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CHD7 regulates otic lineage specification and
hair cell differentiation in human inner ear
organoids

Jing Nie 1, Yoshitomo Ueda 1, Alexander J. Solivais1 & Eri Hashino 1,2

Mutations in CHD7 cause CHARGE syndrome, affecting multiple organs
including the inner ear in humans. We investigate how CHD7mutations affect
inner ear development using human pluripotent stem cell-derived organoids
as a model system. We find that loss of CHD7 or its chromatin remodeling
activity leads to complete absence of hair cells and supporting cells, which can
be explained by dysregulation of key otic development-associated genes in
mutant otic progenitors. Further analysis of the mutant otic progenitors sug-
gests that CHD7 can regulate otic genes through a chromatin remodeling-
independent mechanism. Results from transcriptome profiling of hair cells
reveal disruption of deafness gene expression as a potential underlying
mechanism of CHARGE-associated sensorineural hearing loss. Notably, co-
differentiating CHD7 knockout and wild-type cells in chimeric organoids par-
tially rescuesmutant phenotypes by restoring otherwise severely dysregulated
otic genes. Taken together, our results suggest thatCHD7plays a critical role in
regulating human otic lineage specification and hair cell differentiation.

CHARGE syndrome is a congenital multi-organ disorder mainly
caused by de novo mutations in the CHD7 gene1, which encodes an
ATP-dependent chromatin remodeling protein that regulates target
genes expression via changes in nucleosome accessibility2. The
most prevalent clinical features of CHARGE syndrome include
malformation of the inner ear structures, accompanied by pre-
lingual deafness and vestibular dysfunctions3–5. Studies in Chd7
mutant mouse models demonstrated morphological defects in the
semicircular canals and the cochlea, which is accompanied by head-
bobbing and circling behaviors consistent with vestibular
dysfunctions6–11. In heterozygous Chd7 mutants and in mice with
Atoh1-driven Chd7 conditional knockout, hair cells develop nor-
mally and display normal stereocilia morphology8. However, hair
cells in the conditional knockout were subsequently degenerated
after the onset of hearing due to hypersensitivity to stress, leading
to profound sensorineural hearing loss12. These and other mouse
model studies provided important insights into CHARGE syndrome-
associated inner ear phenotypes13–16. However, despite a small

number of Chd7 downstream genes, including Sox2,Hmx3, and Jag1,
as well as an upstream regulator let-7 being identified previously10,17,
it remains unclear how the loss of CHD7 affects gene expression at
the transcriptome level in key otic lineage cell types such as otic
progenitors, hair cells, and supporting cells. We have previously
established a pluripotent stem cell-derived inner ear organoid sys-
tem capable of recapitulating inner ear development through
sequential generation of non-neural ectoderm (NNE), otic-
epibranchial progenitor domain (OEPD), otic placodes/pits, and
otic vesicles. The otic progenitor cells in otic vesicles undergo self-
guided differentiation and form mechanosensitive hair cells, sup-
porting cells, and neurons forming contacts with the hair cells18–21.

In this study, we generate multiple CHD7 mutant human
embryonic stem cell (hESC) lines, including a complete knockout (KO)
and a patient-specific missense mutant. By modeling CHARGE syn-
drome in inner ear organoids derived from these cell lines, we
demonstrate that CHD7 plays critical roles in otic lineage specification
and hair cell generation.
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Results
CHD7 is expressed throughout key otic developmental stages
We first accessed spatiotemporal changes in CHD7 expression during
human inner ear organoid differentiation. To circumvent the low
specificity of available CHD7 antibodies (Supplementary Fig. 1), we
tagged the endogenous CHD7 gene with 3×Flag in hESCs with CRISPR
(Supplementary Fig. 2). Anti-Flag detection of CHD7-3×Flag eliminated
nearly all non-specific bindings (Fig. 1a) and showed CHD7 expression
in all early otic developmental stages, including NNE, OEPD, otic pits,
and otic vesicles (Fig. 1b–f). In addition, CHD7 is strongly expressed in
hair cells and, at lower levels, in supporting cells (Fig. 1g). These results
reveal that CHD7 is expressed in key otic-lineage cell types throughout
all stages of inner ear development.

Loss of CHD7 causes failure in sensory epithelium formation
To recapitulate the phenotypic manifestation of CHARGE syndrome in
inner ear organoids, we next created mono- and bi-allelic CHD7 KO
hESC lines by targeting the first of the 38 coding exons of CHD7 with
CRISPR. Frameshift indel formation at this early coding region leads to
nonsense-mediated mRNA decay (NMD), which eliminates CHD7
transcripts22. If the mutated transcript escapes the NMDmechanism, it
results in early truncation of the CHD7 protein prior to any functional
domain, therefore creating a null deletion. We chose two clonal lines
with frameshift indels in one, or both alleles, and designated them as
CHD7KO/+ and CHD7KO/KO hESC lines for further analysis (Fig. 2a and
Supplementary Figs. 3–4). Western blotting confirmed the complete
elimination of CHD7 protein in CHD7KO/KO mutant, and reduced protein
expression in CHD7KO/+ (Fig. 2b). When differentiated into inner ear
organoids, bothmutant lines generatedmorphologically normal PAX2+

PAX8+ EPCAM+ otic vesicles at differentiation day 20 (d20) (Fig. 2l, t).
Consistentwith thenormalmorphologyof stereocilia-bearinghair cells
in heterozygous Chd7 deficient mice8, at day 70 (d70), the CHD7KO/+

mutant organoids generated hair cells and supporting cells that are
indistinguishable from the WT control. In addition, these mono-allelic
KOhair cells exhibited stereociliawithnormalmorphology (Fig. 2m–o).
In contrast, neither hair cells nor supporting cells were observed in
CHD7KO/KO organoids (Figs. 2u–w and 7, Supplementary Figs. 15–17)
(n = 233 aggregates from 7 independent organoid cultures).

In addition to the complete knockouts, we also introduced a
patient-specific missense mutation in CHD7 in hESCs. A heterozygous
serine to phenylalanine substitution at the CHD7 residue 834 (p.S834F,
c.2501 C > T) was described by two independent clinical studies in
three CHARGE patients and in a patient with idiopathic hypogonado-
tropic hypogonadism23,24. This missense mutation occurs in a highly
conserved sequence motif at one of the chromodomains of CHD7.
Previous biochemical analysis demonstrated that this single amino
acid substitution completely abolishes CHD7’s ATPase activity. Con-
sistent with this mutant protein’s inability to hydrolyze ATP, its chro-
matin remodeling activity is also completely abolished2. We used a
CRISPR base editor25 and created mono- and bi-allelic CHD7 S834F
mutations in hESCs (Fig. 2c and Supplementary Fig. 5). When differ-
entiated towards the otic lineage in inner ear organoids, the mono-
allelic and bi-allelic CHD7 S834F mutants essentially phenocopied the
corresponding KO phenotypes at both d20 and d70. The CHD7S834F/+

mutant gave rise to morphologically normal otic vesicles, supporting
cells, and stereocilia-bearing hair cells (Fig. 2h–k), while no hair cells or
supporting cells were found in the CHD7S834F/S834F mutant organoids
(n = 210 aggregates from5 independent organoid cultures) despite the
presence of normal-looking otic vesicles (Fig. 2p–s). Collectively, these
results demonstrate that hair cell and supporting cell derivation
require the ATP-dependent chromatin remodeling activities of CHD7.

