worgall1,3,6,7*

Omega‑3 polyunsaturated fatty acids (n‑3 PUFAs) are essential nutrients that can affect inflammatory 
responses. While n‑3 PUFAs are generally considered beneficial for cardiovascular disease and 
obesity, the effects on asthma, the most common inflammatory lung disease are unclear. While 
prenatal dietary n‑3 PUFAs decrease the risk for childhood wheezing, postnatal dietary n‑3 PUFAs 
can worsen allergic airway inflammation. Sphingolipid metabolism is also affected by dietary n‑3 
PUFAs. Decreased sphingolipid synthesis leads to airway hyperreactivity, besides inflammation, 
a cardinal feature of asthma, and common genetic asthma risk alleles lead to lower sphingolipid 
synthesis. We investigated the effect of dietary n‑3 PUFAs on sphingolipid metabolism and airway 
reactivity. Comparing a fish‑oil diet with a high n‑3 PUFA content (FO) to an isocaloric coconut oil‑
enriched diet (CO), we found an n‑3 PUFA‑dependent effect on increased airway reactivity, that was 
not accompanied by inflammation. Lung and whole blood content of dihydroceramides, ceramides, 
sphingomyelins, and glucosylceramides were lower in mice fed the n‑3 PUFA enriched diet consistent 
with lower sphingolipid synthesis. In contrast, phosphorylated long chain bases such as sphingosine 
1‑phosphate were increased. These findings suggest that dietary n‑3 PUFAs affect pulmonary 
sphingolipid composition to favor innate airway hyperreactivity, independent of inflammation, and 
point to an important role of n‑3 PUFAs in sphingolipid metabolism.

Polyunsaturated fatty acids (PUFAs), essential nutrients with a multitude of biological effects mainly related to 
growth and metabolism, are actively incorporated as acyl chains into cell membrane lipids, including sphingolip-
ids, and can affect membrane scaffold formation, energy storage and signal transduction by lipid  mediators1. 
N-3 PUFAs have anti-inflammatory  effects2 which attenuate systemic inflammation associated with obesity 
and cardiovascular  disease3,4. N-3 PUFAs may also be beneficial in asthma as: (1) Exhaled breath condensates 
of asthmatic individuals contained lower levels of a n-3 PUFA docosahexaenoic acid  derivative5; and decreased 
airway reactivity inflammation with allergic sensitization can be achieved (2) by oral or aerosolized administra-
tion n-3 PUFAs or  derivatives5–10; and (3) by endogenously increasing n-3 PUFAs in transgenic mice expressing 
a n-3 fatty acid  desaturase11. In contrast, exacerbation of inflammation by n-3 PUFAs has been seen with allergic 
airway and intestinal  inflammation12–14 and  infection15–17 models.

Polymorphisms within the 17q21 chromosomal region that increase expression of the sphingolipid synthesis 
inhibitor ORMDL3 are linked to childhood  asthma18–20 and  obesity21. ORMDL3 inhibits serine palmitoyl trans-
ferase (SPT), the rate-limiting enzyme in de novo sphingolipid  synthesis22,23. ORMDL3-overexpressing mice as 
well as knockdown or pharmacological inhibition of SPT lead to decreased lung sphingolipid levels and innate 
airway  hyperreactivity24,25. We investigated the effects of n-3 PUFAs on sphingolipid metabolism and airway 
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reactivity, a key characteristic of all asthma types, by comparing mice that were fed for more than two months 
with either the n-3 PUFA-enriched FO diet or the coconut-oil enriched CO diet.

Results and discussion
Both FO and CO fed mice showed similar weight gain (Supplemental Fig. 1a) and similar food consumption 
(Supplemental Fig. 1b). We next evaluated the effects of the two high fat diets on plasma sphingolipid levels. 
FO resulted in higher plasma levels of all sphingoid long chain bases (Supplemental Fig. 2a), dihydroceramides 
(Supplemental Fig. 2b) and sphingomyelins (Supplemental Fig. 2c). Plasma ceramide levels were lower with FO 
compared to CO (Supplemental Fig. 2d), mostly due to ceramide C24:1 that itself was not significantly different 
between the two groups (p < 0.087). As decreased levels of sphingolipids that are generated mainly via de novo 
synthesis via SPT such as sphingosine and dihydroceramides are associated with increased airway  reactivity25–27, 
we hypothesized that the FO diet would lead to lower airway reactivity compared to CO. Surprisingly, airway 
reactivity (Rn) in response to methacholine was increased in mice fed FO (Fig. 1a). Lung compliance (Fig. 1b) 
and inspiratory lung capacity (Fig. 1c) were similar in both groups.

