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Abstract
The present study examined the adsorption of As(III) and As(V) (arsenics) from aqueous solutions using FeCl3 impregnated 
bagasse fly ash (BFA-Fe). Batch adsorption studies were carried out to evaluate the effect of various parameters like initial 
pH (pH0), adsorbent dose (m), contact time (t), initial concentration (C0) and temperature (T) on the removal of As(III) and 
As(V) from aqueous solutions. The maximum removal of As(III) and As(V) was found ~ 95% and ~ 97% at lower concentra-
tion (< 20 μg/dm3) and ~ 86% and ~ 87% at higher concentration (500 μg/dm3), respectively, using 3 g/dm3 of BFA dosage 
at 303 K. The adsorption of arsenics on BFA-Fe was very rapid. Pseudo-second-order kinetic model well represented the 
adsorption kinetics of both As(III) and As(V). Error analyses functions for adsorption of As(III) and As(V) onto BFA-Fe. 
Based on these error analyses, R-P isotherm was found to be fitted. Thermodynamic parameters, i.e., ΔG°, ΔH°, and ΔS°, 
were also calculated. At 25.0 to 45.0 °C, the values of ΔG° lie in the range of -43.85, -45.34, -48.82, -51.31, -53.8, and 
-44.75, -48.3, -51.84, -55.39, -58.93, -55.57 for As (III), and As (V) respectively, indicating that adsorption is spontaneous 
and exothermic in nature. Regeneration study was carried out by different solvent and thermal methods. Our results revealed 
that BFA-Fe can be reused directly for making fire-briquettes to explore its energy value. From this study, As containment 
is most effective removal from aqueous solution and mimic to any contaminated water resources.
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Introduction

Water is the essential chemical substance in all living and 
non-living organisms for the survival of life. According to 
the UNICEF census report in the year of 2019, 2.2 billion 
people still lack access to healthy drinking water, and the 
percentage contribution of different parts of the world [1]. 
Due to geological natural processes and adverse anthro-
pogenic activities, like industrialization, urbanization, 
improper management of waste, heavy metals, Arsenic (As) 
originating in the ground water [2–6]. In other side, tube 
wells accelerating As through diffusion process from the 
ground water, a way to entering in the food products such as 
wheat, barley, and rice and also increasing toxic stimulating 
via biological magnification [7].

As is basically in inorganic form in the ground water 
which denoted by arsenite and arsenate (As (III), As (V)) [8, 
9]. The agencies has classified As as Class I human carcino-
gen pollution [10, 11]. These As are poisonous nature which 
has chronic exposure (permissible limit less than 0.05 mg/l) 
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leads different human diseases like cancer, neurological, and 
respiratory, etc. [3, 12–16].

It has been reported in the several countries which As 
contain at high levels in groundwater. Podgorski and Berg 
[15] reported India has more than twenty five water sites 
which risk of exposure of As toxicity. For example, study 
reported dominancy of As (III) in the ground water specially 
Bangladesh, Central India [17]. World health organisation 
and Indian standard [11, 18] recommends less than 10 μg/L 
of As concentration in the drinking water have less toxic-
ity. Chakrabarti et al. [19] reported more than 200 million 
population has unfortunate to consumption of higher side of 
As containing drinking water.

Therefore, promising As removal technologies needs 
to overcome these factors through low-cost, reliable and 
sustainable ways. Some major arsenic removal technolo-
gies are chemical oxidation [20], flocculation [21], adsorp-
tion [22–26], biosorption [3–5, 27], photo-oxidation [28], 
and ion-exchange techniques [29], Membrane techniques 
[21, 30–36]. For example, Bahmani et al. [33] reported 
As removal through nano-filtration has higher efficiency. 
However, membrane process and ion exchange method are 
usually takes removal at higher cost. Moreover, fouling of 
membrane causes double the cost of operation. The second-
ary pollution generated from different chemical oxidation 

or reduction, and precipitation processes. In simple, han-
dling and reliable cost, the adsorption treatment method for 
As removal from water stream makes best out of treatment 
choice.

Material science and engineering, now-a-days play a 
major role for developing novel adsorbent from different 
source or low-cost. Several adsorbents are used by research-
ers for removal of As(V) and As(III) water, such as activated 
carbon [37], biochar [38], Mango leaf and rice husk powder 
[3], palm bark biomass [4], Psidium guajava leaf surface 
[5], and zeolite [39]. Among all the adsorbents, industrial 
by-product like bagasse fly ash (BFA) from sugar mill, is 
one of the cheapest adsorbents reported to be efficient in 
removing organic compounds, dyes, phenols, heavy metals, 

Table 1   Physical characteristics of adsorbent

Characteristics BFA-Fe

Proximate analysis
  Moisture (%) 13.39
  Volatile matter (%) 10.80
  Ash (%) 55.22
  Fixed Carbon (%) 19.59
  Bulk density (kg m−3) 133.3
  Average particle size (μm) 381.45