Loss of CHD7 causes dysregulation of otic development genes
To investigate the mechanisms underlying the failure in hair cell and
supporting cell generation in d70 CHD7KO/KO organoids, we performed
transcriptome profiling in the seemingly normal d20 CHD7KO/KO otic
progenitor cells using scRNA-seq.We previously generated a PAX2−2a-
nGFP (PAX2nG) reporter hESC line to label the otic progenitor cells with
nuclear GFP26, and all of our four CHD7mutant lines were built on this
PAX2nG genetic background (Supplementary Fig. 6). To enrich otic
progenitors, we dissociated d20 WT and CHD7KO/KO organoids and
FACS-isolated PAX2nG+ cells (Supplementary Fig. 7a). scRNA-seq ana-
lysis revealed that 89.6% of WT PAX2nG+ cells are otic progenitors. As
neuroblast cells that delaminate from the otic vesicles and hindbrain
neurons are also known to be PAX2-positive27, these cell populations
were also present in the WT dataset. In CHD7KO/KO samples, otic
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Fig. 1 | CHD7 is expressed at key otic development stages. aWestern blotting of
WT (PAX2−2a-nGFP cell line, hereafter PAX2nG) and CHD7−3×Flag hESCs using anti-
Flag and anti-CHD7 antibodies. Calculated molecular weight of CHD7 and CHD7-
3×Flag are 336 kDa and 339 kDa, respectively. Source data are provided as a Source
Data file. b Schematics of otic lineage differentiation during human inner ear
organoid culture. Schematics adapted from Nie J, Hashino E. (2020) Generation of
inner ear organoids from human pluripotent stem cells. Methods in Cell Biology,

159: 303–321, with permission from Elsevier. c–g Immunostaining at key otic
development stages in CHD7−3×Flag PAX2nG human inner ear organoids using an
anti-Flag antibody, as well as antibodies against NNE markers TFAP2A and CDH1,
OEPDmarkers TFAP2A and PAX8, otic placode/pit and otic vesiclemarkers PAX2nG,
PAX8, and EPCAM, and hair cell markers MYO7A and SOX2 and supporting cell
marker SOX2. Scale bars, 25 µm.
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progenitors made up a smaller percentage (39.7%), while two addi-
tional clusters of PAX2nG+ EPCAM - non-epithelial cells made up more
than half of all mutant cells, with one of these two clusters showing
high levels of cell cycle marker gene expression. In addition to these
abnormal PAX2+ non-epithelial cells, CHD7 depletion also appeared to
affect the neuroblast cells, as themutant cells only made up 4.9% of all
neuroblast cells (Fig. 3a–b and Supplementary Fig. 7b, d).

Since it is the otic progenitor cell population that gives rise to hair
cells and supporting cells, we focused on otic progenitors for further
analysis (Fig. 3b and Supplementary Fig. 7c). Differential gene
expression analysis revealed 323 upregulated genes and 129 down-
regulated genes in CHD7KO/KO otic progenitors relative to the WT

control (fold change ≥ 2.0, P ≤ 1 × 10−10) (Fig. 4a). Among these differ-
entially expressed (DE) genes, 15 deafness genes listed in the Oto-
SCOPE gene panel28 were downregulated, including TBX1, LMX1A, and
SOX10 (Fig. 3c). Gene set enrichment (GSE) analysis of the down-
regulated genes using the iDEA pipeline29 suggested that genes in
many inner ear development-related Gene Ontology (GO) categories
were disrupted, including DLX5 and SIX1 in the inner ear morphogen-
esis GO term (Figs. 3c, 4d). In addition, GSE analysis also revealed
dysregulation of FGF and WNT signaling pathways, as well as enrich-
ment of multiple gene sets closely related to the cellular functions of
the otic progenitors, such as cell junction organization and extra-
cellular matrix organization (Fig. 4d). To examine whether cell lineage
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Fig. 2 | CHD7 and its ATP-dependent chromatin remodeling activities are
required for sensory epithelium derivation. a Sanger sequencing chromato-
grams of CHD7KO/+ and CHD7KO/KO alleles cloned into TOPO vectors. b Western
blotting of WT (PAX2nG), CHD7KO/+, and CHD7KO/KO hESCs using an anti-CHD7 anti-
body. Source data are provided as a Source Data file. c Sanger sequencing chro-
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locus. d–w Immunostaining of d20 and d70 WT and CHD7mutant organoids.
Antibodies highlight otic progenitors (PAX2nG, PAX8, and EPCAM), hair cells
(MYO7A, POU4F3, PCP4, SOX2, and F-actin for stereocilia of hair cells), and sup-
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identity is affected, we compared our dataset with a list of otic lineage-
specific genes systematically identified byHartman et al.30.While 57.7%
of these otic-specific genes remained largely unaffected, 38.5% of
them, including the highest ranked otic-specific genes FBXO2,COL9A2,
and OC90, were significantly downregulated in CHD7KO/KO otic pro-
genitors, suggesting that the otic identity is partially impaired (Figs. 3c
and 4b). Consistent with the aberrant otic gene expression profile, a
large number of genes not normally found in the developing otic
vesicle were significantly upregulated, including a cohort of HOX
genes (e.g., HOXB9, HOXA7, and HOXD3) from the embryonic skeletal
system development GO category (Fig. 3c). We also noticed upregu-
lation of multiple cell cycle marker genes (e.g., PCNA and MCM3)
(Fig. 3c), which could explain the extensive expansion of PAX2+ epi-
thelial vesicle structures in ~d25 CHD7KO/KO organoids (Fig. 4c and
Supplementary Fig. 6). Taken together, these results suggest that the
failure of hair cell and supporting cell derivation from the CHD7 null
mutant stemmed from a multitude of dysregulation at the gene and
gene set levels, including downregulation of genes essential to hearing
and inner ear development, dysregulation of components and reg-
ulators of signaling pathways, cell junction, and extracellular matrix,
dysregulation of cell cycle control, as well as, a partially drifted otic
lineage identity.

Otic genes regulated independently of chromatin remodeling
To determine differential gene expression in the CHD7S834F/+, CHD7KO/+,
and CHD7S834F/S834F mutants, as well as to confirm the CHD7KO/KO scRNA-
seq results,wenext examinedprotein expressionof 7 keymarkerswith
all four CHD7 mutant lines. While SOX2 expression followed gene-
dosage changes of CHD7 and showed moderate dysregulation in the

mono-allelic mutants and more severe dysregulation in the bi-allelic
mutants (Fig. 5a–g), there were markers not following this trend. For
example, COL9A2 was downregulated in the bi-allelic mutants to the
same extent as the mono-allelic mutants, while the non-otic HOXB9
protein was not upregulated in the two mono-allelic mutants, indi-
cating a more faithful otic lineage identity. In addition, SOX10 showed
an opposite direction of dysregulation between the mono- and bi-
allelic mutants (Fig. 5v–ab, aj–aw). These results suggest a complex
dysregulation pattern of CHD7 downstream proteins, which did not
simply follow the changes in CHD7 gene dosage.

Regarding S834F and its corresponding mono- or bi-allelic KO
mutant, while most of them showed comparable levels of dysre-
gulation, there are several exceptions. For example, SIX1 and
FBXO2 showed significant downregulation in CHD7KO/KO compared
to CHD7S834F/S834F, and DLX5 showed significant downregulation in
CHD7KO/+ compared to CHD7S834F/+ (Fig. 5h–u, ac–ai). Considering the
complete abolishment of ATPase and chromatin remodeling activ-
ities in the S834F mutant2, the differential downstream protein
expression between S834F and its corresponding KO mutant reveal
the presence of CHD7 function(s) beyond its ATPase and chromatin
remodeling activities. Such chromatin remodeling-independent
mechanism appears to be solely responsible for regulating key
otic genes such as FBXO2 (Fig. 5ag–ai).

When examining SOX2 expression, we noticed the presence of
SOX2+ cells outside of PAX2nG+ EPCAM+ otic vesicles (Fig. 5b–f). To
determine their identity as well as to investigate the identities of other
PAX2nG– populations, we performed scRNA-seq analysis on both the
PAX2nG+ and PAX2nG– populations of d20 WT organoids. Marker gene
profiling suggests that the d20 PAX2nG– populations are composed of
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neuroblast cells, neurons, neural crest cells, and mesenchymal cells
(Supplementary Fig. 8). The SOX2+ cells outside of otic vesicles in d20
WT and CHD7KO/KO organoids (Fig. 5b, f) appear to be S100B+ neural
crest cells (Supplementary Figs. 8f and 9a–f).

