
Vol.:(0123456789)1 3

https://doi.org/10.1007/s40201-022-00835-w

REVIEW ARTICLE

Artificial intelligence techniques in electrochemical processes 
for water and wastewater treatment: a review

Majid Gholami Shirkoohi1,2 · Rajeshwar Dayal Tyagi3 · Peter A. Vanrolleghem2,4 · Patrick Drogui1,2

Received: 2 March 2021 / Accepted: 28 August 2022 
© The Author(s), under exclusive licence to Tehran University of Medical Sciences 2022

Abstract
In recent years, artificial intelligence (AI) techniques have been recognized as powerful techniques. In this work, AI tech-
niques such as artificial neural networks (ANNs), support vector machines (SVM), adaptive neuro-fuzzy inference system 
(ANFIS), genetic algorithms (GA), and particle swarm optimization (PSO), used in water and wastewater treatment pro-
cesses, are reviewed. This paper describes applications of the mentioned AI techniques for the modelling and optimization 
of electrochemical processes for water and wastewater treatment processes. Most research in the mentioned scope of study 
consists of electrooxidation, electrocoagulation, electro-Fenton, and electrodialysis. Also, ANNs have been the most frequent 
technique used for modelling and optimization of these processes. It was shown that most of the AI models have been built 
with a relatively low number of samples (< 150) in data sets. This points out the importance of reliability and robustness of 
the AI models derived from these techniques. We show how to improve the performance and reduce the uncertainty of these 
developed black-box data-driven models. From the perspectives of both experiment and theory, this review demonstrates 
how AI techniques can be effectively adapted to electrochemical processes for water and wastewater treatment to model and 
optimize these processes.

Keywords Data-driven modelling · Electrochemical process · Machine learning · Mathematical modelling · Process 
optimization
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Introduction

With the world’s rapid population growth and intense indus-
trialization in the twentieth century, environmental pollution 
has become a global problem with adverse impacts on the 
water sector [1]. The vast majority of the remaining pollu-
tion issues are caused by heavy metals and persistent organic 
compounds because of their resistance to conventional treat-
ments such as physico-chemical or biological methods. This 
results in the detection of refractory pollutants in rivers, 
lakes, oceans and even drinking waters all over the world 
[2, 3]. These compounds can cause hazardous health effects 
on living organisms, including human beings. Therefore, 
advanced water and wastewater treatment have become a 
primary social, political, and environmental concern [4–6].

In recent years, electrochemical processes, considered 
as eco-friendly and green technologies, have been gaining 
attention as an alternative method for water and wastewater 
treatment. This is because of their ability to remove per-
sistent organic pollutants. In the case of pharmaceutical 
pollutants, for example, it has been demonstrated that elec-
trochemical advanced oxidation processes are significantly 
more efficient than biological methods [7]. They benefit 
from attractive advantages including versatility, high energy 
efficiency, amenability to automation, and cost-effectiveness 
[8, 9]. On the other hand, drawbacks include the need for 
conductive wastewater, the formation of organic substances 
on the surface on the electrode that reduce its electrode 
active surface, and the potential formation of harmful inter-
mediate by-products. Several publications focusing on dif-
ferent electrochemical methods such as electrooxidation, 
electrocoagulation, electroflotation, electro-Fenton, and 
electrodialysis have been published within the last decade 
for improving the treatment performance of wastewaters and 
drinking waters [10–13].

To make these technologies competitive with other con-
ventional technologies, proper process and operating con-
ditions design via process modelling and optimization are 
critical. Process optimization necessitates process model-
ling. For water and wastewater treatment processes, phe-
nomenological and empirical modelling approaches are 
commonly used [14–16]. Due to the intricate interactions 
between the input and output variables, electrochemical 
techniques for treating water are highly complicated, non-
linear systems. This is because in an electrochemical system, 
numerous mechanisms frequently occur concurrently and 
in a non-additive way. For instance, precise mechanisms of 
charge transfer, electrochemical kinetics, thermodynamics, 

adsorption isotherms and kinetic models, flocculation, flo-
tation, settling, and complexation should be understood in 
the context of electrocoagulation processes. Additionally, 
in electrooxidation, each compound's concentration in an 
electrochemical cell is influenced by time and space, or 
more specifically, by how far away it is from the electrode 
surface. Partial differential equations, which are frequently 
challenging to solve and have several model parameters, 
are in theory recommended to describe the profile of com-
pounds under these circumstances. The number of species 
included in the model determines how complex the model 
is. All essential species in an electrochemical cell are to be 
taken into account, leading to a large multivariable model. 
This, however requires knowledge on reaction pathways to 
account for subsequent formations and transformations [17]. 
One of the alternative modelling methods for phenomeno-
logical modelling is empirical (regression) modelling [18]. 
The quadratic linear regression model is typically chosen, 
however, it is often insufficient to capture the nonlineari-
ties of the systems. Therefore, modelling, simulating, and 
optimizing the processes using either phenomenological or 
conventional empirical models is not necessarily the best 
course of action. Artificial intelligence (AI) methods such 
as artificial neural networks (ANNs), adaptive neuro-fuzzy 
inference system (ANFIS), support vector machines (SVM) 
along with genetic algorithms (GA) and particle swarm opti-
mization (PSO) methods have emerged as attractive alterna-
tive approaches for modelling and optimization of these non-
linear processes in case phenomenological or conventional 
regression models are not practical [19].

In this work, applications of artificial intelligence tech-
niques in modelling electrochemical processes for water and 
wastewater treatment processes are discussed. To make AI 
modelling approach performance competitive to other con-
ventional modelling approaches usually used (e.g., response 
surface methodology), it is important to build robust and 
reliable AI models. While the trend to use AI models is 
increasing in different fields of science, including electro-
chemical processes, the lack of attention to reliability and 
robustness of these models can have a negative impact on 
the progression of this field. Therefore, in addition to dis-
cussing the common AI techniques used in electrochemical 
processes for water and wastewater treatment, efforts were 
made to review and summarize the current knowledge of the 
literature on the scope of reliability and robustness of these 
models. As such, this review aims to shed light on the black-
box modelling aspect of these data-driven models hoping 
that it could fill the gaps in reliability and interpretability 
of these techniques applied to electrochemical processes in 
water and wastewater treatment. Furthermore, several review 
studies have focused only on the application of ANNs as 
an AI technique in water treatment or other chemical pro-
cesses [20–23]. In this study, we attempted to broaden the 
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scope of our research to include other AI techniques such 
as ANFIS, SVR, and metaheuristic optimization algorithms 
such as GA and PSO. The reasons mentioned above were 
the main motivation of the authors for this paper since, to 
the knowledge of the authors, there is no specific review for 
this particular subject.