(a) BFA-Fe 500X (b) BFA- Fe As(III) 500X (c) BFA-Fe As(V) 500X

(d) BFA-Fe 1000X (e) BFA-Fe As(III) 1000X (f) BFA-Fe As(V) 1000X

Fig. 1   SEM of blank, As(III) and As(V) loaded BFA-Fe at 500X and 1000X
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etc.[40, 41]. Adsorption of arsenic onto granular activated 
carbon surface was very low due to its negatively charged 
[42]. The chemicals like H3PO4, H2SO4, KOH, NaOH and 
ZnCl2 of were used for activation or impregnation of absor-
bent for removing foreign impurities and improving surface 
properties [43].

The impregnated adsorbent especially iron based has pro-
mosing material for remvoal of As due its nature of good 
magnetic and affinity towards arsenic and high efficiency in 
reported [44]. Ocinski and Mazur [45] studied removal of As 

(V) through modified coal fly ash into Fe–Mn and compos-
ite with help of chitosan matrix and found good efficiency. 
Muniz et al. [46] reported iron impregnated activated carbon 
showed good adsorptive of As ions from the water. This 
is due to advantage of combine properties of high surface 
area of activated carbon with iron nanoparticles. Kleinert 
et al. [47] reported the difference in the removal efficiency of 
As (V) through biogenic and abiogenic iron oxy-hydroxide 
surfaces and found abiogenic iron based adsorbent is more 
efficient than any other one.

No literature available on the adsorptive removal of arsen-
ite and arsenate by using iron impregnated BFA as an adsor-
bent. Based on this adsorption factors, study was carried out 
for As(III)) and As (V) adsorption onto Fe-BFA. Arsenic 
adsorption through different process affecting parameters 
such as pH, mass of the dosage, time, arsenic concentra-
tion, and temperature have been investigated. Equilibrium 
isotherms have been tested with different isotherm equa-
tions and chemical thermodynamics data was generated. 
To test model equations adequacy and accuracy on experi-
mental datas, different error analysis has also been carried 
out. Finally, chemical and thermal regeneration studies was 
performed for understanding recyclability of spent Fe-BFA.

Fig. 2   FTIR spectra of blank, As(III) and As(V) loaded BFA-Fe

Table 2   Elemental composition of adsorbent before and after adsorp-
tion

Element Weight %

BFA-Fe BFA-Fe-As(III) BFA-Fe-As(V)

C 37.99 24.49 24.70
O 17.32 18.5 19.23
Si 2.00 0.34 0.00
Cl 10.44 14.79 16.61
Fe 32.25 40.48 39.17
As 0.00 1.40 0.30
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Materials and methods

Adsorbent and its characterization

The BFA, obtained from Northern part of sugar mills (India) 
which was washed with hot water (70 ºC), dried, soaked in 
1 M FeCl3 solution for 24 h, then dried again (BFA-Fe) and 
used for As(III) and As(V) removal in a batch mode. The 
BFA-Fe characteristics were determined using standard pro-
cedure (IS: 1350–1984, part-I). To determine surface mor-
phology of samples, scanning electron microscope (SEM, 
LEO 435 VP) used.

To determine the functional groups, Fourier Transform 
Infrared (FTIR) spectrophotometer was used (Thermo mico-
let Model Magna 760) using pellet (pressed disk) technique. 
The pellets were prepared with KBr. The spectral range cov-
ered was from 4000 to 400 cm−1. The thermal degradation 
characteristics of BFA-Fe and spent BFA-Fe (after adsorp-
tion) has been determined by a Perkin Elmer TGA analyzer. 
The mass loss of the solid sample was continuously moni-
tored as the sample followed a linear heat up programme 
(100 K/min) at 200 ml/min gas flow rate. The sample (about 
5 mg) was uniformly spread over the crucible base. The 
BET surface area of BFA-Fe was estimated by the standard 
adsorption of N2 at 77.15 K.

Fig. 3   EDAX spectra analysis of adsorbent before and after adsorption
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Fig. 4   Effect of initial pH on 
the equilibrium uptake and 
% removal of As(III) and 
As(V) (C0 = 100 µg dm−3, 
m = 3 g dm.−3, T = 303 K, 
t = 5 h, RPM = 150)

Fig. 5   Change in pH with time 
after addition of adsorbent 
(T = 303 K, C0 = 100 μg/dm3, 
m = 3 g/dm.3 and pH0 =  ~ 6)
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Adsorbate

The sodium arsenite (As(III)), and sodium arsenate (As (V)) used 
as a adsorbate. respectively. An accurate amount of respective 
compound was weighed and dissolved in Millipore water to pre-
pare stock solutions of 1000 mg/dm3 of arsenite and arsenate. 
Analytical grade chemicals are used in this study and ions free 
distilled water was used for preparing stock solution and required 
dilution. The analysis of the samples of As (III) and As(V) were 
done by using a Perkin Elmer, ICP-MS using Elanta software.

