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Abstract

Understanding the relationship between protein structure and experimental data is crucial for 

utilizing experiments to solve biochemical problems and optimizing the use of sparse experimental 

data for structural interpretation. Tandem mass spectrometry (MS/MS) can be used with a variety 

of methods to collect structural data for proteins. One example is surface-induced dissociation 

(SID), which is used to break apart protein complexes (via a surface collision) into intact 

subcomplexes and can be performed at multiple laboratory frame SID collision energies. These 

energy-resolved tandem MS/MS experiments have shown that the profile of the breakages depends 

on the acceleration energy of the collision. It is possible to extract an appearance energy (AE) 

from energy-resolved mass spectrometry (ERMS) data, which shows the relative intensity of each 

type of subcomplex as a function of SID acceleration energy. We previously determined that these 

AE values for specific interfaces correlated with structural features related to interface strength. 

In this study, we further examined the structural relationships by developing a method to predict 

the full ERMS plot from structure, rather than extracting a single value. First, we noted that 

for proteins with multiple interface types, we could reproduce the correct shapes of breakdown 

curves, further confirming previous structural hypotheses. Next, we demonstrated that interface 

size and energy density (measured using Rosetta) correlated with data derived from the ERMS 

plot (R2 = 0.71). Furthermore, based on this trend, we used native crystal structures to predict 

ERMS. The majority of predictions resulted in good agreement, and the average root-mean-square 

error (RMSE) was 0.20 for the 20 complexes in our dataset. We also show that if additional 

information on cleavage as a function of collision energy could be obtained, the accuracy of 

predictions improved further. Finally, we demonstrated that ERMS prediction results were better 
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for the native than for inaccurate models in 17/20 cases. An application to run this simulation has 

been developed in Rosetta, which is freely available for use.

Graphical Abstract

Introduction

Data from tandem mass spectrometry (MS/MS) experiments increasingly provides valuable 

structural information for proteins and protein complexes. An assortment of different 

techniques can be used to measure various types of structural information.1-5 For example, 

ion mobility (IM) can provide information on size and shape,6-8 chemical cross-linking (XL) 

can provide information on residue distances and contacts,9-11 and covalent labeling can 

provide information on solvent accessibility and flexibility of residues.12-16 The resulting 

structural information can then be used to better understand the roles of the specific proteins 

in biological processes. These sparse data have also been combined with computational 

modeling methods17, 18 to improve the accuracy of structural predictions.19-29

Surface-induced dissociation (SID) is an ion activation method that provides information on 

the native structure of protein complexes, in the form of mass-to-charge (m/z) measurements 

of subcomplexes.30-34 After soft ionization (using nanoelectrospray ionization, which allows 

the protein to largely retain a native-like structure despite gas phase conditions35-37), 

complexes are intentionally collided with a surface at hyperthermal energies. When this 

process occurs, the majority of the collision energy is converted to internal energy, 

cleaving the non-covalent protein-protein interfaces and breaking the complex into various 

subcomplexes. The relative intensities of these resulting subcomplex types are measured 

using MS/MS. The experiment is then repeated at multiple acceleration energies to measure 

a profile of interface cleavage. The results of these experiments, energy-resolved mass 

spectrometry (ERMS) data are often plotted as ERMS plots, which show the relative 

intensity of each resulting subcomplex type as a function of the acceleration energy towards 

the surface. From these data, complex stoichiometry and connectivity can be pieced together 

as interfaces break.33 We have also demonstrated previously that these data can measure 

the relative strengths of specific protein-protein interfaces.38 We hypothesized that weaker 

interfaces would break at lower acceleration energies, while stronger interfaces would 

require more energy to break. Previously, we quantified this for a subset of the interfaces in 

each protein complex. This metric was the appearance energy (AE), which was defined as 
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the acceleration energy when the resulting subcomplexes (after the breakage of the interface) 

reached 10% of the relative intensity. Using this metric, we showed that (i) structural 

features measuring interface strength correlated with the AE values, (ii) the AE could be 

reliably predicted from the structure of a specific interface, and (iii) that this information 

was beneficial in scoring output structures from protein-protein docking experiments, which 

would then be used to accurately predict the structure of a complex.39, 40 Though this work 

showed promising results, one downside was the extraction of only one AE value for a given 

interface, disregarding much of the information contained in the ERMS data.