This review starts with a chapter describing the data sets 
of electrochemical processes for water and wastewater treat-
ment. Then, the common AI techniques applied in the field 
with their applications will be presented. The optimization 
of hyperparameters, techniques to prevent overfitting, and 
sensitivity analysis for interpretation of the developed mod-
els for electrochemical processes are provided in chapter 4. 
Finally, a discussion of conclusions, challenges and future 
perspectives is presented.

Data sets

Electrochemical processes

Most of the data sets in published articles derive from four 
electrochemical processes: electrooxidation, electrocoagu-
lation, electro-Fenton, and electrodialysis. In this section, a 
brief explanation of these electrochemical processes along 
with their AI modelling applications for water and wastewa-
ter treatment processes has been reviewed.

Electrooxidation

Municipal wastewater treatment plants (MWWTP) are not 
able to completely remove persistent organic pollutants, pes-
ticides, and pharmaceuticals. Hence, their persistence in the 
effluent is of particular importance because it can increase 
the risk of long-term exposure, responsible for chronic tox-
icity and subtle effects on animals, plants and the aquatic 
environment [24, 25].

Electrochemical oxidation is a promising advanced oxida-
tion technique for treating various wastewaters polluted by 
persistent organic compounds [16, 26–30]. Since it com-
bines chemistry (generation of in situ oxidants) and elec-
tricity (electron transfer), it is an environmentally friendly 
technology [31]. Electrochemical oxidation occurs based on 
two different mechanisms:

 i. direct oxidation: hydroxyl radicals ( E◦

(OH
◦

∕H2O

) = 2.80 V vs. SHE) are produced at the electrode sur-
face by the oxidation of water molecules (Eq. 1), and 
organic compounds can be completely mineralized 
(electrochemical combustion) or degraded (electro-
chemical conversion) by reacting with absorbed OH

◦

 
radicals [32] (Eq. 2).

 ii. indirect oxidation: other radical systems can be pro-
moted by the generation of different oxidant mediators 
in the bulk solution, such as H2O2,HClO and S2O

2−
8

 
[33, 34].

Table 1 summarizes the application of artificial intelli-
gence (AI) modelling approaches of electrochemical oxida-
tion for water and wastewater treatment processes.

Electrocoagulation

Electrocoagulation (EC), developed from chemical coagula-
tion, produces coagulant agents ( Fe2+/Fe3+orAl3+ ) in-situ to 
effectively remove pollutants by deposition on the cathode 
or by floatation caused by the generation of hydrogen gas at 
the cathode [48]. The following equations describe the main 
reactions occurring in an EC cell:

where M(s) is the metal, Mn+
(aq)

 refers to the metallic ion 
(iron or aluminum ion), M(OH)n(s) represents the metallic 
hydroxide, and ne− is the number of electrons transferred in 
the reaction at the electrode. It is worth mentioning that 
Eq. 5 describes a simple case of metallic hydroxide forma-
tion. In fact, depending on the pH and the type of metal 
involved, the formation of different metallic complex species 
is possible [49].

EC has several advantages over chemical coagulation, 
such as easy automation, low salinity of the effluent after 
treatment, low footprint, and reduced production of solid 
residuals [4]. The EC process has been widely studied for 
environmental applications to treat drinking water, urban 
wastewater, textile wastewater, restaurant wastewater, refrac-
tory oily wastewater, and heavy metal-containing wastewa-
ters [50–55].

There are a number of studies regarding the application of 
artificial neural networks for modelling wastewater treatment 
by electrocoagulation processes (see Table 2).

Electro‑Fenton

The Electro-Fenton (EF) process is an indirect electrochemi-
cal advanced oxidation process since hydroxyl radicals are 

(1)M+H2O → M
(

OH
◦
)

+ H+ + e−

(2)M(OH
◦

) + Organics → M+Oxidized products

(3)At the anode ∶ M(s) → Mn+
(aq)

+ ne−

(4)At the cathode ∶ 2H2O + 2e− → 2OH− + H2

(5)In the bulk solution ∶ Mn+
(aq)

+ nOH−
→ M(OH)n(s)
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not generated directly from charge transfer at the electrode 
level but in the solution from the well-known Fenton reac-
tion. To overcome the drawbacks of the classical Fenton 
process, the electro-Fenton process has been developed. 
Furthermore, it improves the degradation efficiency of the 
target pollutants [70]. Fenton's reagent, a mixture of  H2O2 
and  Fe2+, is applied externally to the solution to be treated 
in the Fenton process to produce homogenous hydroxyl 
radicals (˙OH) [71]. Conversely, Fenton's reagent is electro-
chemically produced in situ at the cathode in the EF process 
(Eq. 6). The method relies on the electrochemical reduction 
of oxygen at the cathode to continuously produce hydrogen 
peroxide  (H2O2) in an acidic medium (Eq. 7). Also, ferric 
cations  (Fe3+) are reduced, and  Fe2+ is formed (Eq. 8). At 
the anode, by the oxidation of water, oxygen is produced 
(Eq. 9) [72, 73].

EF has been widely applied to the treatment of organic 
pollutants in water and wastewater. These studies include 
pharmaceuticals [74–76], dyes and textile wastewaters [77, 
78], endocrine disrupting compounds [79], pesticides [80], 
polycyclic aromatic hydrocarbons [81], surfactants [82] and 
landfill leachates [83].

Applications of ANNs, as the only AI technique used for 
water and wastewater treatment using the EF process are 
presented in Table 3.

