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Abstract 

Inherited neurotransmitter diseases are a subset of rare neurometabolic disorders characterized by hereditary defi-
ciencies in neurotransmitter metabolism or transport. Non-ketotic hyperglycinaemia (NKH), called glycine encepha-
lopathy, is an autosomal recessive glycine metabolism disorder characterized by an abnormal accumulation of glycine 
in all bodily tissues, including the CNS. The SLC6A9 gene, which codes for the GLYT1 protein, a biochemical abnormal-
ity in the GCS, and dihydrolipoamide dehydrogenase enzymes, which function as a GCS component, are responsible 
for the neonatal form’s symptoms, which include progressive encephalopathy, hypotonia, seizures, and occasionally 
mortality in the first few days of life. By changing the MAPK signalling pathways, glycine deprivation in the brain dam-
ages neurons by increasing NMDA receptor activation, increasing intracellular Ca levels, and leading to DNA breakage 
and cell death in the neuron region. In addition to the previously mentioned clinical diagnosis, NKH or GE would be 
determined by MLPA and 13C glycine breath tests. Pediatricians, surgeons, neurologists, and geneticists treat NKH and 
GE at the newborn period; there is no cure for either condition.
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Introduction
Endogenous chemical messengers known as neuro-
transmitters improve the synaptic connection between 
neurons that are primarily engaged in a variety of physio-
logical and psychological processes. Rare neurometabolic 
conditions known as inherited neurotransmitter disor-
ders (NTDs) include enzymes involved in the synthesis 
of neurotransmitters or their required co-factors [1]. In 
these NTDs, one of the rare NTDs is glycine encepha-
lopathy, called non-ketotic hyperglycinaemia. It is an 
autosomal recessive disorder marked by impaired gly-
cine cleavage enzyme activity [2]. Mabry and colleagues 
originally described non-ketotic hyperglycinaemia in two 
newborns from the same sibship in 1963, presenting with 
severe neurological discomfort, hypotonia, frequent con-
vulsions, and obtundation.

The syndrome is unique from Childs and colleagues 
[3]  previously documented hyperglycinaemia with 

acidosis (1961). Glycine concentrations in plasma are 
elevated in a range of metabolic diseases in infants and 
children. In the ketotic-hyperglycinaemia condition, ele-
vated blood levels of glycine seem to be involved in the 
accumulation of one or more unusual organic acids pro-
duced by the breakdown of amino acids chain. Propionic 
acidaemia [4] and methylmalonic acidaemia [5] are two 
conditions that are often linked to hyperglycinaemia; 
however, patients with isovaleric acidaemia [6] and beta-
ketothiolase deficiency have also been reported to have 
it [7]. The majority of children with hyperglycinaemia, 
however, are classified as having non-ketotic hyperglyci-
naemia since there are often no detectable abnormalities 
in organic acid metabolism.

Many people with this diverse collection of illnesses 
suffer a life-threatening sickness in their infants, char-
acterized by intractable seizures, stiffness, severe mental 
retardation, and early mortality. The non-ketotic hyper-
glycinaemia condition has been treated in a variety of 
ways, but none of them have worked [8].

According to Rees and colleagues in 2003, the spinal 
cord circuit is where the glycine receptor (GlyR) performs 
its most well-known function. They are often located in 
the spinal cord, help with synaptic transmission [9–11], 
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and are essential for both motor control and pain percep-
tion [12–14]. They first occur during the early stages of 
spinal cord development, and the growth of their subunit 
composition is controlled [15]. It’s interesting to note that 
GlyR has been demonstrated to influence the differen-
tiation of interneurons and synaptogenesis in the spinal 
cord [11].

The glycine cleavage system is made up of the gly-
cine decarboxylase gene, which codes for the P-protein, 
the amino methyltransferase gene, which codes for the 
T-protein, and the glycine cleavage system H-gene, which 
codes for the H-protein [16]. While people with variation 
NKH have changes in the genes that make up lipoate and 
its cofactor. In addition, the disruption of GlyRs activity 
results in disease of the brain.

In individuals with side epilepsy, alternative splice vari-
ants have been identified [17]. Additionally, a mutation in 
the gene encoding the amino methyltransferase enzyme 
(AMT), also known as the Glyr-2 subunit [18], is present 
in autistic patients and is a significant contributor to gly-
cine breakdown [19]. Five symmetrically organized subu-
nits of the trans-membrane protein complexes known as 
GlyRs are positioned around a central pore. So far, five 
kinds of GlyR subunits have been identified: four alphas 
and one beta [8, 20]. For some alpha subunits, alternate 
splicing can result in novel variants [21–24]. Alpha subu-
nits can produce homomeric or heteromeric receptors 
when they are coupled with the beta subunit [25, 26].

