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Sex—the most underappreciated variable 
in research: insights from helminth‑infected 
hosts
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Abstract 

The sex of a host affects the intensity, prevalence, and severity of helminth infection. In many cases, one sex has been 
found to be more susceptible than the other, with the prevalence and intensity of helminth infections being gen-
erally higher among male than female hosts; however, many exceptions exist. This observed sex bias in parasitism 
results primarily from ecological, behavioural, and physiological differences between males and females. Complex 
interactions between these influences modulate the risk of infection. Indeed, an interplay among sex hormones, 
sex chromosomes, the microbiome and the immune system significantly contributes to the generation of sex bias 
among helminth-infected hosts. However, sex hormones not only can modulate the course of infection but also can 
be exploited by the parasites, and helminths appear to have developed molecules and pathways for this purpose. Fur-
thermore, host sex may influence the efficacy of anti-helminth vaccines; however, although little data exist regarding 
this sex-dependent efficacy, host sex is known to influence the response to vaccines. Despite its importance, host sex 
is frequently overlooked in parasitological studies. This review focuses on the key contributors to sex bias in the case 
of helminth infection. The precise nature of the mechanisms/factors determining these sex-specific differences gener-
ally remains largely unknown, and this represents an obstacle in the development of control methods. There is an 
urgent need to identify any protective elements that could be targeted in future therapies to provide optimal disease 
management with regard to host sex. Hence, more research is needed into the impact of host sex on immunity and 
protection.
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1  Introduction
For decades, animal and human research has demon‑
strated an overreliance on male subjects and has failed to 
adequately account for sex differences. As a consequence, 
our understanding of many diseases and conditions has 
mostly emerged from studies performed on one sex. 
However, males and females differ substantially in their 
susceptibility to viral, bacterial, and parasitic infections, 
as well as their course of infection, and males and females 
may respond differently to treatments such as drugs and 
vaccines [1, 2]. Numerous factors associated with sex 
affect the response of the immune system to pathogen 
challenge and the eventual disease outcome. However, 
the issue of sex disparity has not been widely considered 
in animal or human research to date (Box 1). As such, rel‑
atively little is known about the impact of sex on biology, 
health and disease.

In addition to the new diseases emerging every few 
years, long-known diseases, such as helminth infections, 
remain dangerous and account for many diseases in both 
humans and animals [3]. Moreover, a high prevalence of 
helminth infection in farm animals contributes to signifi‑
cant reductions in production levels. Although a variety 
of helminth species are known to infect a wide range of 
hosts, they can be categorized into three major groups: 
nematodes (roundworms), cestodes (tapeworms), and 
trematodes (flukes); all of these cause infections with 
significant morbidity and even mortality. Most of the 
current research regarding parasitic infections has been 
aimed at developing new control strategies, such as 
drugs and vaccines. However, the design of new treat‑
ments requires a deep understanding of the basic biol‑
ogy of parasites. In vaccine research, an understanding 
of the immune responses evoked by infection and the 
identification of protective mechanisms are fundamental 
prerequisites for further studies; these cannot be investi‑
gated properly without the consideration of host sex.

This review examines the influence of host sex in 
humans and animals during helminth infection. It dis‑
cusses the influence of sex hormones, sex chromosomes 
and sex-specific aspects of the microbiome effects on 
immunity in helminth-exposed hosts. It also considers 
the impact of sex on treatment efficacy.

2 � The impact of host sex on parasitism
Although host sex has already been recognized to have an 
impact on parasitism, it has not received the attention it 
deserves. In general, the prevalence and intensity of hel‑
minth infections has been found to be higher among male 
than female hosts, as noted in birds, rodents, ungulates, 
and humans [4]. This higher resistance among females 
led to the formulation of the female host supremacy par‑
adigm. However, the model seems to be oversimplified. 

Male-biased parasitism is not the general rule, as females 
can be more strongly affected in the case of some infec‑
tions, or no difference may exist at all between sexes 
(Table 1). In addition, any present differences may involve 
differences in the intensity (the number of parasites 
infecting a host), prevalence (the proportion of infected 
individuals in population), and severity of infection [5]. 
Moreover, host sex may influence the course of infection. 
Indeed, in rats infected with Toxocara canis, different lar‑
val infection migratory patterns were observed: a signifi‑
cant increase in larval number was observed in the brain 
in male rats, while a greater accumulation was noted in 
the liver in female rats [6].

It has been proposed that intrinsic host-related factors 
predispose one sex to be more susceptible to infection 
than the other. These host-related factors include physi‑
ological influences, such as sex hormones and immunity-
related factors, and behavioural influences, which have 
been associated with differences in susceptibility and 
exposure, respectively.

Differences in susceptibility are primarily linked to the 
impact of sex hormones on the immune system. First, 
while testosterone is crucial in the development of sec‑
ondary sexual traits in males, it is also a potent immune 
suppressor. Consequently, the ability to display sec‑
ondary sexual traits is associated with increased infec‑
tion risk. Second, under certain conditions, oestrogens 
can enhance cellular and humoral immune responses 
in females, thus increasing resistance against infection 
[7]. These observations are consistent with the immu‑
nocompetence handicap model, according to which 
females will promote their longevity and the survival of 
their offspring by investing more energy and resources in 
immune defence than males, while males will invest more 
into growth and intrasexual competition but will suf‑
fer from testosterone-induced immunosuppression [8]. 
Hence, infection susceptibility is a life-history trait that 
exists as a trade-off against reproductive effort, which 
differs between males and females [9].