In this work, we extend our modelling efforts to utilize the entire information contained 

within the SID ERMS data. We developed a method to predict full ERMS data from 

complex structure. The application to run this simulation in Rosetta is freely available for 

use (see Supporting Information for more information). We first noted that for proteins 

with multiple different interfaces, we could reproduce the correct shapes of ERMS plots, 

providing further corroboration that interface strength indeed determines the shape of these 

curves. We then demonstrated that interface size and energy density (measured using 

Rosetta) strongly correlated with interface strengths derived from the ERMS data. We 

subsequently used this correlation to model the breakages and predict the distributions. Of 

the 20 complexes tested, the majority produced accurate results using the native structures 

as input. Finally, we showed, by performing a simple docking study, that our method was 

sensitive to structural accuracy, where non-nativelike models had predicted ERMS that were 

poorer fits to experimental curves than those of native structures.

Methods

The method described in this section was developed to simulate interface breakage that 

occurs during SID and predict energy-resolved mass spectrometry (ERMS) data. Notably, 

we do not simulate the dynamics of SID at the molecular level, but rather simply predict 

abundances of products after the collision, as will be discussed further. ERMS plots show 

the relative intensity of each type of subcomplex (and precursor) as a function of the SID 

acceleration energy. The method is based on simulating breakages for each interface using 

a probability function that depends on the interface strength (structural features) and the 

acceleration energy. The simulation method uses the probability function for each type of 

interface within a complex and the ERMS plot is predicted using the method described 

below.

Probability function

The probability function used for each interface is shown in Equation 1. This function 

defines the probability that an interface breaks (Pb) based on the interface strength (B, 

midpoint of the curve) and acceleration energy (X). At the midpoint, there is a 50% 

probability for the interface to break. We chose a fade function where the probability 

increases as acceleration energy increases based on the observed shapes of the SID ERMS 

plots. Examples of this function (A = 0.0025 eV−1, B = 2000 eV and A = 0.0150 eV−1, 

B = 2000 eV) are shown in Figure S1. The midpoint of the function (B) can shift in 

either direction to accommodate for differences in interface strengths. For example, a higher 
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B would indicate a stronger interface, that requires more energy to break, and thus the 

probability curve is shifted to the right. The function also has a steepness parameter that 

has been set to slightly different values depending on the conditions (A, described in detail 

later in the methods). This steepness determines the sharpness or softness of the breakage 

threshold. Methodology for obtaining the parameters A and B for each simulation will be 

described in the following sections.

Pb = 1 − 1
1 + eA(X − B) (1)

Simulation process

After probability functions are assigned for each interface in the complex (defined based on 

the complex oligomeric state and symmetry), the following simulation process is performed 

for each acceleration energy on the ERMS plot x-axis as shown in Figure 1 and described 

here. At each acceleration energy, the breakage probability is extracted from the function 

(Equation 1). Next, the breakage (or lack thereof) of each interface is simulated based on 

these probabilities (using a random number generator). Based on the remaining connectivity, 

the resulting subcomplexes are enumerated. This process of simulating the breakage is 

repeated 1000 times and the frequencies of observed subcomplexes are averaged and the 

values of each subcomplex type are normalized, such that they sum to 1. The process 

is repeated for each acceleration energy. Breakage is allowed to occur only when the 

acceleration energy exceeds zero, i.e., at x = 0, the precursor is set to intensity of one and the 

remaining subcomplexes set to zero. The results of this process provide the data needed to 

construct the predicted ERMS plot (relative intensity of each subcomplex type as a function 

of acceleration energy).

While simulations can be performed from structure directly, additional information may 

be provided to improve the predictions, if available. If SID experiments were performed 

to determine the acceleration energy where breakage of the precursor begins to occur, 

predictions can be improved further. Rather than starting breakage after zero, the breakage is 

then started after the breakage cutoff (defined as highest acceleration energy with less than 

95% precursor).

Benchmark set

The benchmark set used in this study primarily contains proteins with ERMS data 

published previously.38 These proteins include triose phosphate isomerase (8TIM), 

streptavidin (1SWB), neutravidin (1AVE), pyruvate kinase (1AQF), concanavalin A (1JBC), 

transthyretin (5HJG), D-sialic acid aldolase (6ALD), hemoglobin (1GZX), tryptophan 

synthetase (1WBJ), cholera toxin B (1FGB), C-reactive protein (1GNH), serum amyloid P 

(1SAC), beta-lactoglobulin (6QI6), lysozyme (4R0F), and enolase (1E9I). A few additional 

proteins were also included in the dataset:41, 42 IspD (1VGT), Can (1T75), DeoC (1KTN), 

Upp (2EHJ), and HFq (1HK9). In all cases experiments were performed on a Waters Synapt 