A similar pattern was seen in C57BL/6 mice (Supplemental Fig. 3a–c). This suggests that the PUFA-enriched 
diet induced a lung phenotype of innateairway hyperreactivity without other functional impairment typically 
associated with chronic inflammation or fibrosis. BALB/C and C57BL/6 were selected to assess if the innate 
airway hyperreactivity is independent of the genetic inflammatory  haplotype28 with Th1- and M1-dominant 
responses in C57BL/6, and Th2- and M2-dominant responses in BALB/c mice,  respectively29. The effect was only 
evaluated in female mice. Increased innate airway reactivity may likely be also seen with male mice, as sphin-
golipid-associated innate airway hyperreactivity we independent of sex and also equally seen in both  strains30.

Asthmatic airway hyperreactivity is usually associated with airway inflammation. N-3 PUFAs in die-
tary fish oil supplements are known to effect airway inflammation in asthma, but the results have not been 
 consistent6–8,11–13,31–33.

The cellular composition of the BAL, a solid parameter to assess airway inflammation relevant to asthma, 
showed a normal macrophage predominance in both groups (Fig. 2a). Likewise, no lung or airway inflammation 
was visible histologically (Fig. 2b–d), and wet lung weights were similar in both groups (Fig. 2e). Expression of 
the inflammatory factors IL-6 (Fig. 2f), IL-1b (Fig. 2g), TNF-a (Fig. 2h), inducible nitric oxide synthase (Fig. 2i), 
and the mucus gene Muc5a/c (Fig. 2j) were similar in both groups. Interestingly, expression of the calcium and 
magnesium transporter TRPM7, which is increased in SPT-deficient mice with increased airway  reactivity25, was 
increased in the FO group (Fig. 2k). This suggests that the higher airway reactivity in the FO-fed mice was not 
induced by lung inflammation. It further signifies that allergic sensitization, which was used in all prior studies 
assessing the effects of n-3 PUFAs on airway inflammation and  reactivity11–13, was not required for the innate 
airway hypereactivity phenotype.

To further assess the effects of the n-3 PUFAs on pulmonary gene expression, lung transcriptomes were ana-
lyzed by RNA-seq. Global gene expression was similar between both groups (Fig. 3a). Differential gene expression 
(DEG) analysis revealed only 137 DEG genes when comparing FO and CO groups (Fig. 3b,c). Among those, 
numerous genes arerelated to smooth muscle cell contractility and pro- and anti-inflammatory effects relevant 
to asthma (Supplemental Table 2). The majority of genes related to smooth muscle cell contraction or growth 
were higher expressed in the FO group, whereas there was an even pro- and anti-inflammatory gene expression 
effect of FO. To put the overall gene expression analysis in biological context, gene set enrichment analysis was 
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Figure 1.  N-3 PUFA enriched diet induces innate airway hyperreactivity. BALB/c mice were fed a fish oil 
diet (FO) or an isocaloric control diet (CO) for 8 weeks. Pulmonary function testing was performed on 
anaesthetized and tracheotomized mice using a mouse pulmonary function system (Scireq). (a) Airway 
resistance (Rn) with increasing doses of methacholine. (b) Static compliance (Cst). (c) Inspiratory capacity (IC). 
Data are means ± SEM of 7 animals per group. **p < 0.001. Shown are results of ANOVA (Rn) or unpaired T-test 
(Cst, IC).
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performed for KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. KEGG pathway analysis showed 
upregulation of two cardiac muscle pathways and one contraction pathway (p < 0.05) in the FO group (Fig. 3d). 
These three pathways consist of overlapping genes, e.g. 31 out of 34 for dilated and hypertrophic cardiomyopa-
thy, 17 out of 30 for muscle contraction and either dilated or hypertrophic cardiomyopathy. All three pathways 
contain numerous genes that also play a role in smooth muscle cell contraction (dilated cardiomyopathy: 22 
out of 34 genes; cardiac muscle contraction: 15 out 30 genes; hypertrophic cardiomyopathy: 21 out of 34 genes), 
suggesting a relevance for airway smooth muscle cell contraction. All three also included increased expression 
of myosin light chain 3 (Myl3; Fig. 3b). Realtime PCR confirmed increased lung expression of Myl3 in the FO 
group (Fig. 3e).