Differences in exposure may be linked with sex-specific 
behaviours that result from various sources, including 
differential habitat use between sexes, higher aggression 
between males for mating opportunities, the aggregation 
of one sex and differences in diet among nonhuman ani‑
mals, with male hosts typically being at a higher risk of 
infection [10]. As a consequence, males are often more 
exposed to infective forms of parasites, e.g., the preva‑
lence of Trichuris spp., Varestrongylus spp., and Dictyo-
caulus spp. is significantly higher in male moose than 
female moose [11].

Nevertheless, in some circumstances, the behaviour 
of the male host may favour lower parasitic loads, as 
seen in Ashworthius sidemi infection in European bison 
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bulls. This can be explained by the fact that European 
bison males live solitarily or in small groups, while sub‑
adults and females with calves tend to aggregate, which 
increases the likelihood of infection [12]. In addition, sex‑
ual dimorphism may also differentially expose the sexes 
to the parasite. For example, as males are often larger-
bodied than females, they may ingest greater amounts 
of infected prey or may provide a larger area for parasite 
contact, thus becoming more exposed [10]. Social status 
also has profound effects on parasite loads in male ver‑
tebrates but not in females [13]. Indeed, high-ranking 
males harbour more parasites than low-ranking males. 
Increased parasite risk is a cost of high dominance, 
which is attributed to the priority of access to resources 
such as food and consequently greater exposure to par‑
asites, as well as the greater mating efforts associated 
with increased testosterone levels and hence increased 
susceptibility.

Recently, the resistance/tolerance concept has gained 
more attention in the context of helminth infection [14]. 
The concept assumes that hosts can adopt two major 
lines of defence against infection. The first is to attack 
parasites directly to reduce worm burdens or eliminate 
the infection completely (resistance), while the second 
is to limit the detrimental impact of infection on host 
health without reducing the parasite load (tolerance). 
While both strategies aim to maintain host health and 

improve host fitness, they may have different effects on 
epidemiology, and their mechanisms may differ. How 
host tolerance and host resistance affect parasitism 
remains largely unknown. While the majority of existing 
research deals with resistance, most studies have over‑
looked the implications of tolerance, and little research 
has addressed the impact of host tolerance and resist‑
ance against helminth infection in the context of host sex. 
Research in wild wood mouse populations challenged by 
multiple helminth species suggests the presence of sex 
bias in tolerance and resistance: females appear to invest 
more in immunity but also seem to be more tolerant of 
parasitic diversity than males [15].

3 � The effects of age and gender
There are many confounding factors to consider when 
analysing sex bias in parasitism, one of which in human 
studies is gender. While the terms “sex” and “gender” are 
often treated as synonyms, they cannot be used inter‑
changeably: sex is a biological trait that is determined by 
specific sex chromosomes (biological construct), whereas 
gender refers to roles, activities and behaviours that are 
regulated by cultural and social norms (social construct) 
[5]. Gender has implications in human studies on the 
epidemiology of numerous helminth infections, includ‑
ing schistosomiasis. People become infected with Schis-
tosoma spp. through contact with fresh water containing 

Table 1  Sex differences in the prevalence and/or intensity of selected helminth infections in respective hosts. 

M males, F females, ND no difference.

Nematodes Cestodes Trematodes

Trichuris spp. M > F
Alces alces [11]

Moniezia expansa M > F
Capra hircus [139]

Schistosoma spp. M > F Homo sapiens [140]
M < F Mus musculus [86]

Dictyocaulus spp. M > F
Alces alces [11]

Moniezia benedeni M > F
Alces alces [141]

Fasciola hepatica M > F
Cervus elaphus [142]

Varestrongylus spp. M > F
Alces alces[11]

Taenia saginata ND; M > F
Bos taurus [143, 144]

Dicrocoelium dendriticum M < F
Bos taurus [145]

Haemonchus contortus M > F
Ovis aries [77]

Taenia ovis ND
Ovis aries [146]

Paramphistomum spp. ND
Bos taurus [147]

Trichinella spiralis M > F
Mus musculus [80]

Taenia solium M < F
Homo sapiens [66, 148]

Strongyloides spp. M > F
Rattus norvegicus [149]

Taenia crassiceps M < F
Mus musculus [81]

Necator spp. M > F
Homo sapiens [150]

Echinococcus spp. M < F
Mus musculus [151]

Ascaris spp. M > F
Homo sapiens [150]

Hymenolepis nana M > F
Mus musculus, Homo 
sapiens [152, 153]

Toxocara spp. NDCanis lupus familiaris, 
Canis lupus, Vulpes [154]

Ancylostoma spp.
Litomosoides sigmodontis

ND
Canis lupus familiaris [43]
M < F
Mus musculus [155]
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infectious cercariae. In endemic areas, men are known to 
be more heavily infected with the parasite than women, 
but they are also at a higher level of exposure through 
involvement in fishing, which is traditionally a male occu‑
pation and carries an increased risk of infection. Such 
differential exposure between genders may be falsely sug‑
gestive of a sex bias and must be carefully considered in 
epidemiological studies on sex-related differences [16]. 
Surprisingly, studies on laboratory rodents infected with 
Schistosoma have demonstrated the opposite trend than 
in humans, with female mice exhibiting a higher schisto‑
some load than their male counterparts [17]. While the 
reasons are yet to be elucidated, this difference not only 
highlights the importance of disparities between labo‑
ratory animals and human subjects but also shows that 
gender may possibly blur physiological host sex effects.