Glycine may be investigated as an amino acid that 
can aid COVID-19 patients reduce tissue damage and 
cytokine storm, according to Chuan Yuan Li., 2020 sug-
gestion [27]. Glycine protects cells from pyroptosis and 
the production of proinflammatory cytokines by bind-
ing to its receptor GlyR, inducing a chloride influx that 
results in cellular membrane hyperpolarization.

If glycine is successful in clinical trials, it can be given 
to COVID-19 patients everywhere in the globe right now.

Aetiology
Glycine builds up in the brain as a result of defects in the 
glycine cleavage pathway in NKH, an autosomal reces-
sive disorder, as was previously mentioned [28]. Glycine 
accumulation in the brain changes the MAPK signalling 
pathways, which injures neurons [29]. Glycine activates 
N-methyl-d-aspartate receptors in the cerebral hemi-
spheres and cerebellum, but it inhibits N-methyl-d-as-
partate receptors in the brainstem and spinal cord [30, 
31]. 5, 10-Methylenetetrahydrofolate, a byproduct of 
glycine hydrolysis, is also necessary for DNA synthesis. 
Since neural stem cell proliferation depends on the gly-
cine cleavage pathway, it is highly expressed throughout 
development [32].

In NKH, a wide range of neurological dysfunctions, 
including severe infant hypotonia, failure to thrive, 
minor mental impairment, and learning challenges. The 
most severe and frequent form of NKH is called a clas-
sic form, which is characterized by infant encephalopa-
thy, respiratory problems, and multifocal myoclonic 
convulsions. In those with classical NKH, GLDC gene 
mutations can occur in up to 75% of cases [33]. Less 
than 1% and 20% of instances of NKH, respectively, 
are caused by mutations in the GCSH and AMT genes 
[33, 34]. Medical symptoms are significantly influenced 
by the quantity of remaining glycine cleavage system 
hobby [28, 35]. The infantile shape typically includes 
seizures after 6 months of life.

Patients with late-onset NKH commonly show typical 
intellectual traits, along with spastic diplegia and optic 
atrophy [36]. The literature has also identified a transi-
tory form of NKH, in which biochemical and electroen-
cephalogram (EEG) abnormalities resolve by 2 months 
of age [37, 38]. In situations where the hepatic and cere-
bral glycine cleavage systems did not mature in a timely 
manner, full medical judgments are made. There have 
been reports of anatomical brain deformities, aberrant 
white matter signalling, and progressive brain atrophy. 
Patients that have NKH [39, 40]. The function of glycine 
in neural stem cells and synaptic transmission prolifer-
ation [41]. Callosal corpus, one of the characteristics of 
NCH-related deformities is dysgenesis. Involvement of 
the substantia Nigra, red nucleus, thalamus, deep grey 
matter nucleus, and ventral brainstem tract has also 
been reported.

Pathophysiology
A significant increase in glycine concentration in cer-
ebrospinal fluid was associated with NKH. It exhibits 
that glycine build-up in the brain is caused by a glycine 
cleavage device failure. A proportion of coronary artery 
disease (CAD) patients have been shown to have exces-
sive amounts of glycine in their brains [42, 43]. The 
GCS is a mitochondrial multi-enzyme complex found 
in the brain, liver, kidney, and testis that catalyses the 
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Fig. 1  Enzymatic reaction of GCS. Glycine breaks down into carbon 
dioxide, ammonia, and one carbon atom
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breakdown of glycine to carbon dioxide, ammonia, and 
one carbon unit [44], as shown in Fig. 1 [45].

Kure and colleagues in 2011 [46] say that GCS has four 
proteins: glycine dehydrogenase, amino methyltrans-
ferase, GCS H-protein, and dihydrolipoamide dehydroge-
nase which are encoded genes for each of these proteins, 
GLDC, AMT, GCSH, and DLD, respectively. The enzyme 
that is a part of other complex enzyme systems is called 
dihydrolipoamide dehydrogenase (DLD gene) (pyru-
vate dehydrogenases complex and the branched-chain 
ketoacid dehydrogenase complex).

Although NKH’s neurological impairment is assumed 
to be caused by a high glycine level in the brain, its exact 
pathophysiology is yet unknown. However, several stud-
ies have helped us understand the relationship between 
glycine and neuroexcitotoxicity. Glycine is now believed 
to act as an inhibitory neurotransmitter at a strychnine-
touchy receptor  [47–51]. According to Johnson and 
Ascher and colleagues in 1987 [52], the glutaminergic 
receptor N-methyl-d-aspartate (NMDA) is potentiated 
by the excitatory property of glycine.

Based on experimental findings with cultured mouse 
brain neurons, it has been determined that glycine 
increases NMDA-mediated responses at a location 
roughly connected to the NMDA receptor. The NMDA 
receptor possesses excitatory amino acid receptors that 
are hyperactive, according to McDonald and Johnston 
and colleagues in 1992  [53], which have been linked to 
the pathophysiology of neuronal damage in a number of 
neurological conditions such hypoxia, ischaemia, hyper-
glycinaemia, or physical brain trauma. Growing neuro-
physiological evidence is in favour of this.