Expression of Myl3 is high in cardiac  muscle34, it is also expressed in human lung smooth muscle and 
 fibroblasts35 and in mouse  lung36. Myl3 encodes a myosin light chain and in airway smooth muscle, signaling 
through myosin light chain kinase is critical for contractile  function37, It is unknown what functional role Myl3 
has in airway smooth muscle cells. Interestingly and relevant to our manuscript, a large European cross-trait 
genome-wide association study to identify shared genetic components between obesity-related traits and specific 
asthma subtypes identified 34 shared  loci38. Among those were acyl-coenzyme A oxidase-like (ACOXL) and 
myosin light chain 6 (Myl6). Those two genes were then also confirmed by RNA sequencing from lungs of diet 
-induced-obese versus control  mice38, an established model for obesity-induced innate  hyperresponsiveness39. 
While Myl6 was not identified in our screen, it is similar to Myl3, and ACOXL is also one of the genes upregulated 
in the fish oil group (Fig. 3c), suggesting similarities between asthma models of innate airway hyperreactivity 
and the dietary effects of n-3 PUFAs. Gene ontology (GO) pathway analysis was also performed and showed 
upregulation of some inflammatory pathways in the FO group, though with a p-value < 0.1 (Supplemental Fig. 4). 
Increased oxidative stress pathways were only identified under less stringent statistical criteria and showed some 
upregulation of the GO pathways positive regulation of response to oxidative stress (adjusted p-value = 0.6), 
negative regulation of oxidative stress-induced neuron intrinsic apoptotic pathway (adjusted p-value = 0.61), 
oxidative demethylation (adjusted p-value = 0.63), and positive regulation of oxidative stress-induced intrinsic 
apoptotic signaling pathway (adjusted p-value = 0.65), suggesting no clear positive and or negative effect on 
oxidative stress pathways with n-3 PUFAs as a potential cause for increased airway reactivity. Genes within the 
sphingolipid biosynthesis and acute inflammatory response pathways were similarly expressed in the lungs from 
both groups (Supplemental Fig. 5). Overall, while the RNA seq data showed some lung gene expression differ-
ences between the CO and FO, the overall number of differentially expressed genes was small, but did include 
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Figure 2.  N-3 PUFA-enriched diet does not induce pulmonary inflammation. Analyses of lung and broncho-
alveolar lavage fluid (BAL) from BALB/c mice that were fed a fish oil diet (FO) or an isocaloric control diet 
(CO) for 8 weeks. (a) Cytospin analysis of BAL cells. (b, c) Lung histology of CO (b) and FO (c) mice. Shown 
are representative lung sections stained with H&E, bar equals 250 μm. (d) Inflammatory score of histological 
sections. (e) Lung wet weights relative to body weight. (f–k) Expression of inflammatory markers in lung 
analyzed by Real-Time PCR: (f) IL-6. (g) IL-1β. (h) TNF-α (i) INOS. (j) Muc5AC; and (k) TRPM7. Data are 
means ± SEM of 5 animals per group. *p < 0.05. **p < 0.001, ***p < 0.0001. Shown are results of unpaired T-tests.
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genes to muscle contraction, such as myl3. Interestingly, expression of the magnesium transporter TRPM7 
that has been associated with increased airway contractility in SPT-deficient  mice25, was higher with the FO 
diet, suggesting decreased sphingolipid synthesis without changes in transcription genes for enzymes within 
this pathway. This data reiterates that pulmonary inflammation is not the major factor for the increased airway 
reactivity induced by the FO diet. As decreased pulmonary and blood cell sphingolipid synthesis is associated 
with increased airway reactivity in the absence of  inflammation25,40, we assessed lung and blood cell sphingolipid 
levels at the time of the pulmonary function testing.