Deafness genes are dysregulated in CHD7KO/+ hair cells
To investigate how decreased CHD7 expression affects the morpho-
logically normal hair cells and supporting cells at the transcriptome
level, we performed scRNA-seq with d70 WT and CHD7KO/+ organoids.
We first labeled the hair cells with a highly specific POU4F3−2a-
ntdTomato (POU4F3nT) fluorescence reporter in the WT and the
CHD7KO/+ genetic backgrounds (Supplementary Fig. 10)26. We FACS-
separated the POU4F3nT+ and POU4F3nT- cells frommicro-dissectedWT
and CHD7KO/+ d70 organoids (Supplementary Fig. 11a) and performed
scRNA-seq of these four groups of cells in four separate reactions. As
hair cells only constitute ~1–2% of all cells in inner ear organoids31, this
experimental design allowed an adequate number of hair cells to be
collected for downstream analysis. Indeed, we obtained 9,884 hair
cells (28.5%) and 6,273 supporting cells (18.1%) when analyzing the
merged dataset (Fig. 6a and Supplementary Fig. 11b–e). Unsupervised
cell clustering grouped hair cells into three clusters; one of them had
immature hair cell gene expression profiles. The mature hair cells
segregated into WT and CHD7KO/+ clusters, while the WT and CHD7KO/+

supporting cells were intermingled in one cluster (Fig. 6b and Sup-
plementary Fig. 11f–g), which is consistent with the lower expression

levels of CHD7 in supporting cells and therefore a lesser extent of
influence (Fig. 1g and Supplementary Fig. 18a–b). In contrast to the
upregulation-oriented differential expression pattern in d20 otic pro-
genitors (Fig. 4a), the majority of DE genes in d70 hair cells and sup-
porting cells were downregulated (fold change ≥ 2.0, P ≤ 1 × 10−10),
suggesting that CHD7 shifted its predominant role from a transcrip-
tional repressor in otic progenitors to an activator in sensory epithelia
(Fig. 6c–d). GSE analysis of downregulated genes showed enrichment
of hair cell differentiation and Notch signaling gene sets in hair cells,
and WNT signaling and cell junction gene sets in supporting cells
(Fig. 6e–h).Notably, a number of deafnessgenes (e.g., SIX1,USH1C, and
STRC) from the OtoSCOPE gene panel28 were dysregulated in CHD7KO/+

hair cells (Fig. 6e), providing potential explanations for a cause of
hearing loss in individuals with CHARGE syndrome. Collectively, these
d70 scRNA-seq results unveiled the dysregulated genes and gene sets
in CHD7KO/+ hair cells and supporting cells bearing normal morpholo-
gical properties.

In addition to hair cells and supporting cells, the inner ear orga-
noid culture system also generates NEFL+ sensory neurons that
innervate the hair cells18,19. In the d70 scRNA-seq dataset, CHD7KO/+

neurons showedminimal gene expression disruptions, with only a few
ribosomal genes being downregulated (Supplementary Fig. 13a–e).
Immunostaining of these mutant neurons revealed normal neurite
infiltration to the sensory epitheliumandnormal contactwith hair cells
(Supplementary Fig. 13f–i), which is consistent with the normal
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Fig. 5 | Genes essential for otic development were dysregulated in CHD7
mutant otic vesicles. a–aw left panel, UMAP plots of key dysregulated genes in
d20WT and CHD7KO/KO otic progenitors. In each UMAP plot, the bottom left cluster
consists mainly of WT cells (97.2%), and the top right cluster consists mainly of
CHD7KO/KO cells (98.4%). The color bars to the bottom right show the log-
normalized expression scale. a–aw middle panel, Immunostaining of SOX2, SIX1,
DLX5, COL9A2, FBXO2, SOX10, or HOXB9 along with otic progenitor markers
PAX2nG and EPCAM in WT, CHD7S834F/+, CHD7KO/+, CHD7S834F/S834F, and CHD7KO/KO

organoids. Dotted lines mark the boundaries of otic vesicles. a–aw right panel,
Violin plot quantifications of immunofluorescence signal intensities (arbitrary
units, arb. units) from each nucleus (for nuclear proteins such as SOX2 and SIX1) or

cell (for cytoplasmic proteins such as COL9A2 and FBXO2) as shown in (a–aw
middle panel). Dashed and dotted lines indicate the median and quartile values,
respectively. n = 14,371 total nuclei and cells from a total of 105 otic vesicles (136.87
nuclei or cells per otic vesicle on average). Three otic vesicles from 3 different
aggregates from 3 independent experiments were used for quantification of each
genotype. All PAX2nG+ EPCAM+ cells from each otic vesicle were quantified.
****P <0.0001; ***P <0.001; ns, not significant. Significance was accessed by
Kruskal–Wallis test followed by Dunn’s multiple comparisons test. Source data,
including raw measurements and p value data, are provided as a Source Data file.
Scale bars, 25 µm.
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innervation pattern found in the utricle and saccule of Chd7 hetero-
zygous deletion mice8. These data suggest that the sensory neurons
appear largely unaffected by the mono-allelic loss of CHD7.

CHD7KO/KO organoids lack hair cells and supporting cells
While the POU4F3nT+ and POU4F3nT– FACS-based cell separation
experimental design provided an adequate number of hair cells for
WT and CHD7KO/+ organoid scRNA-seq analysis (Fig. 6 and Supple-
mentary Fig. 11), POU4F3nT labeling for the CHD7KO/KO organoids
was not feasible as no POU4F3+ hair cells were found in d70
CHD7KO/KO organoids (Fig. 2u–w). To enrich any potential otic epi-
thelial populations from the CHD7KO/KO organoids, including
EPCAM+ hair cells and EPCAM+ supporting cells, we stained dis-
sociated d70 WT and CHD7KO/KO organoid cells with an EPCAM
antibody, and FACS-collected EPCAM+ and EPCAM– populations
from both genotypes (Supplementary Fig. 14a–b). The merged
dataset contained a single hair cell cluster composed solely of
WT cells (n = 2810) without any CHD7KO/KO cells (n = 0) (Fig. 7),

confirming the failure of hair cell generation in CHD7KO/KO orga-
noids (Fig. 2u–w).

Despite the absence of hair cells, a group of EPCAM+ SOX2+ epi-
thelial cells encircling a luminal space were present in d70 CHD7KO/KO

organoids. They are morphologically reminiscent of supporting cells,
though their SOX2 expression levels are usually lower (Fig. 2u–w,
Supplementary Figs. 15 and 16c–h). Marker gene profiling of the
corresponding cluster indeed showed the expression of multiple otic
lineage genes, including FBXO2, OC90, S100A1, CLDN6, and PLEKHB1.
However, key supporting cell markers32–35 SPARCL1, BRICD5, and
OTOGwere absent in these cells (Fig. 2u and Supplementary Figs. 16a,
b, e, f, and 17), suggesting that the d70 CHD7KO/KO mutant organoids
can give rise to otic-like epithelial tissues, but are unable to differ-
entiate into supporting cells or hair cells. Even without hair cells or
supporting cells, occasional NEFL+ neurite infiltrationwas observed in
these otic-like vesicle structures, albeit at a much lower rate com-
pared to neuron innervation in the WT and the CHD7KO/+ sensory
epithelia (Supplementary Fig. 13j–k). Taken together, these data
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demonstrate that CHD7 is required for hair cell and supporting cell
differentiation.