Electrodialysis

With the help of an electrical potential difference uti-
lized as a driving force, electrodialysis (ED) provides an 
electrochemical method that removes ionic contaminants 
from an aqueous solution. As a result, two new solutions 
are generated: one is an ion concentrate, and the other is 
nearly pure water. In electrodialysis, the inherent proper-
ties of the ion exchange membrane, operating conditions, 
and physicochemical characteristics of the metal ions all 
have an impact on the effectiveness of ion separation [89, 
90]. Because of its high chemical stability, flexibility, and 
high ionic conductivity thanks to its strong ionic charac-
teristics, ED has been widely used for the treatment of 
industrial wastewaters, production of drinking and pro-
cessed water from brackish water and seawater, recovery 

(6)Fe2+ + H2O2 → Fe3+ + ̇OH + OH−

(7)O2 + 2H+ + 2e− → H2O2

(8)Fe3+ + e− → Fe2+

(9)2H2O → O2 + 4H+ + 4e−
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of useful materials from effluents, recovery of heavy and 
carcinogenic metals, and salt production [91–95].

Table 4 summarizes the applications of ANNs, as the 
only AI model used for water and wastewater treatment 
with the ED process.

Size of data sets

Data-driven AI techniques highly depend on the quantity 
and quality of the data sets fed into them. In other words, 
it is required to have enough reliable data to reasonably 
capture the relationships both between input variables 
and between input and output variables. It should be men-
tioned that the size of data sets required for machine learn-
ing approaches depends on the complexity of the problem 
and complexity of the learning algorithm, and there are no 
in advance certainties about the amount of data required 
for these approaches. Since data used for modelling and 
optimization of electrochemical processes for water and 
wastewater treatment processes are derived mainly from 
experimental studies, acquiring sufficient large data sets 
requires a considerable amount of time and resources. 
Figure 1 shows the distribution of the number of samples 
in data sets used in the field in literature. As can be seen 
in Fig. 1, most of the studies have implemented AI tech-
niques with a relatively low number of samples (< 150) 
in data sets. Hence, it can be concluded that considering 
the amount of data available, most of the effort should be 
focused on the reliability and robustness of the AI models 
derived from these data sets.

However, to overcome the limitation of the low number 
of data in AI modelling based on the experimental results, 
some authors have proposed using data augmentation 
techniques such as interpolation [47]. When insufficient 
data sets are not enough to learn many of the parameters 
of learning algorithms, it will cause overfitting meaning 
that the generalization of the model is unreliable. In order 
to solve this problem, more data needs to be collected. 
Still, in actual applications, additional data collection is 
often complex for various reasons, such as time and cost 
limitations. Data augmentation is a solution to address 
this [101]. Although data augmentation techniques have 
been applied to machine learning in different fields in lit-
erature, especially image processing and speech recogni-
tion [102–104], one should be cautious about using these 
techniques for the goal of regression of experimental work 
with limited data. This is because the behaviour of outputs 
in experimental studies can be much more complicated 
than describing them with predefined interpolation func-
tions, which obviously would not be too hard for the AI 
model to predict the behaviour of the new interpolated 
data.Ta
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Data preprocessing

Experimental data obtained in electrochemical processes 
are used by AI models as inputs and outputs. Those inde-
pendent and dependent experimental variables will be 
used as inputs and outputs, respectively. While various 
independent variables have been used in electrochemical 
processes, Fig. 2 shows the most common ones specified 
as inputs. As can be seen, electrolysis time and applied 
current have been the most frequent input variables for 
AI modelling of electrochemical processes. Other inde-
pendent variables with a low number of frequencies used 

Table 3  Applications of ANNs for the water and wastewater treatment using the EF process

Type of pollutant to treat 
/ process

Input variables Output variables ANN architecture Performance Ref

Decolorization, BR46 dye Time, initial pollutant 
concentration, applied 
current,  Fe2+/3+, pH

Percentage of dye removal 5:16:1; One hidden layer R2 = 0.986 [84]

Naphtol Blue Black Initial  Fe3+ concentration, 
initial pH, concentration 
of  Na2SO4, temperature, 
applied current, and ini-
tial dye concentration

Degradation efficiency 
and the rate constant

6:32:2; One hidden layer MSE =  10–5  R2 > 0.99 [85]

Phenolic wastewater Time, initial pollutant 
concentration, applied 
current,  Fe2+/3+

Phenol degradation 
efficiency

4:20:1; One hidden layer R2 = 0.9742 [86]

Composting plant leachate Time, pH, TDS, current 
density,  H2O2 concen-
tration

Removal efficiency 5:8:1; One hidden layer R2 = 0.9907 MSE = 8.77 [87]

Textile wastewater Dissolved oxygen and 
oxidation reduction 
potential related inputs

Fe2+ dose and COD 
removal efficiency

4:8:1 and 4:12:1; One hid-
den layer

R2

ANN, Fe2+
=0.9944 

R2
ANN, COD

=0.9952
[88]

Table 4  Applications of ANNs for water and wastewater treatment with ED process

Type of pollutant 
to treat / process

Input variables Output variables ANN architecture Performance Ref

Lead ions Lead ions concentration, 
flow rate, temperature and 
cell voltage

Separation percent of lead 
ions

4:5:4:1; two hidden layers Mean absolute error below 
1%

[96]

Lead ions Lead ions concentration, 
flow rate, temperature and 
cell voltage

Separation percent of lead 
ions

4:5:4:1; two hidden layers MSE = 0.102  R2 = 0.999 [97]

Lead ions Lead ions concentration, 
flow rate, temperature and 
cell voltage

Separation percent of lead 
ions

4:6:2:1; two hidden layers Standard deviation not more 
than 1%

[98]

Saline wastewater Time, concentrations of 
NaCl,  Fe2+, and  H2O2

TOC/TOC0 Multiple ANN topologies R2 = 0.960 [99]

NaCl separation Feed concentration, flow 
rate, temperature and cell 
voltage

Separation percent Multiple ANN topologies MSE < 0.3  R2 = 0.99 [100]

Fig. 1  Frequencies of articles in the literature regarding the size of 
the data sets
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as inputs were feed flowrate, temperature, mixing speed, 
nature of the electrolyte and type of the pollutant.