Batch adsorption study

The batch adsorpotion study was performed in a 100 ml 
concial flask with lid. The experimental study was carried 

with different effects on process affecting parameters such 
as mass of the BFA-Fe (m), pHo, temperature, concentra-
tion (Co) of As (III) or As (V) with prospective time (t) 
in a room atmosphere. The pH was adjusted using either 
NaOH or HCl. The detailed experimental procedures were 
reported by Kamsonlian et al. [3–5]. The effect of contact 
time on the removal was studied by contacting the solution 
of known concentration and adsorbent dose and the wim-
ples were drawn at particular time interval and were tested 
for the removal of arsenic. In order to achieve adsorption 
isotherms of As(III) and As(V), temperature and concen-
tration was varied from 283 to 323 K, and 20–500 µg/dm3 
in a known mass of the BFA-Fe, and 150 rpm speed. The 
residual As(III) and As(V) concentration (Ce) of the filtrate 
was then determined. The amount of As(III)/As(V) adsorbed 
by BFA-Fe at equilibrium was calculated as:
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where

Co and Ce	� are initial and equilibrium concentrations (µg/
dm3) of As(III) and As(V) in the solution,

V	� in (dm3) and

W	� in (g) of the BFA-Fe.

Regeneration study

Two different batch desorption studies were carried out 
through chemical solvent, and thermal methods. The 
detailed procedure was given in elsewhere [48]. The differ-
ent chemical solvents were agitated with As(III) or As (V)-
loaded BFA-Fe (0.2 g). In the thermal regeneration study, 

(1)qe =

(

Co − Ce

)

V

W

the As(III) or As (V)-loaded BFA-Fe was used for thermal 
desorption study after sufficient dry in an oven followed by 
furnace. The adsorption–desorption cycles was repeated 
upto six runs at constant temperature 303 K.

Results and discussion

Characterization of adsorbent

The fractional sieve analysis of the particles of BFA-Fe 
showed: -600 + 425 mesh size: 31.42%; -425 + 180 mesh 
size: 58.43%. The fractional sieve analysis of the parti-
cles of RHA-Fe showed -600 + 425 mesh size: 35.72%; 
-425 + 300mesh size: 49.58%; -300 + 180 mesh size: 
13.50%. The physical characteristics and elemental com-
position of the adsorbents are presented in Table 1. BET 
surface area and pore volume of BFA-Fe was found to be 
118.23 m2/g and 0.3834 cm3, respectively. Figure 1 shows 
the SEMs of blank BFA-Fe, and BFA after loading with 
the arsenic solutions. From the figure of spent BFA-Fe 
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shows surface was heterogeneous structure which filled 
with pores, cracks etc. as compared to the BFA-Fe sur-
face. This is due to adsorption of As on the BFA-Fe sur-
face. Similar observation was reported by Zhu et al. [49] 
and DhanaRamalakshmi et al. [26] for Fe(III)-sugarcane 
bagasse and wood carbon-iron oxide composite. EDAX 
analysis of the adsorbents before and after adsorption was 
performed to estimate the composition of various elements 
present in the adsorbents (shown in Fig. 2). The analysis 
shows the BFA-Fe has more carbon content and has more 
affinity to impregnate iron as shown by higher content of 
iron and chloride in BFA-Fe, (Table 2).

Figure 3 FTIR spectra of BFA-Fe and after adsorption 
of Adsorption of As (III)- and As (V)-BFA-Fe. A intense 
peaks at 3100 and 3400 cm−1 (O–H groups) in both the 
adsorbents [1–3]. The broad peaks at 3400 cm−1 (Si − OH 
stretching) shows absorbed of water molecules and 
1500 cm−1 (C-O stretching due to aldehydes and ketones). 
The peaks were affected due to As-adsorption onto BFA-
Fe at 1400 to 1500 cm−1 and 1520 to 1550 cm−1. These 
peaks shifted on adsorbed surface in the present study [25, 
40, 49].

In general, adsorption capacity of arsenic is depends 
on different process affecting parameters mass of the 

adsorbents, iron concentration, pH, temperature, and treat-
ment time. Many of researchers were explained mecha-
nism of adsorption are resembles with surface complexa-
tion, electrostatic attraction, and ion exchange [3–5, 50, 
51].