Another confounding factor affecting the likelihood 
of parasitism is host age. The age of the host should be 
reported when analysing sex bias when only age-matched 
groups are compared, as host age may counteract some 
of the effects of host sex on infection. Unfortunately, data 
on this topic are scarce. The majority of studies on infec‑
tion focus either on host sex or host age effects, and rarely 
both. Age-related differences in infection prevalence may 
arise from different behaviours and immune statuses asso‑
ciated with age, both of which are affected by the host sex. 
Typically, helminth infection intensity follows a hump-
shaped profile over time, with low parasite load noted at 
a very young age, reaching maximal values at intermediate 
age, and then decreasing in older individuals. For example, 
human schistosomiasis prevalence peaks in school-age 
children and young adult populations and then gradually 
declines later in life [18]. In endemic areas, high schisto‑
somiasis prevalence is noted among children due to the 
large amount of time they spend swimming or bathing in 
water containing infectious cercariae. Older groups tend 
to demonstrate less exposure due to age-related changes 
in behaviour and the development of immunity over time. 
For similar reasons, children tend to harbour the greatest 
numbers of intestinal worms when compared with other 
age groups [19, 20]. However, in some host–parasite sys‑
tems, the parasites accumulate with time and demonstrate 
a linear profile of parasite load with age [21–23].

Both age and gender may affect disease prevalence, as 
demonstrated by studies on intestinal parasitic infections 
in humans in Nepal [24]. At the national level, adults are 
more likely to be infected than children, and infection 
rates are higher among girls and young women in rural 
areas than among their male counterparts. The former 
observation could be ascribed to the ongoing success‑
ful preventive pharmaceutical interventions and edu‑
cational programmes implemented in schools, and the 
latter could be due to the fact that school-aged girls in 

rural areas show low school attendance as a result of gen‑
der discrimination and cannot benefit from anti-parasite 
programmes [24]. Moreover, these girls are enrolled in 
agricultural work, which increases the risk of infection.

Despite the many subtleties and nuances observed in 
free-living animals or humans that modify the impact of 
sex differences on infection, sex bias is also commonly 
observed under standardized laboratory conditions. This 
further supports the contention that sex is an important 
factor affecting health and disease and should be consid‑
ered a critical variable in infection studies.

The mechanisms underlying sex differences are multi‑
factorial. In addition to environmental and behavioural 
factors, complex interactions exist between hormonal 
(different hormone levels), genetic (related to X- and 
Y-linked genes), and microbiome factors, and these may 
have a considerable influence on immunity to helminth 
infection. These sex-specific factors affect the immune 
response and create sex-dependent differences, and they 
will be discussed in more detail herein.

4 � The effects of sex hormones
Sex hormones include three major groups of steroids, 
androgens, oestrogens and progestogens, among which 
testosterone, oestradiol and progesterone are the most 
important. Beyond reproductive physiology, sex ster‑
oids participate in a number of different roles in various 
nonreproductive tissues, including immune modulation. 
Most of their effects are mediated via specific receptors 
that belong to the nuclear receptor superfamily and are 
hormone-activated transcription factors. These receptors 
are richly expressed in most cells of the immune system, 
such as macrophages, dendritic cells, neutrophils, natural 
killer cells and lymphocytes; upon binding to their cog‑
nate hormones, these receptors regulate both the innate 
and adaptive immune responses. Oestrogens, progesto‑
gens and androgens bind specifically to oestrogen recep‑
tors (ERs), progesterone receptors (PRs) and androgen 
receptors (ARs), respectively. Briefly, sex steroids move 
passively through the membrane of a target cell, inter‑
act with their cognate receptor in the cytoplasm, and 
translocate to the nucleus, where the complex recognizes 
hormone response elements (HREs) associated with the 
promoters of target genes to regulate the transcription of 
genes signalled by the steroid hormone [25, 26]. Moreo‑
ver, sex steroids can also mediate immediate effects by 
affecting the regulation of other transcription factors and 
cytoplasmic signalling events by binding to membrane 
receptors and influencing the subsequent cross-talk 
with signalling cascades [27]. In addition, in some cir‑
cumstances, sex steroid receptors can be activated in the 
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absence of their respective hormones/ligands, thus influ‑
encing the immune cell response [28].

As immune cells express ERs, PRs, and ARs, they 
respond to sex hormones, which can affect various 
aspects of their function. For example, oestradiol and ER 
signalling regulate inflammatory pathways in immune 
cells through putative EREs in the INF-γ promoter, thus 
evoking Th1-type immunity, while testosterone and AR 
signalling results in upregulated expression of the tyros‑
ine phosphatase Ptpn1, which decreases Th1 differentia‑
tion [29]. A considerable number of genes are regulated 
by sex hormones, including those associated with immu‑
nity [30, 31]; indeed, a genome-wide screening study 
identified over 70  000 EREs in the human and mouse 
genomes [32], while the Androgen Responsive Gene 
Database includes 1785 human genes and 993 mouse 
genes [33].