Feature scaling has often been used to scale the vari-
ables in the dataset. If the input and output variables are 
not of the same order of magnitude, some variables may 
appear to have more significance than they actually do. 
The training algorithm has to compensate for order-of-
magnitude differences by adjusting the network weights, 
which is not very effective in many of the training algo-
rithms (i.e., the backpropagation algorithm in ANN) 
[105].

Normalization and standardization have been utilized 
as feature scaling techniques in the reviewed studies. In 
the common normalization technique, so-called Min–Max 
scaling, values are shifted and rescaled to end up ranging 
between 0 and 1 [21]. In standardization, values will be 
centred around the mean with a unit standard deviation 
meaning that the mean of the feature becomes zero. At the 
same time, the resultant distribution has a unit standard 
deviation [41].

Performance evaluation

To evaluate the performance of the ANNs, there are dif-
ferent prediction accuracy criteria used in the literature 
[21, 106]. The most utilized criteria in the publications 
studied in this review for the performance evaluation of 
the models are listed in Table S1.

AI Techniques

AI techniques in literature applied to electrochemical 
processes for water and wastewater treatment processes 
are reviewed in this section. These include ANNs, SVM, 
ANFIS and metaheuristic algorithms.

ANNs

Multilayer perceptrons (MLP) feedforward neural networks 
are the type of ANNs that have been utilized frequently for 
modelling electrochemical processes (a description of ANNs 
can be found in the SI file). Single hidden layer MLP net-
works have been considered sufficient enough to correlate 
inputs to outputs in most of the electrochemical processes 
studied for water and wastewater treatment (e.g., [37, 39, 41, 
57, 66, 87]. Soloman et al. [36] developed an ANN model 
to predict the electrooxidation of malachite green, a triph-
enyl methane dye, based on experimental data collected in 
a batch electrochemical reactor. A three layer back-propaga-
tion network with 3:9:1 configuration of was found adequate 
to predict the COD removal efficiency with R = 0.9987 and 
RMSE = 1.1428 (mean experimental value = 61.25). Also, 
Daneshvar et al. [56] showed the effectiveness of a three 
layer 7:10:1 neural network model to describe the behaviour 
of an electrocoagulation system for the colour removal from 
a textile dye solution containing C. I. BY28.

Fig. 2  Frequencies of different 
independent variables used as 
AI model inputs in literature
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Multiple hidden layers instead of a single hidden layer 
were also considered for correlating inputs to outputs [42, 
43, 97, 98]. Manokaran et al. [42] also used a feedforward 
back-propagation ANN model to predict the degradation 
of a distillery effluent by electrooxidation. They showed 
that a four layer 3:3:3:1 BP neural network had the best 
performance for COD removal: RMSE = 0.8633, 
AARE = 3.4613, R = 0.9987 compared to other configura-
tions. Comparing regression and ANN models, Radwan 
et al. [86] showed that the ANN model performs slightly 
better ( R2

regression
=0.9525, R2

ANN
=0.9742) for modelling an 

EF process for the treatment of phenolic wastewater.
While the previous studies examined a single optimum 

network for predicting the process outputs, some authors 
suggested using multiple networks or so-called stacked 
neural networks as an ensembling method. Stacked neu-
ral networks as an ensemble machine learning technique 
that have been used in other supervised methods such as 
SVM, k-nearest neighbours algorithm or decision trees 
[107], are based on the premise that the use of multiple 
networks, instead of simply just one single network, can 
be an optimal network and improved predictions can be 
obtained [108]. Thus, combining the outputs of different 
models which each capture certain aspects of the process 
and aggregating their information, can provide more accu-
rate predictions (Fig. 3).

Piuleac et  al. [44] applied stacked neural network 
modelling to the electrolysis of wastes polluted with 
phenolic compounds, including phenol, 4-chlorophenol, 
2,4-dichlorophenol, 2,4,6-trichlorophenol, 4-nitrophe-
nol, and 2,4-dinitrophenol. In their work, various ANN 
types of artificial neural networks were aggregated in a 
stack whose output response was a weighted sum of the 

individual networks. A comparison between the tested 
methodologies indicated that utilizing stacked neural net-
works or the assembly of neural networks could obtain 
more minor validation errors of 5.8% and 4%, respectively, 
rather than a single optimal MLP neural network. The idea 
of stacked neural network modelling was also studied in 
another study [69].

The response surface methodology (RSM) and ANN 
models were compared in terms of their performance in the 
modelling of electrocoagulation processes [41, 61, 109]. 
Nourouzi et al. [61] employed a three layer ANN model to 
predict the removal of Reactive Black 5 dye by a sequential 
electrocoagulation-flocculation process. The results obtained 
using the ANN model were compared with the RSM and 
showed that both models are able to predict the process; the 
ANN has a slightly better performance than the RSM model 
 (R2 = 0.9764 and 0.9446, respectively).

Within the scope of process optimization, by process 
control, Pinto et al. [110] applied an ANN feedforward con-
troller to a hybrid system of electrocoagulation and organic 
coagulation for removing Reactive Blue 5G dye from tex-
tile effluent. The ANN-based controller could manipulate 
the current intensity and organic coagulant dosage to act 
upon a disturbance in the influent dye load. In the domain 
of controlling electro-Fenton processes using artificial neu-
ral networks, Yu et al. [88] studied textile wastewater treat-
ment using online monitoring of dissolved oxygen (DO) and 
oxidation–reduction potential (ORP). Their research was 
in line with their previous efforts on using artificial neural 
networks to control the Fenton process, both in batch and 
continuous operation mode, for textile wastewater treatment 
[111, 112]. In their study, two feedforward back-propagation 
ANNs were used to predict the  Fe2+ dosage requirement and 
COD removal efficiency. One ANN predicted the  Fe2+ dose 

Fig. 3  Schematic of the ensem-
ble machine learning technique
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based on the following inputs: reaction time to reach the 
ORP valley (min), the time for DO rising point (min), the 
ORP value at the ORP valley (mV), and the desired COD 
removal efficiency (%), with a 4:8:1 configuration. Their 
efforts to demonstrate the ANN’s capability for EF process 
control was a step forward in the application of ANNs in 
wastewater treatment.