Chimeric organoids partially rescued CHD7mutant phenotypes
When analyzing the d20 scRNA-seq data, we noticed that several sig-
naling ligands, including those involved in BMP, FGF, Notch, TGFβ, and
WNT signaling pathways were downregulated in the CHD7KO/KO otic
progenitors (Fig. 8a). It is highly likely that dysregulation of signaling
ligands also occurred in other cell types and in other developmental
stages, and these abnormal levels of signaling cues likely contributed
to theCHD7mutant phenotypes.To test this possibility,weestablished
a chimeric organoid systembywhichnormal levels of signaling ligands

are supplied from WT cells to the neighboring mutant cells. To dis-
tinguish betweenWT andmutant cells, we first labeled WT cells with a
cell membrane-bound tdTomato expressed under a ubiquitous pCA
promoter at the AAVS1 locus (AAVS1mT) (Supplementary Fig. 19). We
aggregated a mixture of AAVS1mT-labeled WT hESCs and unlabeled
CHD7KO/KO hESCs into chimeric organoids and differentiated them
towards the otic lineage. As the organoids grew and were differ-
entiated, initial single cells and small clusters expanded into larger
clones, forming a mosaic WT-mutant tissue organization. In this con-
dition, CHD7KO/KO clones received normal signaling inputs from
neighboring otic and non-otic WT tissues throughout the develop-
mental stages (Fig. 8b). Immunostaining of d20 chimeric organoids
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with a CHD7 antibody confirmed the expected mosaic pattern of mT+

CHD7+ WT tissues and mT– CHD7– mutant tissues (Fig. 9a, i).
Remarkably, under this chimeric culture condition, the otherwise
severely dysregulated FBXO2, SOX10, DLX5, andHOXB9proteins were
restored comparable to the WT level (Fig. 9e–h, m–p). As the CHD7
mutant phenotypes most likely resulted from both aberrant extrinsic
signaling inputs and dysregulated intrinsic gene expression networks,
we did not anticipate this strategy to provide a full rescue for all
affected genes. Consistent with this expectation, we observed partial
rescues of COL9A2, SOX2, and SIX1 (Fig. 9b–d, j–l). At d70, all derived
hair cells were mT+ WT cells, and no mT– CHD7 null mutant hair cells
were observed in chimeric organoids (n = 180 aggregates in 12 inde-
pendent chimeric organoid cultures) (Fig. 9q). The failure of CHD7KO/KO

hair cell generation likely resulted from the incomplete rescue of key
otic genes such as COL9A2, SOX2, and SIX1 at earlier developmental

stages (Fig. 9b–d, j–l). Collectively, these results demonstrate that the
CHD7KOphenotypes canbe partially rescued, and that the drifted otic
lineage identity can be partially restored in the otic progenitors in
chimeric organoid cultures.

Discussion
In this study, we recapitulated the pathogenesis of CHARGE syndrome
with human inner ear organoids as a model system. Previous mouse
studies did not allow for investigation of mature inner ear phenotypes
associated with homozygous Chd7 mutation, as these mice survive
only up to embryonic day 10.5 (E10.5), by which time the otic lineage
cells only developed to the otic progenitor stage. Conditional KO of
Chd7 in otic lineage cells has been used as an alternative approach, but
none of the Cre recombinases used in these experiments were
expressed before E8.59–11,13,15,16, making it difficult to assess the effect of
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Chd7 deficiency initiated earlier developmental stages. While the het-
erozygous CHD7 mutant phenotypes uncovered in previous studies
are highly clinically relevant due to the prevalence of heterozygosity in
CHARGE clinical cases, investigation into the homozygotes is scienti-
fically critical for gaining insights into a comprehensive downstream
gene network and the full-scale developmental significance of CHD7.
In the stem cell-derived inner ear organoid system, the survival and
development of otic lineage cells are not dependent on the proper
development of vital organs such as the heart, making organoids a
suitable platform to study embryonically lethal genes. Using this
approach, we revealed that genetic ablation of CHD7 or its chromatin
remodeling activity leads to dysregulation of early otic lineage genes
and a partially drifted otic lineage identity, resulting in a complete
absence of hair cells and supporting cells.

By epigenetically altering the chromatin architecture tomodulate
the nucleosome accessibility, along with other less understood
mechanism(s), CHD7 exerts transcriptional control of hundreds of
tissue-specific downstream genes36–39. One of the CHD7 otic target
genes, SOX2, appears to be one of the leading causes. We identified
SOX2 as one of the top differentially expressed genes following CHD7
deletion. SOX2 expression in otic progenitors is completely abolished
in the bi-allelic CHD7 KO or S834F mutants, and the corresponding
mono-allelicCHD7mutations lead to reduced SOX2 expression. Sox2 is
known to activate the hair cell initiator geneAtoh140–42, and loss of Sox2
expression in mouse otic tissues results in failure of hair cell and
supporting cell generation43, which phenocopies the absence of hair
cell and supporting cells in CHD7 null organoids. Moreover, reduced
SOX2 expression leads to truncated semicircular canals, shortened
cochleae, andhearing impairment43,44, which are alsooften observed in
heterozygous Chd7 mutant mice and individuals with CHARGE
syndrome8,45–47. In addition to being a CHD7 downstream gene, Sox2
has been reported to physically interact with Chd7 and co-occupy
genomic binding sites to regulate common target genes48. Therefore,
the reduction of SOX2 expression in CHD7 mutants may further dys-
regulate genes downstream of the CHD7-SOX2 complex. Although the
downregulation of SOX2 alone accounts for many of the CHD7mutant
phenotypes, it should be noted that SOX2 and CHD7 play distinct roles
during inner ear development, and theirmutant phenotype spectrums
do not completely overlap11,41,43,44,49–52. Therefore, it is almost certain
that the combined effects of many dysregulated CHD7 downstream
genes are responsible for the CHARGE inner ear phenotypes.

Previous studies have shown that heterozygous Chd7 deficient
mice had stereocilia-bearing hair cells that are morphologically indis-
tinguishable from the WT counterpart8, but it is unclear whether the
gene expression profile or the function of hair cells is affected in these
mutant mice. Using single-cell transcriptome profiling, we demon-
strate that multiple deafness genes from the OtoSCOPE panel28,
including SIX1, USH1C, and CLDN9, were dysregulated in the mono-
allelic CHD7 KO organoid hair cells. These results suggest that the
dysregulation of deafness genes in CHD7+/- hair cells may be one of the
underlying mechanisms of CHARGE syndrome-associated hearing loss
and balance dysfunction, which are accompanied bymiddle and inner
ear malformations and neurogenic defects as revealed by previous
mousemodel and humanpatient studies8,9,46,50. It should be noted that
hair cells generatedwith our current organoid differentiation protocol
exhibit electrophysiological, morphological, and marker gene
expression characteristics of vestibular hair cells (Supplementary
Fig. 12)18–20. We hypothesize that the deafness genes identified in this
vestibular in vitro model are essential for the mechanotransduction
function in both hearing and vestibular organs. Consistent with this
hypothesis, CHD7 and all CHD7-regulated deafness genes identified in
this study are expressed in both cochlea and vestibule during mouse
development (Supplementary Fig. 20)9,34. Moreover, 67% of the deaf-
ness genes identified in this study are also known to be associatedwith
vestibular dysfunctions and defects (Supplementary Table 2), despite

the fact that genetic causes of vestibular disorders are lesswell studied
than hearing loss, leading to likely underreported vestibular dysfunc-
tion genes and the lack of comprehensive vestibular dysfunction gene
panels53. Therefore, we believe that the deafness genes identified in
this vestibular organoid system could serve as good candidate genes
for future studies in cochlear CHD7 disease models.

CHD7 is known as an ATP-dependent chromatin remodeling
enzyme1. The S834F mutation has been shown to completely abolish
CHD7’s ATPase and chromatin remodeling activities2, raising the pos-
sibility that this patient-specific missense mutant protein represents a
functional null. Indeed, we observed similar cell morphological phe-
notypes between the S834Fmutant and its correspondingmono- or bi-
allelic KO mutants, and in most cases, similar downstream gene
expression levels between these two types of mutants. However, there
are notable exceptions. For example, the highly specific otic lineage
marker FBXO2 was severely downregulated in the bi-allelic KO, but its
expression was maintained at the WT level in the bi-allelic S834F
mutant. These results imply the presence of additional CHD7 protein
function(s) beyond its ATP-dependent chromatin remodeling activ-
ities, and such function(s) play critical roles in regulating the expres-
sion of some of the key otic genes. Recently, a chromatin remodeling-
independent function of CHD7 was identified in mouse cardiovascular
development, where CHD7 binds to WDR5, a core component of an
H3K4 methyltransferase complex, to recruit this histone-modifying
enzyme complex to its target gene loci to regulate gene expression54.
Future studies are needed to test if similar chromatin remodeling-
independent functions of CHD7 are responsible for regulating otic
developmental genes such as FBXO2, SIX1, and DLX5 in the inner ear.