Studies of both humans and rodents have shown that 
sex hormones modulate immune cell functions, which 
may in turn dictate susceptibility to helminth infection 
and the course of infection. One study examined the 
role of sex hormones in the development of Th2 immu‑
nity in a sex-biased model of Trichuris muris infection 
in mice [34]. Enhanced Th2 responses, which are needed 
for worm expulsion, were mediated by oestradiol, while 
DHT suppressed Th2 immunity in  vitro. This evidence 
suggests that sex hormones may act as important immu‑
nomodulatory factors determining the generation of the 
Th2 response to intestinal helminth infections. However, 
host sex and endogenous sex hormone levels are seldom 
addressed in such studies. It may be speculated that an 
immunologically permissive environment mediated by 
testosterone, progesterone or high oestrogen levels may 
favour helminth infection chronicity, while lower oes‑
trogen levels may promote infection clearance; this will 
be addressed in more detail below. Clearance may be 
achieved by shaping the T-cell response towards a Th1, 
Th2 or T regulatory phenotype. Helminth infection 
drives the induction of Tregs to induce a state of hypore‑
sponsiveness that favours parasite survival [35]. As Treg 
function is impacted by testosterone, male hosts may 
be at greater risk of helminth chronicity. Moreover, the 
stronger immune responses of females may be associated 
with more activated innate immune pathways prior to 
pathogen challenge, as demonstrated by transcriptional 
studies on the macrophage transcriptome [36]. However, 
more studies on the impact of host sex on immune cell 
function in the context of helminth infection are eagerly 
awaited.

4.1 � Impact on innate immunity
Sex steroids modulate innate immune system functions, 
including the regulation of the inflammatory process 

and activation of adaptive immunity via antigen presen‑
tation. The inflammatory process comprises inflamma‑
tory mediator release, phagocytosis, complement system 
activation and the synthesis of multiple cytokines and 
chemokines to remove harmful stimuli and start local 
tissue recovery. All these functions are influenced by sex 
steroids (Additional file 1).

Oestrogens regulate inflammatory pathways; however, 
their impact is highly contextual and primarily depends 
on tissue type, the differential expression of ER subtypes 
and hormone concentration [37]. Oestradiol typically 
increases proinflammatory responses at low physiologi‑
cal levels and anti-inflammatory responses at higher 
concentrations, which are observed during mid- and 
late pregnancy [38]. Such oestradiol dose dependency 
has been observed for antigen-presenting cell func‑
tions: macrophages/monocytes and dendritic cells (DCs) 
release prototypic proinflammatory cytokines (e.g., 
IL-1α, IL-1β) at low oestradiol levels, while proinflam‑
matory IL-1, TNF α and IL-6 secretion is inhibited at 
higher levels [39], accompanied by a shift towards Th 2 
cytokines such as IL-4 and IL-10 [40]. Moreover, oestra‑
diol enhances the expression of TLR-4 on macrophages 
and promotes the differentiation of inflammatory DCs; 
this results in the stronger type I INF activity observed 
in immune cells from females than in immune cells from 
males [41]. Oestrogen has also been found to play a dual 
role for NK cells: low hormone levels have stimulatory 
effects on NK-cell activity, while high levels have suppres‑
sive effects [42]. The hormone also influences neutrophil 
activities, including apoptosis, chemotaxis and NETosis 
[43, 44]. Again, the effect is dose dependent, as neutro‑
phil apoptosis is more delayed during pregnancy [45].

Androgens exert anti-inflammatory effects on innate 
immune cells. In contrast to oestradiol, testosterone 
reduces TLR-4 expression on macrophages, thus directly 
attenuating proinflammatory responses. Furthermore, 
testosterone treatment of both macrophages and DCs 
leads to a reduction in proinflammatory cytokine levels 
due to the inhibitory effects of AR signalling on tran‑
scription factors [41]. Other functions of innate immune 
cells are also altered: the bactericidal ability of neutro‑
phils has been found to be impaired [46], and monocyte 
apoptosis has increased [47].

4.2 � Impact on adaptive immunity
Sex steroids affect the course of adaptive immunity by 
modulating not only cell differentiation and number but 
also the functions of major lymphocyte subsets [48]. 
The effects of oestrogen are again highly concentration 
dependent, with low oestradiol levels typically stimulat‑
ing Th1-type responses and cell-mediated immunity and 
high concentrations promoting Th2-type responses and 
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humoral immunity [41]. The hormone also enhances the 
activity of B cells and antibody production [49].

In contrast, androgens generally dampen the adap‑
tive response. Testosterone exerts an inhibitory effect on 
Th1-cell differentiation, thus contributing to heightened 
susceptibility to viral infections in males [50]. However, 
the effect of testosterone on Th2 cell differentiation is 
not clear [51], as some studies report a promotion of Th2 
responses, while others report a suppressive effect or 
none. Interestingly, androgens have been associated with 
the suppression of Th2 immunity during helminth infec‑
tions [34, 52], thus inhibiting the type of response needed 
to clear the majority of infections. In addition to their 
impact on T-cell differentiation, androgens also induce 
regulatory T cells, further dampening immune responses 
[50].

In conclusion, the literature indicates that oestrogens 
have both pro- and anti-inflammatory effects on immune 
compounds, while androgens and progesterone exert 
suppressive effects [48]. Hence, the different steroid hor‑
mone milieu in females and males may yield sex-specific 
effects.