In the scope of utilizing artificial neural networks for pro-
cess integration, Borges et al. [99] used the ANN approach 
to model an integrated electrodialysis and photochemical 
process for saline wastewater treatment. Two three layer 
feedforward artificial neural networks were put in series 
to model the photo-Fenton process. The first (4:4:1) neural 
network was responsible for modelling the output values of 
TOC/TOC0 as a function of the input parameters time, con-
centrations of NaCl,  Fe2+, and  H2O2. The output value of the 
first ANN was sent to the second neural network to calculate 
the reaction rate with input parameters TOC/TOC0, concen-
trations of NaCl,  Fe2+, and  H2O2. This model was used to 
design a plug flow reactor and to determine its volume (V), 
for different process conditions and TOC reaction rates. 
Their work using neural networks showed an essential step 
in understanding the behaviour of the integrated process.

SVR

Support vector machines (SVM), first presented by Vap-
nik [113], based on modern statistical machine learning 
techniques, have been widely applied to classification and 
regression problems thanks to their promising generaliza-
tion performance [114]. SVM can be adopted for regression 
problems, thus called support vector regression (SVR). A 
description of the SVR algorithm and its parameters is pre-
sented in the SI file.

Curteanu et  al. [19] applied two machine learning 
techniques (artificial neural networks and support vector 
machines) for the prediction of the performance of an elec-
trooxidation method to decrease the organic compounds 
and remove micro-organisms from activated sludge efflu-
ent. It was reported that overall, the SVM outperformed the 
ANN models when comparing correlation coefficients. Far-
zin et al. [47] applied different approaches to data mining, 
including the least square support vector machine (LSSVM) 
used for electrochemical removal of Ciprofloxacin (CIP) as a 
model pollutant. LSSVM needs to solve quadratic program-
ming with only equality constraints, or equivalently a linear 
system of equations, which makes it simpler and faster than 
SVM [115]. They showed that their tuned LSSVM model 
has superiority over other investigated algorithms for their 
problem. SVM was also used by Yuan et al. [46] for predict-
ing the electrochemical degradation of substituted phenols 
by developing a quantitative structure–property relation-
ship model. Their SVM model had a good predictive ability 

for the quantitative relationship between rate constants and 
the structure of substituted phenols with a performance of 
RMSE = 0.202 and  R2 = 0.892.

ANFIS

ANFIS was introduced by Jang [116] as a hybrid technique 
of artificial intelligence that combines a Sugeno-type Fuzzy 
Inference System (FIS) and an artificial neural network. 
Details of the ANFIS can be found in the SI file.

In certain studies, ANFIS and RSM models have been 
compared to predict the removal efficiency and operating 
costs of the electrochemical processes [117, 118]. In both 
studies, ANFIS models showed comparable results with the 
RSM models. However, it was mentioned that RSM models 
were built with much fewer model parameters compared to 
the ANFIS models, which could lower the uncertainties of 
the model given the low number of data available [118]. 
ANFIS, along with ANN, has also been studied for the treat-
ment of greywater using electrocoagulation by Nasr et al. 
[64]. Their ANFIS application performed an exhaustive 
search within the available inputs to determine the most 
influential input attribute in predicting the turbidity removal. 
It was indicated that current density is the most influential 
input on turbidity removal.

A comparison of ANFIS and other AI techniques was 
carried out by Farzin et al. [47] for the modelling of Cip-
rofloxacin electrochemical removal from wastewater. The 
interpolation method was used as an augmentation technique 
to increase the number of data samples in the dataset. To 
select the best AI model, TOPSIS was used considering 
the criteria as the consuming time of the AI model, MAE, 
RMSE, and  R2. TOPSIS is one of the known multi-criteria 
decision-making (MCDM) methods and has been used for 
problems with different criteria and complicated decisions 
[119]. TOPSIS analysis showed that ANFIS performed bet-
ter than ANN for both interpolated and original data, which 
was in accordance with some other studies [120, 121].

Metaheuristic algorithms

Metaheuristic algorithms are computational intelligence 
frameworks that are specifically employed for complex prob-
lem solving in optimization. Population based metaheuristic 
algorithms, mainly GA and PSO (details are provided in 
the SI file), have been utilized for the optimization of elec-
trochemical processes for water and wastewater treatment. 
However, recently other nature-inspired algorithms like the 
fire fly optimization algorithm (FFA) have been utilized by 
researchers [47]. These optimization techniques have been 
applied for process output optimization and hyperparam-
eter selection of AI models, especially in the case of ANN. 
Figure 4 represents optimization approaches for finding the 
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optimal process conditions and the optimal hyperparameters 
of AI models.

The ANN-GA approach for electrooxidation process out-
put optimization to find optimal conditions has been applied 
by some authors [43, 122, 123]. Picos, Peralta-Hernández 
[123] used this approach for the prediction of discolora-
tion of a dye by an electrooxidation process in a press-type 
reactor. The ANN with performance MAPE = 8.3868% 
and RMSE = 7.5537% values was linked to GA optimiza-
tion to find the best operational conditions, where the EO 
can reach a maximum discoloration at the lowest current 
density, flow rate, experimental time and at the highest dye 
concentration. They experimentally validated the ANN-GA 
result that about 95% discoloration can be obtained in an 

experimental time of 110 min, a flowrate of 12 Lps, a current 
density of 27.34 mA/cm2 and a dye concentration of about 
230 mg/L. The same group studied the ANN-GA approach 
for the prediction of discoloration of Bromophenol blue dye 
for an electrooxidation process [43]. Mean discoloration 
efficiency of 88.8%, compared to 95.5% predicted by the 
model, could be obtained at the optimal conditions. Similar 
discoloration efficiencies were obtained, which proved that 
this AI model could be used as a helpful tool in the design, 
control and operation of similar EO processes to wastewaters 
with similar dyes.

