Table 2.
Metrics | Precision | Recall | Accuracy | F1-Score |
---|---|---|---|---|
EfficientNetV2 | 0.7783 | 0.4188 | 0.4526 | 0.3221 |
ConvNeXt | 0.9562 | 0.9397 | 0.9574 | 0.9473 |
DenseNet | 0.9487 | 0.9402 | 0.9560 | 0.9442 |
Swin Transformer | 0.9259 | 0.8754 | 0.9127 | 0.8957 |
ResNet-50 | 0.9369 | 0.8936 | 0.9317 | 0.9100 |
Vision Transformer | 0.9657 | 0.9599 | 0.9689 | 0.9627 |
ViTCNX | 0.9668 | 0.9597 | 0.9696 | 0.9631 |
Bold values means the highest score under this metric.