4.3 � Impact of sex hormones during pregnancy
Sex hormones create physiological differences between 
sexes and are present in different concentrations depend‑
ing on the sex. Sex steroid levels tend to remain more 
balanced throughout the lifespan in males, while females 
experience regular fluctuations throughout the menstrual 
cycle. These changes in females have a number of advan‑
tages from an evolutionary perspective: they contribute 
to the maintenance of an infection-free environment 
before ovulation and then create an immunologically 
permissive environment that favours implantation. Nev‑
ertheless, the most drastic changes in hormone levels are 
observed during gestation. While increased oestrogen 
and progesterone levels exert immunomodulatory effects 
that facilitate maternal-foetal tolerance, this is achieved 
at the expense of impaired immunity. Interestingly, the 
immune response causes similar biases during preg‑
nancy and most helminth infections, i.e., a shift towards 
Th2 and regulatory T-cell responses [53]. The impact 
of high oestrogen levels on immunity has already been 
mentioned, and progesterone generally suppresses innate 
immune cell activities. It also inhibits the activation of 
macrophages and DCs [54] and decreases inflammation 
by suppressing proinflammatory cytokine production 
(TNF-α, IFN-γ, and IL-12) and increasing that of anti-
inflammatory cytokines such as IL-10 [55]. Furthermore, 
it suppresses neutrophil, monocyte and NK-cell func‑
tions (Additional file  1). Progesterone mediates certain 
effects on adaptive immunity resulting in a shift from a 
Th1 to a Th2 response and increases in IL-4, IL-5 and 

IL-10 production [56]. In addition, high levels of pro‑
gesterone during pregnancy favour the development of a 
regulatory T-cell response [57].

With its increased nutritional demands and altered 
immunity, pregnancy is also associated with an increased 
risk of acquiring helminth infection, as confirmed by 
animal and human studies [58, 59]. Helminth infection 
may be associated with anaemia, preterm birth, impaired 
foetal growth and pregnancy loss [60]. Again, the out‑
come is highly contextual; for example, while hookworm 
infection is associated with a general reduction in female 
fecundity, fecundity may be increased during Ascaris 
lumbricoides infection [61].

These contrasting observations may be partially 
explained by differences in immunity induced by hook‑
worms (mixed Th1/Th2 response) and roundworms (Th2 
response). The response evoked during A. lumbricoides 
infection is favourable for pregnancy, while hookworm 
infection causes severe iron-deficiency anaemia, which 
outweighs any effect of immune modulation [61]. How‑
ever, combined stimulation of Th2 responses by both 
pregnancy and infection in rats infected with Trichinella 
spiralis resulted in increased newborn larva (NBL) mor‑
tality [62]. It has been reported that progesterone is an 
inducer of parasiticide activity associated with NBL death 
[63, 64]. Progesterone was also found to have antiparasit‑
icidal effects against Schistosoma haematobium in female 
golden hamsters [65]; however, it was found to promote 
Taenia solium development in vitro [66], and pregnancy 
increases the prevalence of naturally acquired cysticerco‑
sis in rural pigs [67].

The hormonal effects associated with pregnancy are 
also seen during T. canis and Toxocara cati infection in 
dogs and cats, respectively. In the case of T. canis, larvae 
arrested in various tissues of infected bitches become 
reactivated during gestation, migrating across the pla‑
centa and infecting the foetuses [68]. Moreover, T. canis 
larvae can migrate from mother to neonate via the mam‑
mary gland during lactation [69]. While no cases of trans‑
placental larvae transmission have been noted for T. cati, 
infection can still occur via the lactational route [70]. The 
reactivation of dormant larvae is mediated by increased 
progesterone and prolactin levels [68, 69].

4.4 � Impact of sex hormones on anti‑helminth immunity
When a host encounters a parasite, an interplay begins 
between host defence mechanisms and parasite survival 
strategies; this may result in infection clearance or its 
establishment. This interaction is strongly influenced 
by host sex hormones. While sex steroids modulate the 
immune response to infection, they may also directly 
affect parasite growth, differentiation and reproduc‑
tion. Nevertheless, the relationship between hormone 



Page 7 of 17Wesołowska ﻿Veterinary Research           (2022) 53:94 	

activity and host susceptibility to helminth infection 
varies greatly among species and is heavily reliant on 
the particular parasite-host system.

In the case of nematode infections, males are gen‑
erally observed to be more susceptible, which is often 
associated with testosterone levels [71]. Studies on 
Trichuris muris infection in mice suggest that testos‑
terone demonstrates an inhibitory effect on protective 
immunity, mainly through a reduction in Th2 cytokine 
responses [34], and that oestrogens may have protec‑
tive influences mediated by IL-13 and IL-4 [72, 73]. For 
Angiostrongylus malaysinensis and Nippostrongylus 
brasiliensis infections, gonadally intact male rats have 
higher worm burdens than females or castrated males 
[74, 75]. Gonadectomy of females does not impact the 
N. brasiliensis burden [75]. In the case of Strongyloides 
ratti infection in rats, significantly higher worm bur‑
dens are reported in males, while ovariectomy has no 
effect on parasite load in females. Testosterone treat‑
ment increases S. ratti burdens in both males and 
females [76]. Correspondingly, testosterone levels are 
positively correlated with worm burden during Hae-
monchus contortus infection in male lambs [77].

Male mice with higher social rank, and hence 
increased testosterone levels, are more prone to Helig-
mosomoides polygyrus infection [78]. However, while 
male mice are also more susceptible to Brugia malayi 
challenge than female mice, this is probably more due 
to the protective effects of the oestrogen-rich environ‑
ment in the latter rather than the inhibitory effects of 
testosterone in males [79]. Similarly, testosterone has 
no significant effect on Trichinella spiralis develop‑
ment, but progesterone and oestradiol treatment inhib‑
its the T. spiralis molting rate in vitro [80].