In the scope of electrocoagulation process optimization, 
Taheri et al. [124] used ANN modelling and a GA algo-
rithm to improve the Taguchi design optimization for the 

Fig. 4  Metaheuristic algorithms 
for: i) finding optimal process 
conditions, ii) optimization 
of hyperparameters of ANN 
models
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degradation of three different dyes, including Acid Orange 7, 
Acid Brown 14, and Acid Red 18 azo dyes by electrocoagu-
lation. A GA was used for techno-economical optimization 
of the Taguchi design for dye removal. Their GA used the 
ANN model to search for the best conditions for removal 
efficiencies between the minimum and maximum levels of 
the Taguchi design. Their GA optimization results showed 
removal efficiencies of 96.79% and 76.74% for Acid Orange 
7 and Acid Red 18, respectively, at nearly the same oper-
ating conditions. Their work illustrated the ANN and GA 
approach as a powerful tool for techno-economical optimiza-
tion of selected dye removal using the EC process.

When there are multiple responses to consider, the prob-
lem shifts to a multi-objective optimization problem. There 
is no unique solution to a multi-objective optimization 
problem but a set of mathematically equally good solutions 
known as nondominated or Pareto optimal solutions. Bhatti 
et al. [125] used multi-objective optimization by genetic 
algorithms for electrocoagulation of copper from simulated 
wastewater. Their system was modelled by both RSM and 
ANN modelling approaches. Despite the limited experimen-
tal data, the 4:5:2 ANN model performed as well as the RSM 
 (R2 = 0.993 for copper removal efficiency and  R2 = 0.870 for 
energy consumption) to describe the nonlinearities of the 
electrocoagulation process, with MSE = 0.571 and combined 
regression coefficient of 0.982 for copper removal efficiency 
and energy consumption. A genetic algorithm linked to the 
ANN model was utilized to derive the Pareto front, which 
defines a set of optimum operating points with respect to 
removal efficiency and energy consumption. Their multi-
objective optimization linked to the ANN model resulted 
in insight regarding the optimal operating conditions of the 
process. The idea of Pareto front was also applied by other 
researchers [126].

Multi-objective PSO algorithm has also been used for 
techno-economical optimization of combined electrocoagu-
lation/coagulation’s performance in the removal of RB 19 
from simulated wastewater using the ANFIS model [117]. 
Minimum and maximum values of 58.27% and 99.67% for 
RB 19 removal efficiencies were reported by the selected 
ANFIS model, respectively. The difference between the 
minimum and maximum dye removal efficiency levels for 
operating costs was 0.39 US$/m3.

Inside of the black‑box models

Tuning AI model parameters

AI models have inherent hyperparameters that should be 
tuned so that the model can optimally solve the machine 
learning problem. These hyperparameters control the 
learning process and have a direct effect on the model 

performance. Figure 5 shows the hyperparameters of the AI 
models used to tune in the literature.

The network configuration, i.e. the number of hidden lay-
ers and hidden neurons, has received the most attention [57, 
58, 60–63, 65, 68]. In most of the studies, the coefficient of 
determination and MSE were chosen as criteria for network 
performance.

Valente et al. [57] studied the prediction of COD concen-
tration in dairy industry effluent treated by electrocoagula-
tion using artificial neural networks. In order to select an 
appropriate number of neurons in the hidden layer to prevent 
overfitting and loss of the network’s generalization ability, 
several ANN architectures were evaluated using MSE and 
correlation coefficient as performance parameters. A neu-
ral network with 9:10:1 configuration was selected with 
MSE = 0.00406 and  R2 = 0.9560 for the test set. According 
to their results based on ANN simulation, the efficiency of 
the COD removal can be described as a function of time, pH, 
current density and distance between electrodes.

Single hidden layer networks with a trial and error proce-
dure on the network configuration were utilized for correlat-
ing inputs to outputs [35, 36]. Ahmed Basha et al. [35] used 
ANNs for modelling the electrooxidation process applied to 
an effluent of a specialty chemical manufacturer which was 
highly loaded with organic matter (COD: 48,000  mgL−1 and 
 BOD5: 1100  mgL−1). In their work, a single hidden layer 
network with 3:7:1 configuration led to a reasonable pre-
diction of the COD removal efficiency, with R = 0.9977 and 
RMSE = 0.8378 (mean experimental value = 53.59). It was 
shown that an increase in the number of hidden neurons can 
enhance the performance of the three layered network but 
can have an adverse effect on the performance of the four 
layered network. The importance of the number of hidden 
layers and hidden neurons were also investigated in other 
studies [36].

The trial and error procedure was also applied by other 
authors to determine the optimum number of hidden layer 
neurons based on different error functions [37, 38, 40, 42]. 
Sangal et al. [37] developed a three-layer ANN model to pre-
dict the removal of CBSOL LE red wool dye from wastewa-
ter by electrooxidation. The optimal 3:8:3 ANN architecture 
could estimate the outputs with a correlation coefficient of 
0.995, 0.996, 0.992, and 0.995 for training, validation, test-
ing, and all data sets, respectively. It was reported that the 
proposed ANN could accurately simulate the outputs from 
given inputs.

Other than the number of hidden layers and hidden neu-
rons in each layer which have been widely considered in 
ANN modelling, the initial weights are another important 
factor that affects the performance of the network. Choos-
ing an improper set of initial weights can lead to local min-
ima, which results in the bad performance of the network. 
This effect has been rarely considered in ANN modelling 
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studies for water and wastewater treatment using electro-
chemical processes. In their two studies, Sadrzadeh et al. 
[97, 98] took this point into account by performing 20 runs 
using different random values of initial weights for each 
of their different structured networks based on a hidden 
layer and hidden neuron numbers. This approach can lead 
to reducing the uncertainties related to neural networks.

They also studied the effect of different transfer func-
tions of hidden and output layers on the performance of 
the network. Transfer functions used as the neuron acti-
vation function to the sum of weighted inputs and biases 
are one of the neural network hyperparameters that can 
affect the network performance. A description of trans-
fer functions is provided in the SI file. Piuleac et al. [44] 
illustrated that a transfer function combination for hidden 
and output layers performed better than the single transfer 
function for all layers. Their optimal network was then 
tested with real wastewater of a fine-chemicals plant and 
showed an average error of around 4.92% between experi-
mental and predicted COD concentrations, which gave 
a very good illustration of using neural networks in the 
case of wastewater treatment. In another study, the same 
team showed that tansig transfer function for all hidden 
and output layers obtained the best performance for the 

electrolysis treatment of wastewater polluted by phenol 
compounds [43].