In general, adsorption capacity of arsenic is depends on 
different process affecting parameters mass of the adsor-
bents, iron concentration, pH, temperature, and treatment 
time. Many of researchers were explained mechanism of 
adsorption are resembles with surface complexation, elec-
trostatic attraction, and ion exchange [50, 51] (Fig. 4).

pH effect on adsorption of As (III) and As (V)

The initial pH effect was studied with As (III), and As (V) 
solutions of C0 = 100 μg/dm3 at m = 3 g/dm3. The solution 
was kept at 30 ºC for 5 h, after which the residual concen-
tration of arsenic was determined. The pH of the solution 
changes to around 2.5 after addition of BFA-Fe in both the 
cases from the initial pH ~ 6.3–6.5 (shown in Fig. 5). from 
the figure shows adsorption of As increases with increase of 
pH upto 6.5 and then slightly decreases on further increase 
in pH upto 10.5. The final pH obtained here is equal to 
about the pHPZC which is about 2. In general, the pH of the 
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solution after addition of the adsorbent dose is increases 
if the pH of the solution pH is less than the point of zero 
charge and vice-versa. Kamsonlian et al. [5] reported bet-
ter adsorption in acidic pH of As (V) as compared to basic 
pH. The maximum removal efficiency found to be at pH 
6.3 are ~ 95% and ~ 94%, respectively for As(III) and As(V). 
This is because of As mainly present in the inorganic form 
which depends on redox potentials along with solution pH. 
Bissen et al. [52] reported As (V) oxidation state in environ-
ment whereas As (III) is in reducing state which remains 
uncharged in natural pH. Lobo et al. [53] demonstrated As 
(V) adsorption onto impregnated chitosan with Iron and 
found higher efficiency (88.9%) in a pH range of 6 to 9.

Effect of BFA‑Fe mass (m)

Figure 6 shows adsorption of As on different mass of BFA-
Fe at constant initial concentration of 100 μg/dm3. It is 
observed from the figure that arsenic removal is increases 
from ~ 65% to ~ 94% from 0.4 g/ dm3 to 3 g/dm3 adsorbent 
dosage respectively, for As(III) and after the dose of 3 g/

dm3 the removal of arsenic is not affected, it remains con-
stant. Similarly, for As(V) the percent removal is increases 
from ~ 75% to ~ 96% for the above mentioned dose upto 
3 g/dm3. However the adsorption uptake q is found to be 
decreasing from ~ 163 to ~ 9.5 μg/g for As(III) and from 185 
to 9.5 for that of As(V). Beyond the adsorbent dose 3 g/
dm3 the percent removal is seems to be almost constant, 
therefore this dose is considered as the optimum adsorbent 
dose for the removal of arsenic. The increase in the removal 
of adsorbate with an increase in m for a fixed C0 can be 
attributed to the greater surface area and increased number 
of adsorption sites. Particle–particle interaction may also 
desorb some of the sorbates that is only loosely and revers-
ibly bound to the adsorbent surface. As adsorption decreased 
with an increase in C0. Similar trends of adsorption were 
found by Zhen [54] onto Fe(III)-Si Binary Oxide Adsor-
bent. Cooper et al. [42] demonstrated granular activated 
carbon has poor adsorption of As due to its negative surface 
charge. However, Muniz et al. [46] and Almazanchez et al. 
[55] used impregnated granular activated carbon with iron 
for removal of arsenic and found better adsorption capacity. 
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Vitelarodriguez and Rangelmendez [56] reported adsorption 
of As (V) was higher after impregnated granular activated 
carbon with hematite and akageneite. Deliyanni et al. [57] 
reported more removal efficiency in the lower concentration 
of As based adsorption system as compared to the higher 
concentration of As through iron impregnated granular 
activated carbon surface. This is due to iron impregnated 
surface activates different functional groups of carboxy- and 
hydroxyl ions [58].

Effect of contact time

A short reaction or adsorption times is always achieved 
in the ideal adsorption processes, i.e. BFA-Fe sur-
face is more adsorb by the As (III) or As (V) in order 
to attain equilibrium at short period of time. Figures 7 
and 8 shows adsorption time on As removal onto BFA-
Fe at C0 = 100  µg/dm3, m = 3  g/dm3, T = 303  K, and 
pH0 = 6.3– 6.5. The figure showed the adsorption of 
arsenic is gradual over a period of 180  min and the 
residual As concentration after 180 min is ~ 7 µg/dm3. 
For BFA-Fe-As system, about 85–87% of As adsorption 
efficiency in ~ 50 min treatment time and after 50 min, 
As adsorption is less. The quasi-equilibrium was found 
to be 3 h. This is normally depends on the properties and 

Table 3   Kinetic parameters for the removal of As(III) and As(V)

Models

Pseudo-first-order As(III) As(V)

  qe,exp (µg g−1) 30.70 31.88
  qe,calc (µg g−1) 32.55 28.28
  kf (min−1) 0.056 0.045
  R2 0.991 0.992

Pseudo-second-order
  qe,calc (µg g−1) 32.57 33.37
  h (µg g−1 min−1) 3.250 3.190
  ks(g µg−1 min−1) 0.0031 0.0029
  R2 0.997 0.999