Sex hormones have also been found to influence 
the development and survival of cestode helminths; 
however, in contrast to most nematode infections, 
increased worm burdens are usually observed among 
female hosts, such as for Taenia crassiceps infection 
in gonadally intact mice [81]. Ovariectomy reduces 
the susceptibility of female mice to parasite challenge, 
while gonadectomy increases infection intensity among 
males [82]. In  vitro exposure to oestradiol induces 
cysticerci budding and increases T. crassiceps infective 
capacity [83], whereas testosterone and dihydrotestos‑
terone reduce parasite survival and impair the excre‑
tory system of flame cells, causing parasite intoxication 
[84, 85]. It has also been suggested that androgens may 
have a protective role against Taenia solium infection, 
with in vitro exposure of T. solium cysticerci to testos‑
terone and DHEA inhibiting scolex evagination [83], 
while progesterone induced the opposite effect [66].

The progression of trematode infection is also affected 
by sex steroids. Schistosoma mansoni infection is sup‑
pressed by elevated testosterone concentrations in male 
mice [86]. In addition, testosterone appears to have a 
direct antifecundity influence in adult S. haematobium 
worms [87].

4.5 � Exploitation of sex hormones by helminths
The host endocrine microenvironment can also be 
exploited by helminths themselves for their own advan‑
tage. Such exploitation may include the utilization of 
receptors, transporters, steroidogenic pathway enzymes 
and secondary messengers expressed by parasites [88].

4.5.1 � Receptors
It has been proposed that parasites have developed mol‑
ecules analogous to host sex hormone receptors. These 
bind with the sex steroids of the host, resulting in down‑
stream transcriptional events in the parasite. Indeed, 
oestrogen receptor-like structures were described in S. 
mansoni [89], the free-living nematode species Pana-
grellus redivivus and Caenorhabditis elegans [90], and T. 
crassiceps [91]. It has been proposed that the interaction 
between oestrogen receptors and oestrogen-responsive 
elements leads to the activation of activator protein-1 
complex genes, since oestradiol increases the expression 
of T. crassiceps c-fos and c-jun [83, 92].

Treatment with selective oestrogen receptor modu‑
lators has been found to reduce the motility, viability 
and fertility of adult worms, suggesting that oestrogen 
receptor-like molecules are present in H. contortus [93]. 
For S. haematobium, it was demonstrated that testoster‑
one binds with the parasite protein Sh28GST to reduce 
the fecundity of the parasite [87]. In addition, T. solium 
expresses a protein related to the progesterone recep‑
tor (TsPR), which enables progesterone to have a direct 
effect on T. solium cysticerci [94]. In teanids, androgens 
may exert their effects through the nonspecific progester‑
one receptor membrane component (PGRMC) [95].

Whether these molecules belong to the classic nuclear 
receptor family remains unclear; although a great num‑
ber of classic nuclear receptors have been identified in 
helminths, recent genomic studies suggest this is not the 
case [96]. It is also possible that sex steroids may pas‑
sively diffuse through the tegument or may act through 
membrane nonclassic receptors [95].

4.5.2 � Steroidogenic pathway enzymes
There is also evidence that parasites may synthesize ster‑
oid hormones from host steroid precursors. In fact, both 
T. crassiceps and T. solium express steroidogenic enzymes 
and synthesize steroid hormones [97]. Their cysticerci 
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can transform steroid precursors to androgens. Subse‑
quently, testosterone may be aromatized into oestradiol. 
Since an oestrogen-rich environment favours teanid 
growth and development, testosterone production and 
subsequent transformation into oestradiol may further 
facilitate the infection progress and may explain the femi‑
nization of male mice during chronic infection. Indeed, 
serum oestrogen concentrations gradually increase fol‑
lowing T. crassiceps cysticerci infection in female mice 
[98], and chronic T. crassiceps infections lead to femini‑
zation in males through the overexpression of P-450 [92, 
99].

5 � The effects of sex chromosomes
Although some of the differences between female and 
male immunity have been directly attributed to the 
effects of sex hormones on immune function, sex ster‑
oid levels are not sufficient for explaining the disparities 
observed at different ages (prepubertal, pubertal, post-
pubertal), implying that additional mechanisms may be 
at play. Indeed, many studies indicate that genetic factors 
also play an important role in sexual dimorphic immu‑
nity [100].

In mammals, biological sex is determined by sex chro‑
mosomes, with XX denoting females and XY denoting 
males. The X chromosome carries not only the genes 
participating in sex determination but also numerous 
immune-associated genes, including CD40L, CXCR3, 
FOXP3, TLR7, TLR8, BTK, IRAK-1, and NEMO [101, 
102]. While one of the two X chromosomes in females 
is inactivated by methylation to maintain the same dos‑
age of proteins between the sexes, approximately 15% 
of X-linked genes escapes the process [103]. As a con‑
sequence, some X-encoded immune-associated proteins 
and factors are overexpressed in females compared to 
males and contribute to enhanced immune responses in 
females [2]. Furthermore, the X chromosome inactiva‑
tion process is random, and hence, females are inherently 
mosaics composed of cells in which either the maternal 
or paternal X chromosome is silenced [104]. Such cellular 
mosaicism is beneficial for females, as it provides them 
with a greater diversity of responses against the patho‑
gen challenge. Females may also benefit from the mater‑
nal transmission of mitochondria, which not only have 
bioenergetic functions but also are important regula‑
tors of immunity [105]. They can regulate the activation, 
differentiation, survival, and transcription of immune 
cells [106]. Evolutionary pressures may have forced the 
selection of mitochondrial alleles that are favourable for 
females but detrimental for males: the so-called “mother’s 
curse” [107]. Such a mechanism may negatively influence 

the disease burden in males by affecting the quality of 
their immune responses.

