Skip to main content
. 2022 Nov 4;13:1024104. doi: 10.3389/fmicb.2022.1024104

Table 1.

Performance of ViTCNX and the other six models under the binary classification.

Metrics Precision Recall Accuracy F1-score AUC AUPR
EfficientNetV2 0.9920 0.3293 0.5875 0.4945 0.9609 0.9738
ConvNeXt 0.9650 0.9894 0.9715 0.9770 0.9952 0.9968
DenseNet 0.9788 0.9814 0.9756 0.9801 0.9973 0.9983
Swin Transformer 0.9587 0.9548 0.9471 0.9568 0.9911 0.9945
ResNet-50 0.9892 0.9695 0.9748 0.9792 0.9970 0.9979
Vision Transformer 0.9815 0.9854 0.9797 0.9834 0.9985 0.9990
ViTCNX 0.9803 0.9907 0.9821 0.9855 0.9985 0.9991

Bold values means the highest score under this metric.