Skip to main content
. 2022 Nov 4;13:1024104. doi: 10.3389/fmicb.2022.1024104

Table 2.

Performance of ViTCNX and the other six models under three classification.

Metrics Precision Recall Accuracy F1-Score
EfficientNetV2 0.7783 0.4188 0.4526 0.3221
ConvNeXt 0.9562 0.9397 0.9574 0.9473
DenseNet 0.9487 0.9402 0.9560 0.9442
Swin Transformer 0.9259 0.8754 0.9127 0.8957
ResNet-50 0.9369 0.8936 0.9317 0.9100
Vision Transformer 0.9657 0.9599 0.9689 0.9627
ViTCNX 0.9668 0.9597 0.9696 0.9631

Bold values means the highest score under this metric.