Intra particle diffusion
  kint1(µg g−1 min−1/2) 5.90 4.97
  C1(µg g−1) -8.199 -1.8055
  R2 1 0.999
  kint2 (µg g−1 min−1/2) 0.591 0.905
  C2 (µg g−1) 22.17 20.13
  R2 0.918 0.988

Bangham
  α 0.539 1.342
  k0 (µg−1 dm−3) 3.990 0.519
  R2 0.553 0.724

Fig. 10   Weber and Morris intra-
particle diffusion plot for the 
removal of As(III) and As(V). 
T = 303 K, C0 = 100 µg/dm3, 
m = 3 g/dm.3
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nature of adsorbent surface. Wang et al. [59] and Marques 
Neto, et al. [60] demonstrated adsorption of As (V) onto 
impregnated chitosan with zerovalent ion, and Fe doped 
chitosan attain equilibrium after 3 h and 2 h, respectively. 
Overall adsorption capacity (µg/g) was found to be 33.38 
which higher than reported by Ali et al. [61].

Kinetic of As (III), and As (V) adsorption onto BFA‑Fe

The fundamental and detailed adsorption kinetic models 
equation is reported by many researchers [41, 50] which 
are used to explain the sorption kinetics of As (III), and As 
(V) onto BFA-Fe. This equation has been solved by using 
non-linear technique using Microsoft Excel’s solver-add-in 
for obtaining constants function. Figure 9 shows kinetic plot 
of As adsorption onto BFA-Fe at maintained constant pro-
cess conditions, C0 = 100 µg/dm3, 300C, pH0: 6.3–6.5, and 
m = 3 g/dm3. The correlation coefficients (R2) are obtained 
from kinetic plot which shown in Table 3. From the table 
shows R2 values are 0.991, 0.992, and 0.997, 0.999 for As 
(III), and As (V) pseudo-first-order, pseudo-second-order, 
respectively. It shows that pseudo-second-order is best fitted 
for both of As kinetic datas as compared to pseudo-first-
order. It is also shows that rate follows chemical or activated 

mechanical adsorption mechanism [60]. Similar conclusion 
were drawn for adsorption of As (V) onto impregnated chi-
tosan with Iron, clay, magnetite, molybdate oxoanions, egg 
shell [53, 62–64]. Figure 10 shows a representative qt versus 
t0.5 plot for As(III) and As(V) onto BFA-Fe for C

0
 = 100 µg/

dm3 at 303 K and pH
0
 6.3–6.5. From Fig. 11 it can be seen 

that pore diffusion is the controlling-step during the adsorp-
tion of As onto BFA-Fe. Figure 12 shows a representative 
plots of loglog

(

CO∕
(

CO − qtm
))

 versus log(t) plot for As 
adsorption onto BFA-Fe for C

0
 = 100 µg/dm3 at 303 K and 

at pH
0
 6.3–6.5. However, the plot (Fig. 12) according to 

above equation did not yield linear curves and the values 
of R2 are far from one. The values of effective diffusivity 
coefficient De (m2/s) of various adsorbate-adsorbent system 
by vermeulen’s equation (shown in Fig. 13). Effective pore 
diffusivities of As(III) and As(V) was found to be 7.95 × 1012 
and 4.89 × 1012, respectively. This shows that As(III) have 
highest overall pore diffusion rate.

Adsorption equilibrium modelling

Figures 13 and 14 shows isotherms plots for the adsorption 
of As onto BFA-Fe with different temperature and found 
that the temperature increases with As adsorption increased. 
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Fig. 11   Bangham plot for the removal of As(III) and As(V). T = 303 K, C0 = 100 µg/dm3, m = 3 g/dm.3
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From this results revealed that exothermic process follows 
for adsorption of As (II), and As (V) onto BFA-Fe. The dif-
ferent models are fitted with experimental datas [65–68]. 
The detailed description of the models equation are given 
in elsewhere [41]. The isotherms constants obtained by 
non-linear regression analysis using MS Excel are given in 
Tables 4 and 5. The different error functions was used to 
solve non-linear equations such as HYBRID, MPSD, SSE, 
SAE, and ARE which can represent the suitability for data 
obtained during adsorption process. For Freundlich iso-
therm, found from Table 5, that the BFA showed greater 
heterogeneity for As-III than that of for other adsorbate-
adsorbent systems. Since for all the adsorbates, 1∕n < 1, 
the adsorbates are favourably adsorbed by BFA. Table 6 
shows values of error interpretation on experimental data, 
R-P isotherm best represent the equilibrium adsorption of 
As on BFA-Fe. Almazanchez et al. [55] reported isotherm 
data is best fitted by using R-P model for adsorption of As 
on impregnated granular activated carbon with iron oxide.