Sato and colleagues in 1991 [54]  studied GCS studied 
rat brains utilizing P-protein antibody immunostaining, 
and discovered that the GCS was restricted to the astro-
cytes. The brain stem and spinal cord exhibited the least 
amount of astrocyte staining, whereas the hippocampus 
and cerebellar cortex had the most. In different parts of 
the brain, astrocyte staining varied. The fact that astro-
cytes in the CNS contain GCS indicates that glycine 
breakdown occurs mostly in these cells.

Because there is a link between the locations of the 
GCS and the NMDA receptors, it is seen that astro-
cytes of the GCS are associated with NMDA receptors. 
According to Tada K and colleagues in 1993  [55], the 
addition of glutamate causes the DNA chromosomal of 
the neurons to disintegrate into nucleosomal size DNA 
fragments, which results in glutamate-induced neuronal 
death (Fig.  2). Endonuclease inhibitors reduced DNA 
fragmentation and neuronal death, indicating that acti-
vating endonuclease is what causes DNA fragmenta-
tion. Instead of glutamate, this might cause an increase 
in intracellular Ca2 + concentration, which would then 

cause DNA fragmentation. The subcellular mechanism of 
neuroexcitotoxicity may thus be DNA fragmentation by 
glutamate, according to their studies.

Genetics
According to Irene Mademont-Soler and colleagues in 
2020 [56], a high concentration of glycine in the brain 
causes glycine encephalopathy, also known as glycine 
transporter 1 encephalopathy (GLYT1 encephalopathy). 
The protein GLYT1, which includes 14 exons, an inter-
cellular N- and C-terminal, as well as 12 trans-membrane 
domains, is encoded by SLC6A9, according to Rayan 
Alfallaj and colleagues in 2019 [16]. When two Na and Cl 
ions bind to glycine, GLYT1 activity, or glycine transport 
at glial cells, is stimulated. In each of their case studies 
including GLYT1, Rayan Alfallaj and colleagues in 2019 
[16] proposed an autosomal recessive inheritance pat-
tern. A homozygous missense mutation in the SLC6A9 
gene causes GLYT1, a deadly disease.

Diagnosis
Glycine encephalopathy, according to Rayan Alfallaj and 
colleagues in 2019 [16], and Kure and colleagues in 2011 
[46], can be diagnosed in neonates or babies who have 
seizures, muscle hypotonia, and lethargy that are not eas-
ily explained by an infection, trauma, hypoxia, or other 
frequent paediatric issues. Based on the clinical symp-
toms, high levels of glycine in the CSF (greater than 0.09), 
normal plasma, enzymes, and genetic tests for SLC6A9 
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Fig. 2  Pathophysiology of NKH
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mutations. Less than 0.04 is seen in both normal and 
ketotic-hyperglycinaemia. GE is characterized by an EEG 
finding of a burst suppression pattern during the first 
month of life.

The 13C glycine breath test and the multiplex liga-
tion-dependent probe amplification (MLPA) are the two 
methods for the identification of significant deletions in 
DLD which were introduced by Kure and colleagues in 
2011 [46] as a result of recent reports on improvements 
in GE diagnosis. Both approaches would make it easier 
for patients with hyperglycinaemia to confirm the diag-
nosis of GE.

Treatment
Only supportive care is now provided as a treatment for 
the illness. The therapy of GLYT1 involves the involve-
ment of paediatricians, neurologists, geneticists, genetic 
counsellors, dietitians, physiotherapists, occupational 
therapists, and orthopaedic surgeons. Children with gly-
cine transporter 1 encephalopathy (GLYT1) are at risk 
for aspiration, malnutrition, and stunting because of 
issues with stomach incoordination and swallowing. A 
feeding tube, such as a gastrostomy tube, may be a suc-
cessful therapy for many patients in order to guarantee 
that they consume enough calories and prevent recurrent 
aspirations. It’s also a good idea to get your hearing and 
eyesight checked often. Last but not least, it is essential 
to consult orthopaedic surgeons, physiotherapists, and 
occupational therapists on a regular basis [46].

Conclusion
NKH, also known as GE, inherited neurotransmitter dis-
eases that are a subset of rare neurometabolic disorders 
characterized by hereditary deficiencies in neurotrans-
mitter metabolism or transport on GCS. There is no 
cure for NKH or GE; it is treated in the neonatal stage 
by paediatricians, surgeons, neurologists, and geneticists. 
Glycine deficiency in the brain causes neuronal dam-
age by altering MAPK signalling pathways, resulting in 
increased NMDA receptor activation and intracellular Ca 
buildup, as well as cell death in the neuron area due to 
DNA fragmentation. GE can be diagnosed using MLPA 
and 13C glycine breath testing, in addition to the previ-
ously mentioned clinical diagnosis.
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