In contrast to the plasma levels, lung long chain bases (Fig. 4a), dihydroceramides (Fig. 4c), ceramides 
(Fig. 4d), sphingomyelins (Fig. 4e), and glucosylceramides (Fig. 4f) were decreased in the FO compared to the 
CO group. Sphingolipid composition in blood cells, a parameter of cellular sphingolipid composition relevant to 
 asthma30, also showed lower levels of dihydroceramides (Fig. 4i), ceramides (Fig. 4j), sphingomyelins (Fig. 4k), 
and glucosylceramides (Fig. 4l) with the FO diet. The sum of long chain bases in the blood was overall increased 
in the FO mice compared to CO (Fig. 4g), mainly due to sphinganine-1P (p = 0.0054). Plasma sphingolipid 
levels, with the exception of ceramides, were higher with FO diet compared to CO diet, in contrast to lung and 
whole blood where most sphingolipids were lower. Whole blood sphingolipids seem to be better reflect tissue 
sphingolipid levels compared serum or plasma levels. Genetically decreased sphingolipid synthesis in children 
with asthma was detectable in whole blood and PBMCs, and reflected levels in airway epithelial  cells30. There 
is limited information on the effects of n-3 PUFAs on blood sphingolipidomes in humans. Targeted lipidomics 
for glycerophospholipids and sphingolipids of healthy individuals in plasma following dietary supplementation 
with n-3 PUFAs for three weeks showed a trend for increased ceramides and  dihydrocermides41. Dietary sup-
plementation of healthy subjects with EPA and DHA for three months reduced ceramides in VLDL and increased 
sphingomyelin in  LDL42. Our data suggests that n-3 PUFA-enriched diets can lower tissue and cell sphingolipids. 
However, ratios of the phosphorylated long chain bases S1P and Sa-1P to sphingosine and sphinganine were 
higher with FO in blood (Fig. 4b) and lung (Fig. 4h). This finding is in contrast to SPT-deficient  mice25 and 
suggests an effect of the n-3 PUFAs on increasing sphingosine kinase activity or decreasing degradation by 
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sphingosine phosphate lyase. Increased S1P is associated with increased airway reactivity and asthma, as S1P 
can directly contract airway smooth muscle through signaling via S1P  receptors43 and can also lead to airway 
 remodeling44,45. There were no signs for airway remodeling histologically or functionally with normal compliance 
and absence of fixed obstruction in the lung function studies. While the lung and blood sphingolipid profiles seen 
with FO do not suggest a primary effect on sphingolipid de novo synthesis, both increased S1P and decreased 
dihydroceramides could have been instrumental for the hyperreactivity. Effects on membrane lipid rafts could 
be potential mechanisms for the n-3 PUFA induced changes of cellular sphingolipids on airway  reactivity46. 
Rafts, usually enriched with ceramides, sphingomyelins and  glucosphingolipids47, all lower in blood cells and 
lung with FO, are involved in the clustering of membrane signaling proteins to facilitate cell signaling, a process 
that is perturbed by n-3  PUFAs48–50.

Overall, the study shows a strong effect of n-3 PUFAs in a hypercaloric diet on blood and tissue sphingolipids. 
The combination of decreased sphingolipids and increased circulating S1P may provide the functional link for 
enhanced airway reactivity in the absence of inflammation. Further studies need to assess n-3 PUFA-induced dis-
turbances of lipid rafts and effects on signaling, especially of pathways critical for smooth muscle cell contraction.

Materials and methods
All methods were carried out in accordance with relevant guidelines and regulations, and are reported in accord-
ance with ARRIVE guidelines.