Genetic chimeric animals can be generated through genomic
integration of complicated sets of gene circuits as seen in the Droso-
phila MARCM mosaic tissue generation system55 and in the mouse
MADM system56. Chimeric animals can also be generated by simply
mixing WT andmutant mouse embryonic stem cells in the blastocysts
at the preimplantation stage57. Inspired by these models, we have
established a chimeric organoid culture system to analyze cell-
autonomous and non-autonomous actions by mixing mutant and
fluorescently labeled WT embryonic stem cells. Through co-differ-
entiating, these cells into chimeric organoids, the expression levels of
otherwise dysregulated genes in the CHD7 KO otic progenitors were
fully or partially restored. This can be explained by diffusible mor-
phogens or cell surface signaling ligands provided from developing
WT cells to the neighboring co-developing mutant cells during the co-
differentiation process. The complete rescue of FBXO2, SOX10, DLX5,
and HOXB9 and the partial rescue of COL9A2, SOX2, and SIX1 genes
indicate that paracrine signaling from WT cells helped the CHD7 KO
cells to developmore faithfully the otic lineage path, thereby restoring
the expression of these otic genes to full or partial extents. It will be
interesting to test if the paracrine signaling ligands supplementation
can rescue CHD7 phenotypes in other organs, or alleviate phenotypes
of genetic diseases caused by other genes.

The human inner ear organoids serve as a valuable model for
accelerating our understanding of human-specific aspects of the
embryonic lethal gene CHD7, yet it is also important to recognize the
limitations of this in vitro approach. First, as mentioned above, the
organoid differentiation protocol used in this study generated only
vestibular hair cells but not cochlear hair cells (Supplementary
Fig. 12)18–20, thus the functions of CHD7 in cochlear hair cells and sup-
porting cells cannot be directly inferred from this study. In addition,
the effects of CHD7 on morphogenesis of the middle ear or the inner
ear structures, such as semicircular canals and the cochlear duct,
cannot be recapitulated in the current system. Also, influences from
vasculature, immune cells, and morphogen gradients established by
neighboring tissues such as the neural tube and notochord are lacking.
Additionally, likemost of the current organoid models, cells in human
inner ear organoids do not fully mature and represent immature fetal
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developmental stages even after prolonged culture. Nevertheless, a
full understanding of human disease can be achieved only from com-
prehensive knowledge gained fromvarious in vitro and animalmodels,
as well as human patient clinical studies.

In summary, we demonstrate the critical role of CHD7 in regulat-
ing human otic lineage differentiation and deafness gene expression.
Loss of CHD7 or its ATP-dependent chromatin remodeling function
results in a failure of hair cells and supporting cell generation in human
inner ear organoids. The differential expression of a subset of CHD7
downstream genes between S834F and its correspondingmono- or bi-
allelic KOmutant suggests the presence of CHD7 functions beyond its
ATP-dependent chromatin remodeling activities. Notably, the aberrant
otic lineage identity and the dysregulation of key otic genes in CHD7
KO cells can be partially rescued by co-culturing and co-differentiating
with WT cells in a mosaic manner, highlighting the contribution of
abnormal extrinsic signaling inputs in the CHD7 mutant phenotypes.
Our findings shed light on themolecular basis of inner ear phenotypes
associated with CHARGE syndrome and reveal potential therapeutic
target genes and pathways. The various human CHD7 mutant lines
established in this study will be valuable resources for future drug
screening and validating human genome-specific gene therapy
approaches.

Methods
hESC culture
Human ESCs (WA25 hESCs and genomically edited cell lines based on
theWA25 background, passage 13–55) were cultured in Essential 8 Flex
(E8f) medium (Thermo Fisher) supplemented with 100 µg/mL Nor-
mocin (Invivogen) (hereafter, E8fn medium) on truncated recombi-
nant human Vitronectin-N (Thermo Fisher)-coated Nunclon Delta
surface-treated 6-well plates (Thermo Fisher) according to an estab-
lishedprotocol58. At 60%–80% confluencyor every 3 or 4days, the cells
were passaged at a split ratio of 1:100–1:10 into 2–4 wells of a 6-well
plate using 0.5mM Ethylenediaminetetraacetic acid (EDTA) in Dul-
becco’s phosphate-buffered saline (DPBS). 1X RevitaCell (Thermo
Fisher) was supplemented in the E8fn medium for 1 d after passaging
for increased viability. The WA25 hES cell line was acquired from the
WiCell Research Institute. For additional validation and testing infor-
mation, refer to the cell line webpage: https://www.wicell.org/home/
stem-cell-lines/catalog-of-stem-cell-lines/wa25.cmsx.

CRISPR genomic editing
To generate the CHD7−3 × Flag cell line, a CHD7−3 × Flag-PGK-Puro
donor plasmid was constructed by cloning the following fragments
into pUC19 plasmid backbone using Gibson Assembly59: left and right
homology arms (LHA and RHA) homologous to 1 kb genomic DNA
upstream and downstream of the CHD7 stop codon locus, respectively
(PCR amplified from WA25 genomic DNA), Glycine-Serine linker-
3 × Flag-STOP-bGH polyA (gBlock DNA, IDT), and a PGK-Puro cassette
(Addgene #31938)60. Ribonuclease protein (RNP) complex61 targeting
the CHD7 stop codon locus was assembled by incubating high fidelity
Cas9 protein (HiFi Cas9 nuclease 3NLS, IDT) with crRNA:tracrRNA
duplex (CHD7 crRNA: 5’– ACTTGAACTGGAACTGGTAC –3’, IDT). The
RNP complex, the donor plasmid, as well as an electroporation
enhancer (IDT) were transfected into the WA25-based PAX2−2A-nGFP
reporter hES cell line26 with 4D Nucleofector (Lonza) using the P3
Primary Cell 4D-Nucleofector X kit (Lonza) and Program CB-150. After
nucleofection, cells were plated in RevitaCell-supplemented E8fn
medium for one day for improved cell survival rate, followed by
treatment with 1 µM Scr7 (Xcessbio) on the second day for enhanced
HDRefficiency62. A total of 0.25–0.5 µg/mLpuromycin (ThermoFisher)
selectionwas performed for four days starting from the third-daypost-
nucleofection. Clonal cell lines were established by low-density seed-
ing followed by isolation of hESC colonies after 6 days of expansion.
Genotypes of cell lines were analyzed by PCR and Sanger sequencing.

Cell lines with bi-allelically inserted 3×Flag at the CHD7 stop codon
locus were used for downstream validation and experiments.

