Table 1.
Metrics | Precision | Recall | Accuracy | F1-score | AUC | AUPR |
---|---|---|---|---|---|---|
EfficientNetV2 | 0.9920 | 0.3293 | 0.5875 | 0.4945 | 0.9609 | 0.9738 |
ConvNeXt | 0.9650 | 0.9894 | 0.9715 | 0.9770 | 0.9952 | 0.9968 |
DenseNet | 0.9788 | 0.9814 | 0.9756 | 0.9801 | 0.9973 | 0.9983 |
Swin Transformer | 0.9587 | 0.9548 | 0.9471 | 0.9568 | 0.9911 | 0.9945 |
ResNet-50 | 0.9892 | 0.9695 | 0.9748 | 0.9792 | 0.9970 | 0.9979 |
Vision Transformer | 0.9815 | 0.9854 | 0.9797 | 0.9834 | 0.9985 | 0.9990 |
ViTCNX | 0.9803 | 0.9907 | 0.9821 | 0.9855 | 0.9985 | 0.9991 |
Bold values means the highest score under this metric.