Mice and diets. All animal studies were conducted under protocols approved by the Institutional Ani-
mal Care and Use Committee of Weill Cornell Medicine. Female BALB/c and C57Bl/6 mice were purchased 
at 4–6  weeks of age from Jackson Laboratory and housed under specific pathogen-free conditions. Follow-
ing 1 week acclimatization, mice were fed a high-fat, semipurified diet (total 19% fat, 0.2% cholesterol, w/w) 
enriched in either n-3 PUFAs (91% menhaden fish oil and 9% corn oil; Harlan Teklad; TD. 07500; FO) or satu-
rated fat (75% saturated fat from coconut oil, 17% monounsaturated fat from olive oil, and 8% polyunsaturated 
fat from corn oil; Harlan Teklad; TD. 08081; CO) for 8–11 weeks. Both diets have been used to assess the attenu-
ating effects of PUFAs on atherosclerosis and  inflammation51. Detailed composition of the diets is provided in 
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Figure 4.  N-3 PUFA enriched diet decreases ceramides and sphingomyelins in lungs and blood cells. 
Sphingolipids in lung (a–f) and whole blood (g–l) from BALB/c mice that were fed either FO or CO diet for 
8 weeks. (a, g) Long chain bases. (b, h) Ratios of the two phosphorylated long chain bases sphingosine-1P 
(S1P) and sphinganine-1P (Sa1P) to sphinganine and sphingosine. (c, i) Dihydroceramides. (d, j) Ceramides. 
(e, k) Sphingomyelins. (f, l) Glucosylceramides. Data are representative of 3 independent experiments with 5–6 
mice per group. *p < 0.05. **p < 0.001, ***p < 0.0001, ****p < 0.00001 (two-way ANOVA with Tukey’s multiple 
comparisons test).
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Supplemental Table 1. Weight and food intake were checked weekly. After 8–10 weeks the animals underwent 
pulmonary function testing and were sacrificed.

Blood and lung sphingolipid analyses. Sphingolipids were quantified in plasma, dried blood spots, and 
homogenized lung by high pressure liquid chromatography electrospray ionization tandem mass spectrometry 
(HPLC–MS/MS) using minor modification of a described  method52. The method is validated for five dihy-
droceramides: (d18:0/16:0 d18:0/18:0, d18:0/18:1, d18:0/24:0, d18:0/24:1), six ceramides (d18:1/C16:0, d18:1/
C18:0, d18:1/C20:0, d18:1/C22:0, d18:1/C24:0, d18:1/C24:1), two glucosylceramides (GlcCer d18:1/C18:0, Glc-
Cer d18:1/C24:1), five sphingomyelins (SM d18:1/C12:0, SM d18:1/C16:0, SM d18:1/C18:0, SM d18:1/C18:1, 
SM d18:1/C24:1), and the four long-chain bases sphinganine (SA d18:0), sphingosine (SO d18:1), sphinganine-
1-phosphate (Sa-1-P d18:0), sphingosine-1-phosphate (S1P d18:1). 25 ul plasma, whole blood and lung homoge-
nate were extracted by vortexing overnight in 900 ul dichloromethane/methanol (1:1) with addition of internal 
standard (N-lauroyl-d-erythro-sphingosylphosphorylcholine). After centrifugation to precipitate cell debris, an 
aliquot was transferred into an Agilent 1200 HPLC (Agilent Poroshell 120 column) linked to an Agilent 6430 
triple quadrupole mass spectrometer. Mobile phase A consisted of methanol/water/chloroform/formic acid 
(55:40:5:0.4 v/v); Mobile phase B consisted of methanol/acetonitrile/chloroform/formic acid (48:48:4:0.4 v/v). 
After pre-equilibration for 6 s, the gradient was increased gradually to 60% mobile phase B and 100% mobile 
phase B was held for 1.9 min. With a flow rate is 0.6 mL/min, the duration of the entire run was 9.65 min. We 
used the Mass Hunter optimizer and pure synthetic standards (Avanti Polar Lipids) to determine optimum frag-
mentation voltage, precursor/product ions and m/z values. Peak calls and abundance calculations were obtained 
with MassHunter Workstation Software Version B.06.00 SP01/Build 6.0.388.1 (Agilent). Final concentrations 
were calculated from a standard curve for each sphingolipid run in parallel.

Lung mechanics and airway reactivity. Mice were anaesthetized with pentobarbital (100  mg/kg; 
American Pharmaceutical Partners), tracheostomized and mechanically ventilated using a computer-controlled 
animal ventilator (FlexiVent, SCIREQ). Respiratory mechanics were analyzed using the FlexiVent software as 
previously  described25,53. Static compliance was determined using the Salazar-Knowles equation to the plateau 
pressure measurements obtained between total lung capacity and functional residual capacity. Broadband forced 
oscillations were applied to determine Newtonian (airway) resistance (Rn) using a constant phase model. Rn 
was also assessed following increasing doses of methacholine (3.125, 12.5 and 50 mg/ml) to quantify airway 
reactivity.