CHD7 mono-allelic and bi-allelic knockout (KO) cell lines were
generated with the double-nicking CRISPR strategy63 to minimize any
potential off-target mutation. Two gRNAs (5’–GGGGTGTGATACTG
CGAGTG –3’ and 5’– GTTCCTCAGGTGCCCCATGG –3’, offset = 4 bp)
targeting the first coding exon of CHD7were individually cloned into a
gRNA expression plasmid pSPgRNA (Addgene #47108)64. The two
gRNA plasmids, along with a double-nicking Cas9 expression plasmid
hCas9_D10A (Addgene #41816)65 and a puromycin expression plasmid
pPGKpuro (Addgene #11349)66 were transfected into the WA25-based
PAX2−2A-nGFP reporter hES cell line with a 4D Nucleofector. After
nucleofection, cells were plated in RevitaCell-supplemented E8fn
medium for one day for improved cell survival. To enrich transfected
cells, 0.5 µg/mL puromycin selection was performed for two days
starting from 48 h post-nucleofection. After confirming successful
indel formation at the cell population level using theT7endonuclease 1
assay (T7E1, New England Biolabs), clonal cell lines were established by
low-density seeding (1–3 cells/cm2) of accutase (Thermo Fisher)-dis-
sociated single cells followed by isolation of hESC colonies after 5–7 d
of expansion. T7E1 assay showed 26 out of 94 (28%) established clonal
cell lines contained indels. Next-generation sequencing (NGS) of
amplicon DNA was performed on the 26 T7E1-positive cell lines at the
CHD7 first coding exon locus (Genome Engineering and iPSC Center,
Washington University). Among these cell lines, 5 cell lines (19%) had
frame-shift indels on both alleles (bi-allelic mutant cell lines, indel size
ranging from −25 bp to +79 bp), 13 cell lines (50%) had frame-shift
indels on one allele and wild-type (WT) sequence on the other allele
(mono-allelic mutant cell lines, indel size ranging from −20 bp to
+38 bp), and the remaining 8 cell lines contained in-frame indels on
one or both alleles (31%). A bi-allelic cell line with a 25 bp deletion and
an 8 bp insertion, as well as a mono-allelic cell line with an 11 bp dele-
tion and a WT allele were selected for further validation and analysis.
To testwhether eachof these two cell lineswerehomogenous cell lines
or mixtures of cells with different genotypes, multiple second-round
clonal cell lines were derived from each of these two parental lines.
TIDE (Tracking of Indels by Decomposition) analysis67 of the second-
round clonal cell lines showed identical indel patterns as their parental
lines, with ~50% frequencies for both of the two peaks, thus confirming
that these two CHD7 mutant cell lines were homogenous.

To generate mono-allelic and bi-allelic CHD7 S834F missense
point mutation hESC lines, a gRNA (5’–GCTCTTATCTTCATTG
TCAG–3’) targeting theCHD7p.S834 c.2501 C locuswas cloned into the
gRNA expression plasmid pSPgRNA (Addgene #47108)64. An opti-
mized CRISPR base editor expression cassette (BE-FNLS-2a-Puro) was
sub-cloned from its original lentiviral vector (Addgene #110841)25 into
a pUC19 vector backbone. These two plasmids were nucleofected into
the WA25-based PAX2−2A-nGFP reporter hES cell line followed by
0.5 µg/mL puromycin selection on the following day. After a cell pas-
saging on post-nucleofection day 7, genomic DNA from an aliquot of
day 13 targeted population of cells was harvested for PCR and
sequencing. The genotyping results demonstrated ~44% C to T con-
version rate as analyzed by the EditR tool68. A total of 48 clonal cell
lines were established and screened with PCR and Sanger sequencing,
in which 27 cell lines contained a total of 44 c.2501 C > T p.S834F
mutant alleles. After excluding cell lines with C >T conversions at
c.2506C, cell lines with indels, and cell lines showing signs of hetero-
geneity, we obtained seven bi-allelic and five mono-allelic c.2501 C >T
p.S834Fmutant cell lines. One cell line from eachof the two genotypes
was used for downstream validation and experiments.

To generate the POU4F3−2a-ntdTomato (POU4F3nT) CHD7KO/+ cell
line, we constructed a pUC19-POU4F3−2a-tdTomato-nls-bGHpA donor
plasmid via restriction enzyme digestion and T4 ligase-based sub-
cloning andGibson assembly. RNP complex targeting the POU4F3 stop
codon locus was assembled by incubating high fidelity Cas9 protein
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(HiFi Cas9 nuclease 3NLS v3, IDT) with a POU4F3 sgRNA
(5’–ATTCGGCTGTCCACTGATTG–3’, Synthego). TheRNP complex, the
donor plasmid, a puromycin expression plasmid pPGKpuro (Addgene
#11349)66, and anelectroporationenhancer (IDT)were transfected into
the established CHD7KO/+ parental hESC line by nucleofection. After
nucleofection, cells were plated in RevitaCell-supplemented E8fn
medium for one day, followed by treatment with 1 µM Scr7 on the
second day for enhanced HDR efficiency62. A total of 0.25 µg/mL pur-
omycin selection for transfected cells was performed on the second
and the third day after nucleofection. Clonal cell lineswere established
by low-density seeding followed by isolation of hESC colonies. Geno-
types of cell lines were analyzed by PCR and Sanger sequencing. Cell
lines with bi-allelically inserted 2a-ntdTomato at the POU4F3 stop
codon locus were used for downstream validation and experiments.

To generate the AAVS1-mT (membrane-localized tdTomato) cell
line, a AAVS1-pCA-mT donor plasmid was constructed by cloning 1 kb
AAVS1 LHA and RHA (PCR amplified from WA25 genomic DNA) and
pCA-mT (Addgene #17787)69 into pUC19 plasmid backbone using
Gibson Assembly. The donor plasmid was nucleofected into WA25
hESCs along with a high fidelity Cas9 RNP complex (AAVS1 crRNA: 5’–
ACCCCACAGTGGGGCCACTA –3’), an electroporation enhancer, and a
pPGKpuro plasmid. RevitaCell, 1 µM Scr7, and 0.5 µg/mL puromycin
were used to treat the transfected population of cells, and low-density
cell seeding was performed as described above. As the ubiquitous pCA
promoter drives the expression of mT in all cell types at all develop-
mental stages, including in hESCs, only hESC colonies emitting themT
fluorescence signals were isolated to establish clonal cell lines. PCR
and Sanger sequencing were used to confirm successfulmT knockin at
the AAVS1 locus in these cell lines.

For all CRISPR genomically engineeredhES cell lines, pluripotency
was verified by immunohistochemistry of pluripotency markers
(OCT4, SSEA4, and SOX2), and normal hESC colony morphologies
were verified with a bright-field microscope. Top 10 predicted off-
target sites (www.crispr.mit.edu and www.guidescan.com70) of each
gRNAwere PCR amplified (~1 kb) from the genomicDNAof established
cell lines and were Sanger sequenced to test for off-target mutations.
Karyotyping assays were performed at KaryoLogic, Inc.

Human inner ear organoid culture
Human inner ear organoids were derived from hESCs following our
previous protocol19 with modifications. Briefly, to start differentiation,
hESCs cultured on 6-well plates were washed three times with DPBS
(Thermo Fisher) followed by dissociation with accutase (Thermo
Fisher) for 8min at 37 °C. Dissociated cells were pelleted by centrifu-
ging for 3min at 100 × g and were resuspended in E8fn medium con-
taining 20 µMY-27632 (Stemcell Technologies) to a final concentration
of 35,000 cells/mL. Hundred microlitres of cells were added to each
well (3500 cells per well) of Nunclon Sphera low-binding 96-well
U-bottom plate(s) (Thermo Fisher) and were centrifuged to the bot-
tomof thewells at 120 × g for 5min. After≥4 hof incubationat 37 °C 5%
CO2, 100 µL of E8fn were added to each well to decrease the con-
centration of Y-27632 to 10 µM. Following a 48 h incubation after cell
seeding, the aggregates were transferred to fresh low-binding 96U
plates in 180 µL of chemically defined medium (CDM) containing 2%
Matrigel (Corning), 10 µMSB-431542 (Stemcell Technologies), 4 ng/mL
FGF-2 (Stemcell Technologies), and 100 pg/mL BMP-4 (ReproCell) to
initiate non-neural induction – that is, differentiation day 0 (d0). CDM
contained a 1:1 mixture of F-12 Nutrient Mixture with GlutaMAX
(Thermo Fisher) and Iscove’s Modified Dulbecco’s Medium with Glu-
taMAX (IMDM; Thermo Fisher), additionally supplemented with 0.5%
Bovine Serum Albumin (BSA, Sigma), 1× Chemically Defined Lipid
Concentrate (Thermo Fisher), 7 µg/mL Insulin (Sigma), 15 µg/mL
Transferrin (Sigma), 450 µM Mono-Thioglycerol (Sigma), and 100 µg/
mL Normocin (Invivogen). On day 4 of differentiation culture, 45 µL of
CDM containing 250 ng/mL FGF-2 (50 ng/mL final concentration) and