Since sex chromosomes affect host immune functions, 
they may also govern susceptibility to helminth infection 
and its ultimate outcome. Again, female hosts seem to be 
better equipped to combat such infection.

6 � The effects of the microbiome
In addition to hormonal and genetic factors, both 
innate and adaptive immunity appear to be influenced 
by the microbiota inhabiting the body [108]. Moreo‑
ver, the microbiome composition differs between sexes, 
as observed in animal and human studies [109, 110]; for 
example, females have higher levels of Lactobacillaceae, 
males have higher levels of Ruminococcaceae [111], and 
females generally have higher microbial diversity and 
richness than males, which is beneficial for their health 
[109]. Sex disparities in microbiome composition elicit 
sex-related immune responses, thus contributing to sex-
specific microbiomes [111]. It still remains unknown, 
however, whether differences in microbiome compo‑
sition result from different sex steroid levels in males 
and females or are a cause of the observed sex-specific 
immunity. This interaction is further complicated by the 
presence of parasite infection, as it can change the com‑
position of the gut microbiome [112]. For example, Helig-
mosomoides polygyrus infection increases the abundance 
of Lactobacillaceae and Enterobacteriaceae in the gut 
[113, 114]. Moreover, certain Lactobacillus species make 
the host more susceptible to helminth infection, as dem‑
onstrated in studies on Trichuris muris [115], and host 
sex has been found to alter the response of gut microbi‑
ota to cestode infection [116].

7 � Efficacy of treatments
Males and females differ not only in their susceptibility 
to parasitic infections but also in their responsiveness to 
drugs and vaccines [41]. The sexes are known to react in 
different ways to pharmacotherapy, with differences in 
the absorption, metabolism and effectiveness of some 
medicines being reported [117, 118]. As such, it is highly 
recommended that sex-specific drug dosing be used to 
mitigate unnecessary adverse reactions.

Furthermore, although sex influences the course of 
the immune responses after vaccination, the existence of 
immunological differences between males and females is 
rarely considered in vaccine trial design [119]. Sex effects 
have been reported for many commercially available vac‑
cines [120, 121]. For example, women demonstrate higher 
humoral responses to measles, hepatitis B, influenza and 
tetanus vaccines, while men have increased antibody 
responses to yellow fever, pneumococcal polysaccharide 
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and meningococcal A and C vaccines [122]. Since women 
are underrepresented in vaccine trials, outcome data are 
often extrapolated to them from men, thus resulting in 
inaccurate vaccine dosages [1]. In addition, it has been 
demonstrated that women vaccinated with a half dose of 
the influenza vaccine display higher antibody responses 
than men receiving a full dose [123]. Moreover, due to 
their higher inflammatory and cellular responses, female 
recipients tend to experience more adverse effects fol‑
lowing vaccination [1].

Helminth infection has a significant influence on the 
immune response to vaccines and vaccine efficacy [124]. 
Since most parasites induce systemic immunosuppres‑
sion in their hosts, protective immune responses to 
vaccines may be suppressed. The potent regulatory and 
type 2 immune responses typically elicited by helminth 
infection may interfere with immunization by vaccines 
that elicit type 1 immune responses for protection, thus 
contributing to vaccine failure. Indeed, in endemic areas, 
helminth-infected children develop poorer influenza-
specific responses to vaccines than uninfected groups 
[125]. Additionally, responsiveness to vaccination against 
influenza is often suppressed in studies on labora‑
tory rodents, as observed in Litomosoides sigmodontis-
infected mice [126].

Helminth-vaccine interactions can result from a quali‑
tative mismatch or agreement in the type of response 
required to clear the infection and the type of response 
needed to immunize against the vaccine target. This rela‑
tionship may be potentially modulated by host sex. As 
both sexes yield qualitatively and quantitatively different 
responses, they can demonstrate different responses to 
vaccines in the context of helminth infection. However, 
no reliable data exist on the subject, and further studies 
are needed in this area.

Furthermore, few data exist regarding the sex-depend‑
ent efficacy of vaccines against parasitic infections. Few 
studies deal with malaria [127, 128]. Host sex has also 
been found to impact the efficacy of vaccines against 
helminth parasite infections. For instance, host sex influ‑
ences both vaccine efficacy and immune responses fol‑
lowing vaccination and/or infection in laboratory and 
natural Fasciola hepatica hosts (Table 2).