Still aiming to find optimal ANN structures da Silva 
Ribeiro et al. [65] studied an artificial neural network for 
the prediction of boron removal from mining wastewaters by 
electrocoagulation. Different types of transfer functions and 
network structures were examined in their study to observe 
their performance. The 3:10:1 network with a logsig transfer 
function in the hidden layer and a purelin transfer function 
in the output layer showed the best performance based on 
the correlation coefficient  (R2) and the sum of squared error 
(SSE) with values of 0.973 and 0.616, respectively.

One of the most thorough studies on the effect of vari-
ous network architectures and parameters on the modelling 
performance was performed by Hasani et al. [68] for the 
modelling of alternating pulse current electrocoagulation-
flotation (APC-ECF) for humic acid (HA) removal. Their 
study focused on the effect of various network architectures 
and parameters (e.g., two different ANN architectures as 
MLP and generalized feedforward-GFF, number of hid-
den neurons, transfer functions, and learning parameters) 
on the modelling performance. Their extensive compari-
sons between different networks revealed that the sin-
gle hidden-layer GFF NN (5:6:1), using sigmoid transfer 

Fig. 5  Hyperparameters of the AI models
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function at both hidden and output layers and LM training 
algorithm, had the best performance with  R2 = 0.999 and 
MSE = 0.00006. Their computational analysis proved that 
ANN-based modelling could effectively simulate the experi-
mental data and predict the optimum conditions of the elec-
trocoagulation/flotation process for the removal of HA from 
aqueous solutions.

As mentioned before, optimization techniques can be uti-
lized to find the optimal configured network by searching 
in the hyperparameter space of the neural network [39, 47, 
127]. Viana et al. [127] presented artificial neural networks 
and statistical analysis to predict and optimize the elec-
trochemical degradation of the textile dye Reactive Black 
5 using a Ti∕(RuO2)0.8 − (Sb2O3)0.2 in a batch treatment 
system. By using the PSO algorithm, they optimized their 
neural network model parameters, including hidden neuron 
number, transfer function, and learning rate. Their 4:8:3 
neural network could successfully predict colour removal, 
COD removal, and energy consumption for the textile dye 
Reactive Black 5 degradation with a performance of R2

test

=0.982, MSEtest=0.0146.
In the scope of metaheuristic techniques, it is worth not-

ing that different values of the GA control parameters can 
have significant impacts on the optimal results obtained. 
Piuleac et al. [128] studied an ANN-based optimization 
methodology in detail, including the impacts of the genetic 
algorithm parameters, to optimize an electrocoagulation 
process involving three different pollutants of kaolin, Eri-
ochrome Black T solutions, and an oil/water emulsion. Time, 
current density and initial pH were considered as decision 
variables for the GA optimization alongside the size of the 
initial population, the number of generations, crossover rate, 
and mutation rate as GA control parameters. To observe the 
impacts of these GA control parameters, they conducted dif-
ferent series of optimizations with different values for these 
control parameters. Various scenarios with different sets of 
GA control parameters were developed in order to select 
the most convenient working conditions regarding the deci-
sion variables. The ANN-GA approach was found to be an 
efficient optimization method for their EC process and could 
predict the optimal conditions for maximum removal effi-
ciency of the three pollutants with a maximum relative error 
of 11.46% and an average relative error of 6.61%.

Regularization techniques to prevent overfitting

The selection of an appropriate number of neurons in the 
hidden layer is a crucial task for MLP neural networks since 
too many neurons can cause the so-called over-fitting prob-
lem. In this case, the fitting error on the training set will be 
very low due to the very successful learning process, but 
the error on new data presented to the network is very high. 
The network has memorized the training data but has not 

exploited its generalization ability [57]. Regularly, to obtain 
good network generalization, the method is to propose a net-
work which is large enough to provide an appropriate fit. 
Although it is difficult to have the perspective to know how 
large a network should be in each case, three generaliza-
tion learning methods of cross-validation (early stopping), 
regularization, and pruning can be applied. Regularization 
is conducted by adding a penalty function to the training 
objective to minimize the complexity of the model and the 
prediction error at the same time; while pruning physically 
omits some excessive neurons to generate the least size net-
work. For the cross-validation (early stopping) method, the 
data set will be split into three non-overlapping subsets. The 
training dataset is utilized for learning the network param-
eters, the validation dataset is utilized for monitoring the 
training process and for approximating the generalization 
error, and the test dataset, a set of data not seen by the model 
during training, is utilized for examining the unbiased gener-
alization error of the trained network. In the early-stopping 
method, when the validation error rises over a number of 
iterations (due to over-fitting), the training algorithm stops, 
and the values of the weights and biases are returned to the 
point where the validation error was minimal [129, 130].

While early-stopping method have been used in most of 
the studies in the domain, recently, Gholami Shirkoohi et al. 
[41] applied the regularization method to their problem of 
modelling and optimization methodology for active chlorine 
production using the electrolysis process. Learning curves 
were used to diagnose whether there is a high bias (underfit) 
problem or a high variance (overfit) issue. In the presence of 
a high variance problem, using the regularization factor can 
help. Regularization makes slight modifications to the learn-
ing algorithm such that the model generalizes better and 
the model’s performance on unseen data is improved. They 
showed that utilizing learning curves along with regulariza-
tion factor analysis can help to obtain reliable ANN models 
to predict the production of active chlorine and energy con-
sumption using an electrolysis process.

Sensitivity analysis

The coefficients between artificial neurons that result from 
ANN training are comparable to the synaptic strengths 
between the axon and dendrites of a biological neuron in 
the brain. As in real life, these weights determine what 
fraction of the incoming signal will be transferred to the 
neuron's body [20]. Despite the fact that ANNs are black 
boxes, the neural connection weight matrix can be used to 
determine the relative importance of each input independent 
variable on the desired output. Garson [131] and Goh [132] 
proposed a method for partitioning the connection weights 
in order to determine the relative importance of the various 
inputs. Essentially, this strategy entails dividing each hidden 
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neuron's hidden-output connection weights into components 
related to each input neuron [133].