A classical Van’t Hoff equation was used for determining 
Gibbs free energy change ΔG0

ads
 of the adsorption process 

(shown in Fig. 15) and estimated values of ΔH0 and ΔS0  shown 
in Table 7. ΔG0

ads
 should be negative value for adsorption pro-

cess at any process temperature (283 K to 323 K). For R-P 
model, the value found to be -43.85, -45.34, -48.82, -51.31, 
-53.8, and -44.75, -48.3, -51.84, -55.39, -58.93, -55.57 for As 
(III), and As (V), respectively at 283 K, 293 K, 303 K, 313 K, 
323 K. The negative values of ΔH0 shows exothermic in nature.

Thermal degradation kinetics of the spent BFA‑Fe 
and regeneration studies

The disposal of spent adsorbents is a major environmental 
problem. The chemical and thermal methods was performed to 
regenerate adsorbed As in the spent BFA-Fe As(III), and As (V) 
surface which is more important while designing the adsorption 
column in the large scale. This can reduce both cost process 
and operation as well as helps to reuse for material persist to the 
other application, if suits. For solvent regeneration, As(III) or As 
(V) loaded BFA-Fe shown in Fig. 16a. Among the various sol-
vents, only all acid solvents such as HCl, H2SO4 and HNO3 were 
found to be a better elutant for desorption of loaded BFA-Fe.
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Fig. 12   F(t) plot for the determination of effective pore diffusivity (De) of As(III) and As(V). T = 303 K, C0 = 100 µg/dm3, m = 3 g/dm.3

872 Journal of Environmental Health Science and Engineering (2022) 20:861–879



1 3

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250

Ce ( g dm-3)

(
eq

g 
g-1

)

283.15
293.15
303.15
313.15
323.15

Fig. 13   Equilibrium adsorption isotherms at different temperatures for adsorption of As(III). (pH0 = 6.3, C0 = 20–500 µg/dm3, m = 3 g/dm.3)

0

20

40

60

80

100

120

0 50 100 150 200 250 300

Ce ( g dm-3)

(
eq

g 
g-1

)

283.15
293.15
303.15
313.15
323.15

Temp., K

Fig. 14   Equilibrium adsorption isotherms at different temperatures for adsorption of As(V). (pH0 = 6.5, C0 = 20–500 µg/dm3, m = 3 g/dm.3)

873Journal of Environmental Health Science and Engineering (2022) 20:861–879



1 3

Table 4   Isotherm parameters 
for the adsorption of As(III) 
onto BFA-Fe at different 
temperatures

Isotherms Constants Temperatures (Kelvin, K)

283 293 303 313 323

Langmuir KL, dm3 µg−1 0.034 0.008 0.245 0.018 0.002

qm, µg g−1 109.890 144.928 13.514 217.391 553.595

R2 (dm3 linear) 0.932 0.951 0.991 0.997 0.993

R2 (Non-Linear) 0.984 0.997 0.999 0.998 0.997

HYBRID -1.885 -3.029 93.757 -0.218 -123.732

MPSD 12.153 5.025 81.154 4.092 150.113

Freundlich KF, dm3 µg−1 8.209 1.833 5.948 7.050 3.248

n 1.883 1.314 1.511 1.513 1.802

1/n 0.531 0.751 0.521 0.551 0.555

R2 (Linear) 0.891 0.984 0.952 0.953 0.955

R2 (Non-Linear) 0.944 0.992 0.981 0.981 0.978

HYBRID -1.545 -0.933 -1.571 -1.570 5.724

MPSD 19.045 13.718 17.199 18.232 20.277

Temkin B 25.475 23.579 25.139 39.938 11.857

KT, dm3 µg−1 0.275 0.152 0.323 0.253 0.394

R2 (Linear) 0.913 0.957 0.977 0.953 0.971

R2 (Non-Linear) 0.955 0.978 0.989 0.981 0.985

HYBRID -2.353 20.414 7.047 13.215 22.194

MPSD 10.855 75.181 33.357 50.847 58.844

Redilich-Peterson aR, dm3 µg−1 1.742 5.758 1.410 1.573 20.547

KR, dm3 µg−1 8.400 12.000 12.292 15.805 58.723

Β 0.559 0.255 0.415 0.394 0.450

R2 (Linear) 0.887 0.853 0.782 0.889 0.934

R2 (Non-Linear) 0.942 0.877 0.884 0.942 0.955

HYBRID 108.144 -1.001 -1.405 -1.551 2.239

MPSD 82.139 14.977 22.324 18.315 33.301

Table 5   Isotherm parameters 
for the adsorption of As(V) 
onto BFA-Fe at different 
temperatures

Isotherms Constants Temperatures (Kelvin, K)