For example, male rats vaccinated with cDNA encod‑
ing F. hepatica phosphoglycerate kinase (cDNA-FhPGK/
pCMV) developed marked leucocytosis with higher 
neutrophil, eosinophil and monocyte responses than 
females [129]. Additionally, the dynamics of eosino‑
phil and monocyte responses have been found to vary 
between sexes: increased titres of anti-FhPGK IgG1 and 
IgG2a correlated with the protective effect of vaccina‑
tion, but only among female rats [129]. Moreover, during 
acute and chronic infection, different CD4+ and CD8+ 

T-cell profiles were noted between males and females in 
peritoneal fluid and lymph nodes but not in blood [130]. 
Following cDNA-FhPGK/pCMV vaccination and/or F. 
hepatica infection, the immune responses of rats were 
polarized towards Th2/Treg, with lymphocytes isolated 
from male rats showing higher IL-4 and IL-10 produc‑
tion than females [130]. While lymphocytes isolated from 
vaccinated and/or infected rats of both sexes had reduced 
proliferative capacities in response to mitogen (PHA) 
or vaccine antigen (FhPGK) when compared to those 
from unvaccinated and uninfected rats, the males dem‑
onstrated a considerably greater reduction in prolifera‑
tive capacity, while the vaccinated females demonstrated 
greater restored lymphocyte proliferative capacities dur‑
ing chronic fasciolosis [130].

8 � Conclusions
The sex of the host affects the fate of helminth infection. 
Both physiological and behavioural factors play key roles 
in the differences in susceptibility and exposure reported 
between sexes. In particular, sex hormones, sex chro‑
mosomes and the microbiome have particularly strong 
influences on the sex bias associated with the immunity 
of infected hosts. Indeed, the impact of host sex on hel‑
minth infection is widespread, and there are multiple 
examples in which one sex is better protected than the 
other. However, there is no single overarching mecha‑
nism regulating these effects of host sex. In contrast, 
complex multifaceted interactions exist, and these vary 
by helminth species and each particular host–parasite 
system. These complex interactions determine whether 
the individuals of both sexes are immune, susceptible, 
or tolerant to helminth infection; further clarification of 

Table 2  Sex-specific vaccine efficacy. 

a Intramuscular delivery.
b Intranasal delivery.
c Oral delivery.

Vaccine Host Level of protection References

Males Females

cDNA-CPFhW/pcDNA3.1a Rat 100% 74% [156]

CPFhW inclusion bodiesb Cattle None 54% [157]

CPFhW inclusion bodiesb Sheep 26% None [157]

cDNA-FhPGK/pCMVb Rat None 67% [158]

FhPGKa Rat 55% 69% [158]

cDNA-FhPCW/pCMVa Rat None 19% [159]

cDNA-FhPGK/pCMVa Rat None 48% [129]

Fh-CL3-1a Rat 47% None [160, 161]

Fh-CL3-2a Rat 63% 21% [160, 161]

CPFhWc Sheep 55% 20% [162]

CPFhWc Cattle 46% 68% [162]
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sex-specific protective factors is needed, particularly the 
molecular pathways mediating sex-specific differences in 
infected hosts await identification.

It is likely that inattention to host sex contributes to the 
lack of success in vaccine development against numer‑
ous pathogens, including helminths. Most studies do 
not provide sex-specific data analysis, which results in 
an incomplete understanding of immune responses elic‑
ited in the two sexes. Research must be undertaken to 
recognize sex-biasing factors/mechanisms that protect 
against disease and to support the development of sex-
optimized treatments for males and females. If a pro‑
tective mechanism is identified, it could be augmented 
or mitigated (as appropriate) to provide optimal disease 
management. Moreover, even if it seems that infection 
outcomes are equivalent in males and females, the under‑
lying mechanisms may differ substantially. Excluding one 
sex may mask discoveries relevant to disease pathogen‑
esis and treatment, while integrating sex into research 
may increase the likelihood and pace of new discoveries 
and diminish the risk of extrapolation [131]. It is there‑
fore necessary to intensify and encourage research into 
the impact of host sex on immunity following helminth 
infection to provide a better understanding of how the 
immune system functions.

9 � Box 1: Reasons for inadequate consideration 
of sex in basic, preclinical and clinical research

Sex is a basic biological variable that affects the whole 
population and has a significant impact on health 
and disease. However, basic, preclinical and clinical 
research is preferentially conducted on male subjects, 
with female subjects not included or treated as after‑
thought [132–134]. The reasons for this are numerous:

•	Ignorance—there is a historical belief that no major dif-
ference exists between males and females beyond their 
reproductive functions.

•	Avoidance of preassumed high data variability in 
female subjects—it is believed that fluctuations in sex 
hormone levels during the oestrus cycle make female 
data more variable than male data. However, in many 
cases, female data are no more variable than male data 
[135].

•	Duplication of the time and cost needed to perform the 
study.

•	Lack of sufficient pressure from the authorities to 
include both sexes in research—since not all funders, 
journal editors and peer reviewers require separate 
analyses by sex and financial resources for research are 
limited, such analyses are not being performed.

The last decade has seen a promising increase in 
women-inclusive research. Historically, women of 
childbearing potential were excluded from drug tri‑
als. As a consequence, the adverse side effects of drug 
treatment were more frequently observed among 
women. Moreover, responses to common vaccines 
have also been reported to be shaped in a sex-spe‑
cific manner. In the 1990s, the National Institutes of 
Health (NIH) in the US recommended the inclusion of 
women in clinical trials. Since then, there have been 
numerous calls to address the issue, and the new‑
est NIH policy requires the consideration of sex as a 
biological variable in both human and animal stud‑
ies [136]. Additionally, similar policies have been 
announced by other major granting agencies—the 
European Commission and Canadian Institutes of 
Health Research [137]. A recent meta-research study 
on sex inclusion in the biological sciences revealed 
that sex-inclusive practices are becoming more com‑
mon [138]. This change is encouraging. Nevertheless, 
there is much to be done. Separate analyses by sex are 
not frequent enough in basic animal research and are 
scarce in cell-based studies.
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