Lung inflammation. Bronchoalveolar lavage (BAL) fluid was collected by three intratracheal instillations of 
PBS, 0.5 mM EDTA (total 3.5 ml), centrifuged at 450 G for 7 min at 4 °C, and cells were resuspended in PBS. Cell 
differentials were determined by Giemsa stain on cytospin preparations. Cell viability was determined by trypan 
blue exclusion. RNA was extracted from homogenized lung tissue using TRIzol (Invitrogen). Following reverse 
transcription, TaqMan Gene expression assays were performed using probes for IL6 (Mm00445197_m1), IL1-β 
(Mm00445197_m1), TNF-α (Mm00445197_m1), iNOS (Mm01208059_m1), MUC5ac (Mm01276718_m1), 
TRPM7 (Mm00457998_m1), S100a9 (Mm00656925_m1), Myl3 (Mm00491655_m1); all from ThermoFisher 
Scientific). The mRNA levels were quantified using the ∆∆Ct method and normalized to expression of eukary-
otic 18S rRNA endogenous control (4352930E, Applied Biosystems). For lung histology, lungs were inflated with 
4% paraformaldehyde at 25 cm  H2O for 16–24 h and 5 μm paraffin sections were stained with H&E. Histological 
scoring for inflammation was performed based on cellular infiltration in the alveolar parenchyma away from 
major vessels, the perivenular regions, and the bronchoarterial regions using a 0–3 severity score. A score of 
0 indicates no inflammatory cells, a score of 1 represents occasional cuffing by inflammatory cells, a score of 2 
indicates a thin layer (1–5 cells thick) of inflammatory cells, and a score of 3 indicates a thick layer (more than 5 
cells thick) of inflammatory cells. Combined grading was based on the most severely inflamed section on each 
slide.

Lung RNA sequencing. RNA was extracted using Promega Maxwell 16 MDx instrument, (Maxwell 16 
LEV simplyRNA Tissue Kit). Specimens were prepared for RNA sequencing using TruSeq RNA Library Prepara-
tion Kit v2 or riboZero as previously  described54. RNA integrity was verified using the Agilent Bioanalyzer 2100 
(Agilent Technologies). cDNA was synthesized from total RNA using Superscript III (Invitrogen). Sequencing 
was then performed on GAII, HiSeq 2000, or HiSeq 2500, as single end  reads55,56. All reads were independently 
aligned with STAR_2.4.0f157 for sequence alignment against the mm10 murine genome. SAMTOOLS v0.1.19 
was used for sorting and indexing  reads58. Gene counts from htseq-count59 and DESeq2 bioconductor  package60 
were used to identify differentially expressed genes (DEGs) setting a threshold of nominal p value less than 0.05. 
For biological context, GeneSet Enrichment Analysis (GSEA) was performed for KEGG  pathways61–63 and Gene 
Ontology biological processes (GO BP) obtained from molecular signature database using msigdbr  package64. 
Over-representation analysis was performed using the fgsea package. Pheatmap and ggplot2 packages were used 
to generate visualization  plots65. For biological context, GeneSet Enrichment Analysis (GSEA) was performed 
for KEGG pathways and Gene Ontology biological processes (GO BP) obtained from molecular signature data-
base using msigdbr  package64.

Statistics. The results are presented as mean ± SEM. We first used the Shapiro–Wilk normality test for all 
data to confirm that our data were normally distributed. Comparisons between two groups were conducted 
by unpaired t-test. Comparisons of the pulmonary function tests were conducted by one-way ANOVA with 
Dunnett post-hoc test or one-way ANOVA with Tukey’s comparisons test. P values for two-way ANOVA were 
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adjusted to account for multiple comparisons. For all tests, differences were considered significant when p < 0.05 
and four significance levels are indicated as follows: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Graph-Pad 
Prism™ vs. 8.2 was used for all statistical analyses.

Data availability
The datasets generated and/or analysed during the current study are available in the Gene Expression Omnibus 
(GEO) repository (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE20 3418).
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