Belkacem et al. [38] reported that neural network model-
ling could effectively forecast the electrooxidation of oxy-
tetracycline (OTC) in a batch process using a platinized tita-
nium anode. They showed that the reaction time has the most 
influence on the process output with a relative importance 
of 50.70% followed by the current intensity and the nature 
of the electrolyte, 15.24%, and 14%, respectively. For an 
electrocoagulation process, Aber et al. [58] modelled the 
removal of Cr(VI) from polluted solutions using artificial 
neural networks and the results showed that all input vari-
ables have significant effects on the removal of Cr(VI). In 
further work, Bui [63], applied artificial neural networks to 
predict dye removal efficiency (colour and COD) of elec-
trocoagulation for a Sunfix Red S3B aqueous solution. A 
sensitivity analysis showed that the efficiency of the EC 
process is highly dependent on current density, electrolysis 
time and initial pH for colour removal, whereas it is highly 
dependent on initial dye concentration, sulphate concentra-
tion, and electrolysis time combined with the initial pH for 
COD removal.

For EF processes, one study showed that while all of the 
independent variables have a strong influence on the output, 
the initial pH is slightly more influential for the PEF/TiO2 
process [84]. Conversely, time and current intensity were 
the two most important parameters for the phenol removal 
using the EF process [86]. These two parameters were also 
shown to be the most influential factors in an EF process for 
the treatment of composting plant leachate [87].

The relative importance of each input independent vari-
able on the desired output obtained by the Garson algorithm 
can help ANN modelling approach to provide meaningful 
insights from the process, usually driven by a well-known 
RSM approach for experimental studies. Gholami Shirkoohi 
et al. [41] showed that electrolysis time and current inten-
sity have about 81.5% influence on active chlorine produc-
tion compared to an 82.8% influence in the factorial design 
analysis using RSM. The  H3O+ and NaCl concentration rep-
resented the remaining 18.5% of the investigated response. 
They reported that their findings are similar to the RSM 
outcomes showing the compatibility and reliability of the 
ANN model results.

Conclusions and future perspectives

Based on the extensive literature reviewed, it was observed 
that artificial intelligence techniques have demonstrated their 
potential for modelling, performance prediction and opti-
mization of electrochemical processes used for water and 
wastewater treatment processes. The following conclusions 
can be drawn from the literature reviewed:

• AI techniques have been employed mainly in four elec-
trochemical processes for water and wastewater treat-
ment including electrooxidation, electrocoagulation, 
electro-Fenton, and electrodialysis. Since, data used 
for modelling and optimization of electrochemical pro-
cesses for water and wastewater treatment processes are 
derived mainly from experimental studies, the majority 
of the research used AI methods on data sets with a 
small number of samples (150).

• While the usage of AI models is becoming more prev-
alent in several scientific disciplines, including elec-
trochemical processes, the reliability of the developed 
models is still critical, owing to the limited data avail-
able. Although data augmentation techniques have been 
used in machine learning in various disciplines, par-
ticularly image processing and speech recognition, they 
should be used with caution for the purpose of regres-
sion of experimental work with limited data. This is 
due to the fact that the behaviour of outputs in experi-
mental studies might be far more complex than describ-
ing them using predetermined interpolation functions, 
which would clearly make it easy for the AI model to 
anticipate the behaviour of the new interpolated data. 
Therefore, it seems tuning AI model hyperparameters 
and use of regularization techniques to prevent overfit-
ting problem would be the principal part to focus.

• ANNs have been the prevalent technique to model 
electrochemical processes. This could be related to 
their inherent capabilities to discover patterns between 
inputs and outputs, even in complex nonlinear pro-
cesses. Multilayer feedforward neural networks with 
back-propagation training were widely used in treat-
ment applications.

• Metaheuristic optimization algorithms have been 
applied for process output optimization and hyperpa-
rameter selection of AI models. For finding the optimal 
process conditions, both single-objective and multi-
objective optimization approaches were utilized in the 
literature.

• Despite the black-box nature of ANNs, there have been 
some efforts to interpret the process under study with the 
relative importance of each input independent variable 
on the desired output. This can be further developed by 
using AI models to show the main effects of each inde-
pendent variable on the response of the system, which is 
usually represented by the RSM approach.

Though AI techniques are indicated to be a promising 
alternative to traditional linear and parametric, and phe-
nomenological methods for modelling and optimization of 
the electrochemical processes used in water and wastewa-
ter treatment, there are still some areas requiring further 
research:
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(1) Tuning AI model parameters which control the learn-
ing process and have a direct effect on the model per-
formance is a crucial aspect. In the case of ANNs, 
the selection of optimum network parameters such as 
number of hidden layers, number of neurons in hidden 
layers, learning rate, momentum factor, transfer func-
tions, and learning algorithms are still major tasks in 
ANN modelling, and the usual way to overcome these 
difficulties is the trial and error method. There have just 
been a few studies so far to use optimization algorithms 
such as PSO to optimize the ANN model structure and 
parameters.

(2) Most of the studies reviewed considered single neural 
networks for modelling and predicting the performance 
of their systems. The downside of this approach is that 
as neural networks are sensitive to the training data, 
they would find different sets of weights each time they 
are trained. This will lead to different predictions each 
time and to high variance. Ensemble modelling, which 
consists in training multiple models instead of a single 
model and combining them to find the predictions, is 
one of the proposed approaches to overcome this chal-
lenge. It can be conducted by:

– single learning algorithm, different data sets;
– single learning algorithm, different configurations 

options;
– different algorithms.
  Only a few studies applied ensemble modelling 

approaches like stacked neural networks in the 
reviewed papers, but they showed good perfor-
mance.

(3) So far, most of the relevant studies have been per-
formed by a conventional feedforward ANNs with the 
BP algorithm. However, with the advances in machine 
learning, the BP-MLP neural networks with regular 
activation functions and long training time would not 
be the best option. Further research is still required to 
apply different activation functions (e.g., rectified linear 
activation function or ReLU), different machine learn-
ing algorithms (e.g., SVM, decision trees) or different 
neural networks and variations (e.g., GRNN, ANFIS) 
for the modelling and optimization of electrochemical 
processes used in water and wastewater treatment pro-
cesses.
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