283 293 303 313 323

Langmuir KL, dm3 µg−1 0.005 0.007 0.011 0.014 0.011

qm, µg g−1 555.555 133.333 357.143 81.957 115.279

R2 (Linear) 0.701 0.904 0.845 0.978 0.872

R2 (Non-Linear) 0.837 0.951 0.921 0.989 0.934

HYBRID -53.388 58.381 -2.371 4.148 5.250

MPSD 47.282 50.771 19.200 15.785 28.029

Freundlich KF, dm3 µg−1 2.121 3.255 4.495 2.527 2.940

n 1.059 1.405 1.172 1.504 1.542

1/n 0.935 0.712 0.853 0.524 0.548

R2 (Linear) 0.987 0.981 0.955 0.987 0.995

R2 (Non-Linear) 0.993 0.980 0.978 0.994 0.993

HYBRID -0.884 -0.928 -3.721 -0.905 3.138

MPSD 12.378 13.595 27.511 11.772 23.757

Temkin B 45.278 22.252 48.904 13.810 15.800

KT, dm3 µg−1 0.154 0.271 0.314 0.305 0.280

R2 (Linear) 0.908 0.889 0.945 0.919 0.833

R2 (Non-Linear) 0.953 0.943 0.973 0.959 0.913

HYBRID 25.703 15.775 53.709 -385.128 25.534

MPSD 80.909 85.552 170.095 485.235 83.789

Redilich-Peterson aR, dm3 µg−1 20.359 0.851 3.020 11.830 251.548

KR, dm3 µg−1 45.233 5.375 15.745 31.712 759.723

Β 0.057 0.911 0.138 0.385 0.352

R2 (Linear) 0.251 0.757 0.254 0.958 0.998

R2 (Non-Linear) 0.990 0.984 0.994 0.990 0.999

HYBRID -0.737 -0.402 -8.184 -0.755 4.014

MPSD 13.780 20.392 32.584 12.771 20.559
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Table 6   Error analyses functions for adsorption of As(III) and AS(V) onto BFA-Fe

Temperature(K)/
Isotherms

As(III) As(V)

HYBRID MPSD SSE SAE ARE HYBRID MPSD SSE SAE ARE

Langmuir
  283 -1.89 12.15 229.41 31.05 57.79 -53.39 47.28 351.54 123.55 38.14
  293 -3.03 5.03 219.89 5.35 42.99 58.38 50.77 253.40 115.18 41.7
  303 93.75 81.15 192.53 22.30 55.97 -2.37 19.20 291.84 30.17 12.57
  313 -0.22 4.09 379.58 13.19 42.95 4.15 15.78 25.12 12.37 9.05
  323 -123.73 150.11 398.98 350.92 95.11 5.25 28.03 853.55 52.75 19.19

Freundlich
  283 -1.55 19.04 959.93 59.53 13.21 -0.88 12.38 931.39 48.77 9.12
  293 -0.94 13.72 147.50 25.44 10.20 -0.92 13.59 407.95 39.45 10.22
  303 -1.57 17.20 778.74 47.72 12.51 -3.72 27.51 445.00 100.10 19.00

  313 -1.57 18.23 977.48 72.42 72.42 -0.90 11.77 155.20 24.24 8.40
  323 5.72 20.27 87.50 19.93 13.45 3.14 23.75 172.95 48.08 11.35

Temkin
  283 -2.37 10.85 317.15 33.81 7.34 25.70 80.90 1345.22 90.32 47.34
  293 20.41 75.18 245.85 38.75 35.91 15.77 85.55 559.73 55.38 44.99
  303 7.05 33.35 145.50 25.37 15.59 53.71 170.09 1545.40 90.77 71.75
  313 13.21 50.85 555.53 55.95 24.40 -385.12 485.23 1588.80 340.37 75.80
  323 22.19 58.84 320.40 37.58 30.12 25.53 83.79 801.05 59.39 42.52

Redlich-Peterrson
  283 8.14 82.14 128.90 275.41 51.80 -0.73 13.78 905.05 48.51 48.51
  293 -1.00 14.98 143.72 25.05 9.99 49.40 40.39 1287.90 74.52 28.23
  303 -1.40 22.32 177.30 53.05 12.02 -8.18 32.58 8314.44 122.51 19.35
  313 -1.55 18.31 159.85 57.13 12.03 -0.77 12.77 145.70 23.57 8.15
  323 2.24 33.30 755.41 50.32 24.45 4.01 25.57 1173.57 48.10 11.37
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Fig. 15   Van’t Hoff plot for the adsorption of (a) As (III), and (b) As (V) onto BFA-Fe
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Maximum desorption efficiency of As (III) and As (V) 
were found to be 83.23%, and 73.6%, respectively in HCl. 
This may be due to stronger surface interaction with the As 
(III) and As (V). Soltani et al. [24] observed similar desorp-
tion of As (V) using HCl reagent onto spent Fe3O4/bone 
char and found < 20% reduction in the efficiency of As (V) 
removal within three repeated runs. The desorption was least 
from base solvents due to different factors, polarity, chemi-
cal repletion behaviour between base solvents, BFA-Fe and 
As (III) or As (V), which control desorption efficiency. The 
thermal regeneration needed subsequent to remove remov-
ing As (III) or As (V). Figure 16b shows 6 cycles of thermal 
adsorption–desorption on spent BFA-Fe which was carried 
out in a furnace. From the figure, clearly shows after 1st 
run, thermal desorption decreased with respect to adsorp-
tion–desorption cycles. It also shown in literatures [5, 48].

