Table 4.
Classification accuracy of modified MobileNet-v2 Bayesian optimization features on COVID-19 radiography dataset.
Classifiers | Sensitivity | Precision | FPR | F1-score | Accuracy | Time |
---|---|---|---|---|---|---|
QSVM | 92.85 | 92.92 | 0.022 | 92.88 | 92.8 | 28.351 |
CSVM | 92.20 | 92.27 | 0.025 | 92.23 | 92.2 | 33.41 |
M G SVM | 91.05 | 91.20 | 0.027 | 91.12 | 91.0 | 33.386 |
C G SVM | 87.52 | 88.90 | 0.04 | 88.20 | 87.5 | 50.183 |
ESD | 94.25 | 94.32 | 0.02 | 94.28 | 94.2 | 106.56 |
LSVM | 93.75 | 93.80 | 0.022 | 93.77 | 93.8 | 20.353 |
SVM Kernel | 94.25 | 94.32 | 0.017 | 94.28 | 94.2 | 89.6 |
LRK | 90.45 | 90.62 | 0.032 | 90.53 | 90.8 | 127.41 |
LD | 83.92 | 87.05 | 0.052 | 85.45 | 83.9 | 15.743 |
WNN | 91.37 | 91.42 | 0.027 | 91.39 | 91.5 | 42.71 |
Bold represent best values.