1 µM LDN-193189 (200 nM final concentration; ReproCell) was added
to the pre-existing 180 µL of media in each well. On day 8 of differ-
entiation culture, 45 µL of CDM containing 18 µM CHIR-99021 (3 µM
final concentration; Stemcell Technologies) was added to the pre-
existing 225 µl of media in each well. On differentiation day 11, the
aggregates were pooled together, washed with DMEM:F12 with HEPES
(Thermo Fisher), and resuspended in freshly prepared Organoid
Maturation Medium (OMM) supplemented with 1% Matrigel and 3 µM
CHIR-99021. The OMM medium contains a 1:1 mixture of Advanced
DMEM:F12 (Thermo Fisher) and Neurobasal Medium (Thermo Fisher)
supplemented with 0.5× N2 Supplement (Thermo Fisher), 0.5× B27
without Vitamin A (Thermo Fisher), 1× GlutaMAX (Thermo Fisher),
0.1mM β-Mercaptoethanol (Thermo Fisher), and 100 µg/mL Normo-
cin. Starting from day 11, the aggregates were cultured stationary on
non-coated 100mm dishes. On day 13 and day 15, medium was chan-
ged with OMM supplemented with 3 µM CHIR-99021. Starting on day
18, the aggregates were cultured in OMM without additional supple-
ments. OMM medium change were performed twice a week or when
the color of the medium start to turn orange or slightly yellow.
Aggregates can be gently washed off the dishes and transferred to new
100mmdishes duringmedium change to get rid of themigrating cells
growing adherently on the dishes, which may compete with the
aggregates to consume the culture medium.

To start differentiation of theWT-CHD7KO/KO chimeric cultures,WT
(AAVS1mT) and CHD7KO/KO hESCs were separately dissociated and
resuspended to a final concentration of 35,000 cells/mL. An equal
volume of WT and CHD7KO/KO hESCs were mixed in a fresh tube, fol-
lowed by seeding of 100 µL of the cell mixture to each well of low-
binding 96U plates (3500 cells per well). The rest of the culture pro-
cedures were the same as regular organoid cultures.

Organoid dissociation and scRNA-seq
For d20 WT vs. CHD7KO/KO scRNA-seq, 30 WT aggregates (PAX2nG) and
30 CHD7KO/KO aggregates (CHD7KO/KO PAX2nG) (as well as 10 WA25 con-
trol aggregates dissociated in separate tubes and wells) were washed
three times with DPBS, three times with 1.1mM EDTA, followed by
resuspension in an accutase solution. A total of 10–15 aggregates were
transferred to each well of a Nunclon Sphera low-binding 6-well plate
(Thermo Fisher) along with 3mL of accutase. The plates were incu-
bated at 37 °C5%CO2 for 90minwith gentle trituration every 5–10min
with a wide-bore P1000 pipet tip. Dissociated cells were filtered
through a 100 µmcell strainer and then a 40 µmcell strainer (Corning),
and then centrifuged in 2mL round-bottom tubes at 100 × g for 3min.
Cell pellets were resuspended in a DMEM:F12 solution (with HEPES, no
phenol red; Thermo Fisher) supplemented with 10% FBS (Thermo
Fisher) and 1:500 propidium iodide (Thermo Fisher) cell viability dye.
GFP+ propidium iodide- cellswere sorted into aDMEM:F12 (withHEPES,
no phenol red) solution supplemented with 10% FBS on a SORP Aria
FACS machine (BD Biosciences) for 1 h at Indiana University Flow
Cytometry Resource Facility, using dissociated cells from d20 WA25
aggregates as a negative control for gating.

For d20 WT PAX2nG+ and PAX2nG– scRNA-seq, the cell dissociation,
and FACS sorting were performed similarly, with the exception that
1:500 7-AAD (BioLegend) were used as a viability dye, and that both
GFP+ and GFP– populations were separately collected for downstream
scRNA-seq experiments.

To enrich hair cells and supporting cells from d70 WT (POU4F3nT

PAX2nG) and CHD7KO/+ (CHD7KO/+ POU4F3nT PAX2nG) organoids, tissues
containing vesicle structures harboring the POU4F3nT-positive hair
cells were micro-dissected from the rest of the d70 aggregates with
fine tweezers (Dumont) under a fluorescence stereomicroscope. The
dissected d70 organoid tissues were dissociated and FACS sorted in a
similar way as d20 organoids, with the exception that no viability dye
was used. tdTomato+ and tdTomato– cell populationswere collected in
separate tubes for separate downstream scRNA-seq reactions.
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For d70 WT (POU4F3nT PAX2nG) vs. CHD7KO/KO (CHD7KO/KO PAX2nG)
scRNA-seq, the POU4F3nT FACS sorting strategy can no longer be
used to enrich the otic epithelial cell types, as the CHD7KO/KO orga-
noids do not generate any POU4F3nT+ hair cells. Therefore, while
POU4F3nT

fluorescence signals were still used as a guide for micro-
dissection for the WT organoids, phase contrast live imaging was
used for micro-dissection of the CHD7KO/KO organoids to enrich tis-
sues containing vesicle morphological structures. After tissue dis-
sociation, cells were stained with 1:100 PE-conjugated EPCAM
antibody (BioLegend) by nutating at 4 °C for 40min in the dark. No
viability dye was co-stained. After antibody staining, cells were
washed twice prior to FACS sorting. Both PE-EPCAM+ and PE-EPCAM–

populations were collected in separate tubes for separate down-
stream scRNA-seq reactions. For WT samples, as the POU4F3nT+ hair
cells also express EPCAM on their cell surface, the hair cells exhibit
both tdTomato and PE fluorescence signals, both of which are red. As
such, the WT hair cells were FACS-isolated as a sub-population of PE-
EPCAM+ cell. The POU4F3nT reporter is highly specific to the EPCAM-
expressing hair cells, and the PE-EPCAM– population does not con-
tain any POU4F3nT signals.

Sorted single cells were captured, lysed, and cDNA libraries were
generated using a ChromiumController and Single Cell 3’Reagent Kits
V3 (10X Genomics) following the manufacturer’s instructions. cDNA
library quality was verified using a bioanalyzer (Agilent Technologies),
followed by sequencing using the NovaSeq 6000 sequencing system
(Illumina) at Indiana University School of Medicine Center for Medical
Genomics.

scRNA-seq data analysis
Illumina’s Real Time Analysis software was used to generate a BCL file,
which was subsequently de-multiplexed and converted to a FASTQ file
by the bcl2fastq Conversion Software (Illumina). The Cell Ranger
pipeline was used to process the FASTQ file as follows: De-multiplexed
reads were mapped to the GRCh38/hg38 human reference genome
with the STAR (Spliced Transcripts Alignment to a Reference) aligner,
mapped reads were grouped by cell barcode, and single-cell gene
expression was quantified using unique molecular identifiers (UMIs).
The resulting filtered gene-barcode (count) matrix was used as input
for downstream analysis.

Using the Seurat71 v4.0.3R package, scRNA-seq datasets were
loaded to R and converted to Seurat objects using Seurat functions
Read10X and CreateSeuratObject, respectively. Low-quality cells with
an extremelyhigh or lownumbersof detectedUMIs and cells with high
percentage of mitochondrial reads were filtered out from subsequent
analysis. Datasets were merged across samples, followed by data
normalization, scaling, and variable gene identification using the
SCTransform function. Principal component analysis (PCA) was per-
formed and the first 30 principal components were retained for
downstream analysis. Clustering was performed with FindNeighbors
and FindClusters functions, and cluster markers were identified using
the FindMarkers function in Seurat.