Figure 17a-c shows thermal degradation of BFA-Fe, and 
spent BFA-Fe surfaces through thermal analysis kept con-
stant flow rate 200 ml/min and 100 0C/min heat rate. Fig-
ure 17a shows thermal stability of BFA-Fe surface which is 

mainly dependent on the temperature for decomposition into 
oxides and different functional groups. Initially, moisture 
content or water molecules evaporated at < 1500C followed 
by carbon start to decompose at greater than 2000C. During 
carbon decomposition, CO, CO2, and free hydrogen pro-
duces in the temperature range of 150–500 0C, 350-10000C, 
and 500-10000C, respectively [5]. From the Fig. 17a, we 
observed three thermal zones which are room temperature 
to 4000C, 4000C to 7500C, and 750 0C to 10000C, respec-
tively. The weight loss in the first thermal zone was ~ 19% 
and second thermal zone, maximum weight loss of ~ 35% 
(2.14 mg/min) was found and third thermal zone shows deg-
radation is negligible amount. We observed from Fig. 17b-
c, all the three thermal zones, temperature and weight loss 
were shifted due to As present in the spent BFA-Fe surface. 
For example, from the DTA curve, 3850C, 3900C, and 4000C 
respective for BFA-Fe, BFA-As (III), and BFA-As (V). Our 
results revealed that BFA-Fe can be reused directly for mak-
ing fire-briquettes to explore its energy value.

Table 7   Thermodynamic 
parameters for the sorption of 
As(III) and As(V) onto BFA-Fe

Compounds ΔG0

ads
(KJ mol−1) ΔH0(KJ mol−1) ΔS0(KJ 

mol−1 K−1)
283 K 293 K 303 K 313 K 323 K

Langmuir
  As(III) -35.47 -35.57 -35.57 -35.78 -35.88 -32.55 0.01
  As(V) -30.53 -32.21 -33.9 -35.58 -37.27 -17.19 0.17

Freundlich
  As(III) -45.14 -48.04 -49.93 -51.82 -53.71 -7.39 0.19
  As(V) -44.72 -47.01 -49.31 -51.5 -53.89 -20.119 0.23

Temkin
  As(III) -38.97 -40.58 -42.39 -44.09 -45.08 -9.35 0.17
  As(V) -38.81 -40.54 -42.28 -44.01 -45.75 -10.328 0.17

Redilich-Peterson
  As(III) -43.85 -45.34 -48.82 -51.31 -53.8 -25.58 0.25
  As(V) -44.75 -48.3 -51.84 -55.39 -58.93 -55.57 0.35

Fig. 16   (a) Chemical and (b) 
thermal regeneration of spent 
BFA-Fe
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Conclusion

In this study, adsorption of As (III) and As (V) onto BFA 
impregnated iron in a water mixture. The EDAX analysis 
of BFA-Fe showed that has higher carbon and iron con-
tent as compared to that of RHA. The FTIR spectra of the 
adsorbents indicated the presence of various types of func-
tional groups e.g. free and hydrogen bonded OH group, the 
silanol groups (Si–OH), CO group stretching from alde-
hydes and ketones on the surface of adsorbents. Optimum 
BFA and RHA dosages were found to be 3 g/dm3. The 
effect of contact on removal shows that the adsorption of 
As on BFA-Fe is very fast. R-P equation was found to best 
represent the equilibrium data. An increase in temperature 
induces a positive effect on the sorption process.Thermo-
dynamic studies revealed that the adsorption of arsenic 
(As(III) and As(V)) on BFA is exothermic in nature.

Maximum desorption efficiency of As (III) and As (V) 
were found to be 83.23%, and 73.6%, respectively in HCl. 
The thermal adsorption–desorption cycles show that spent 
BFA-Fe was good enough for reuse. Thermogravimet-
ric analysis exhibited the thermal stability of the adsor-
bents upto 400 °C. The negative value of change in ΔG0

ads
 

indicated the feasibility and spontaneity of adsorption on 
the adsorbents. It is suggested that the BFA-Fe could be 
centriclarified from the solution, dried and admixed with 
bagasse, and reused directly for making fire-briquettes to 
explore its energy value.
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