Differential expression (DE) analysis was performed using
the DESeq2 package72 in conjunction with zingeR in R, and DE genes
were visualized on volcano plots using the EnhancedVolcano R pack-
age (https://github.com/kevinblighe/EnhancedVolcano). To generate
the bubble plot for differentially expressed otic-specific genes,
the gene expression fold-change values of E10.5 otic vesicles versus
non-otic tissues reported byHartmanet al.30 wereused to calculate the
area of gene-correlated spots on the volcano plot.

Gene set enrichment (GSE) analysis was performed using the
Integrative Differential expression and gene set Enrichment Analysis
(iDEA) R package29. The DESeq2 differential expression analysis results
were used as a summary statistics input for iDEA, and upregulated
genes and downregulated genes were analyzed separately with iDEA.
All gene sets used forGSEA, someofwhichwere includedwith the iDEA

package29, can be downloaded from the MSigDB database (http://
www.gsea-msigdb.org/gsea/msigdb/collections.jsp).

Immunohistochemistry
Aggregates were fixed with 4% paraformaldehyde (PFA, Electron
Microscopy Sciences) for 30min at room temperature (RT) followed
by graded treatment of 15% and 30% sucrose and embedding in tissue-
freezing medium. Frozen tissue blocks were sectioned into 10–20 µm
cryosections on a Leica CM-1860 cryostat. For the fixation of hESCs,
cells growing on the 6-well plates were fixed with 4% PFA for 15min at
RT on the plates. No sucrose treatments or cryosections were per-
formed on fixed hESCs. For immunostaining of both the aggregates
and the hESCs, a 10% horse serum (Vector Laboratories) in 0.1% Triton
X100 1× PBS solution was used for blocking, and a 3% horse serum in
0.1% Triton X100 1× PBS solution was used for primary and secondary
antibody incubations. Primary antibodies used in this studywere listed
in Supplementary Table 1. All anti-CHD7 immunostaining assays in this
study used the CHD7 antibody from R&D Systems (#AF7350).
Alexa Fluor conjugated anti-mouse (IgG1, IgG2a, and IgG2b), rabbit,
sheep, or goat secondary antibodies (Thermo Fisher) were used for
primary antibody detection. ProLong Gold antifade reagent with
DAPI (Thermo Fisher) was used to mount the samples and visualize
cellular nuclei.

Microscopy images of hES cells and sectioned aggregates were
captured on a Nikon A1R-HD25 confocal microscope or a Leica DMi8
inverted microscope.

Western blot
hESCs were lysed in of RIPA buffer (Thermo Fisher) supplemented
with 1× Halt protease inhibitor cocktail (Thermo Fisher) and 5mM
EDTA for 15min on ice. After cell lysis, the sample were mixed with
Laemmli sample buffer (Bio-Rad) and DTT (Thermo Fisher) to final
concentrations of 1× and 25mM, respectively. Samples were heated
at 95 °C for 10min, and then centrifuged at 14,000 × g for 15min to
pellet the cell debris. Supernatants were loaded onto a 4–15% Mini-
PROTEAN TGX precast gel (Bio-Rad) and were subject to electro-
phoresis in 1× running buffer (25mM Tris, 192mM glycine, 0.1% SDS,
pH 8.3) (Bio-Rad) at 200 V for 35min. After electrophoresis, samples
were transferred to a PVDF membrane (Bio-Rad) using a Trans-Blot
Turbo system (Bio-Rad) at 1.3 A, up to 25 V for 10min. The PVDF
membrane was briefly immersed in a wash buffer (0.05% Tween-20
(Sigma) in PBS), and then in a blocking buffer (0.05 g/mL blotting-
grade blocker (Bio-Rad) and 0.05% Tween-20 in PBS) for 30min
shaking at RT. Primary antibodies and HRP-conjugated secondary
antibodies were diluted in the blocking buffer, and antibody incu-
bation was performed rocking overnight at 4 °C for primary anti-
bodies and rocking for 1–2 h at RT for secondary antibodies. Three
times of 10min washing in the wash buffer was performed following
primary and secondary antibody incubations. Bands were detected
with an ECL substrate (Bio-Rad) and themembranewas imagedwith a
ChemiDoc imager (Bio-Rad). For HRP-conjugated primary anti-
bodies, the secondary antibody incubation step and the subsequent
washing steps were omitted. For blotting with a different primary
antibody on the same membrane, stripping with a Restore Plus
stripping buffer (Thermo Fisher) was performed to remove prior
antibodies and chemiluminescent substrates. Primary antibodies
used in this study are listed in Supplementary Table 1. Unless
otherwise noted, all anti-CHD7 western blotting assays in this study
used the CHD7 antibody from R&D Systems (#AF7350). Uncropped
and unprocessed images of western blots and DNA gels are provided
with the article.

Statistics and reproducibility
For samples to be used for comparison of immunofluorescence
intensities, all sampleswereprocessed for immunostaining at the same
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time using the same tubes of diluted primary or secondary antibody
mixtures, and samples were blocked, incubated, and washed for
the same durations of time. These stained samples were imaged with
the Nikon A1R-HD25 confocal microscope using the same image cap-
ture settings, including the same laser power, the same pinhole size,
the sameHVgain and offsets, etc. The exported TIFF images fromeach
fluorescence channel were merged but were not adjusted in any other
way prior to fluorescence intensity measurement in the Fiji software.
The circle click tool from the ROI 1-click tool sets in Fiji was used to
manually measure fluorescence intensities of nuclear proteins such as
SOX2,HOXB9, andDLX5.Thepolygon selection tool fromFiji was used
for whole-cell fluorescence intensity manual measurements for cell
body-localized proteins COL9A2 and FBXO2. To visualize and locate
the nuclei and the cell membranes of otic progenitors during mea-
surement, PAX2nG, and EPCAMchannels weremergedwith the channel
of interest. The Fiji software records intensity data from each channel
separately, and only the data from the channel of interest were used
for downstream analysis.

Graphical plots and statistical analysis of measured fluorescence
intensity data were performed in GraphPad Prism 9. A total of 17,425
nuclei and cells from 129 total otic vesicles were measured and quan-
tified (135.84 nuclei or cells from each otic vesicle on average). For each
sample, data were obtained from three otic vesicles of three different
aggregates from three independent experiments. All samples were
subject to Anderson-Darling, D’Agostino & Pearson, Shapiro-Wilk, and
Kolmogorov-Smirnov normality testing. Datasets containing sample(s)
thatdidnotpass thenormality testwere analyzedbyKruskal–Wallis test
followed by Dunn’s multiple comparisons test. Data collection and
analysiswere not performedblind to the conditions of the experiments.
Violin plots display the full distribution of individual data points.

Prior to harvesting organoid samples for scRNA-seq or immunos-
taining, d19–d20 aggregates were pre-screened based on the epithelial
PAX2nGfluorescence signals. d60–d70WTandCHD7KO/+ aggregateswith
the POU4F3nT reporter knockin were pre-screened based on the hair
cell-specific POU4F3nT fluorescence signals. d60–d70 CHD7KO/KO aggre-
gates were pre-screened based on the presence of vesicle structures
when viewed under a phase-contrast microscope. Low-quality orga-
noids with few PAX2nG-positive epithelial vesicle structures, few
POU4F3nT-positive hair cells, or few vesicle structures were not used
from subsequent scRNA-seq or immunostaining experiments.

All immunofluorescence, western blot, and DNA gel electro-
phoresis data shown in this article are representative of a minimum of
three independent experiments with similar results.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The scRNA-seq data generated in this study have been deposited in the
Gene Expression Omnibus with accession code GSE208585. This study
used the GRCh38/hg38 human reference genome dataset (https://
www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/). Source data
generated in this study are provided with this paper. Source data are
provided with this paper.

Code availability
Scripts used for scRNA-seq analysis are available at [https://github.
com/HashinoLab/Nie_et_al_CHD7] with https://doi.org/10.5281/
zenodo.713981673.
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