G2 or G2s mass spectrometer, operated in mobility mode. Protein complexes were prepared 

for spray under charge-reducing conditions.43 In total, the dataset contained 6 homodimers 
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(C2 symmetry), 8 homotetramers (D2 symmetry), 2 heterotetramers (one with D2 symmetry, 

one with C2 symmetry), 3 homopentamers (C5 symmetry), and 1 homohexamer (C6 

symmetry). The complex types and connectivities are shown for each complex in Table 

S1. The PDB structures were first relaxed in Rosetta using the REF2015 scoring function.44 

Next, interface properties were calculated using Rosetta InterfaceAnalyzer45 for each type 

of interface in each complex (in some complexes, multiple interfaces are symmetric and 

thus equivalent). From this calculation, interface surface area (dSASA_int) and energy per 

interface residue (per_residue_energy_int) were extracted for use in determining breakage 

probabilities as described in the following section.

For each of the experimental ERMS data individually, optimal values of B (midpoint 

of probability curve) were determined to maximize agreement between predicted and 

experimental data. These values were then used to observe a correlation between 

experimental data (optimal B from ERMS) and structure (interface features). The metric 

used to quantify agreement between predicted and experimental ERMS data was root-mean-

square error (RMSE), which was calculated based on the relative intensity difference at each 

value of acceleration energy over each subcomplex type.

Determination of probability midpoint (B)

As mentioned previously, the inputs to the ERMS simulation algorithm are probability 

curves for each interface. These probability curves are modulated based on interface strength 

using the midpoint of the fade function (B, stronger interface corresponds to higher B). 

The B values were determined based on the observed correlation between the following 

interface features: interface surface area (SA [dSASA_int], positive correlation) and energy 

per interface residue (PRE [per_residue_energy_int], negative correlation). The function to 

determine B from interface structure is provided in Equation 2. The values of the weights for 

both options (without and with knowledge of breakage cutoff) are provided in Table S2. To 

determine the optimal weights, we used the Python simplex algorithm (minimizing χ2) and 

linear regression.46

B = wSA ∗ SA + wPREPRE + wint (2)

Determination of probability steepness (A)

For the majority of systems, the steepness (A) of the probability curve was set to the 

following values: A = 0.0025 eV−1 without breakage cutoff, A = 0.0020 eV−1 with breakage 

cutoff. However, for dimers with particularly rigid subunits, the steepness was set to a higher 

value to account for the sharper observed slopes of the ERMS plots. The higher steepness 

(A = 0.0150 eV−1 with and without breakage cutoff) was used for all dimers that had 

intrasubunit disulfide bonds.

Results and Discussion

Here, we describe a method to simulate energy-resolved mass spectrometry (ERMS) data 

from SID-MS/MS experiments for protein complexes with a variety of oligomeric states 

(predict the data, not to physically simulate at the molecular level). ERMS plots show the 
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relative intensity of each subcomplex type after SID as a function of the acceleration energy. 

We observed correlations between experimental data and interface structure. Based on the 

strength of each interface (as measured by size and Rosetta energy), a probability curve 

was constructed using a fade function to define the probability of breaking each interface 

as a function of acceleration energy (see Figure S1 for examples). Using this probability 

curve for each interface, breakages were simulated for 1000 complexes at each acceleration 

energy. The resulting averaged, normalized data were then used to construct the predicted 

ERMS plot and compared to experimental results for a dataset containing dimers, tetramers, 

pentamers, and hexamers (see Table S1). All systems are referred to by the PDB ID in Table 

S1 and given in the methods.

SID dissociation competition pathways for tetramers match predictions from structure

Based on the design of our simulation algorithm, proteins that exhibited one unique type 

of interface between exactly two subunits (C2 dimers, C5 pentamers, and C6 hexamers) 

produced ERMS plots with similar shapes, but varying strengths (shifts in acceleration 

energies). However, for the tetramers, there were multiple different types of interfaces 

(three types each for nine D2 tetramers and two types for 1WBJ, a linear C2 tetramer). 

For this reason, multiple shapes for the ERMS plots were observable, depending on the 

relative probability curve midpoint (B) values of the respective interfaces. We previously 

discussed the experimental tetramer SID breakage patterns and their qualitative relationship 

to structure for the D2 tetramers,38 but we will revisit the discussion in the context of 

predicting ERMS data here.

As tetramers break into subcomplexes, there is the possibility of competition between the 

pathway that forms two dimers and the pathway that forms one monomer and one trimer. 

Thus, the experimental ERMS plots can be roughly classified as dimer-dimer, competitive 

(i.e., both pathways occur significantly at the same energies), or monomer-trimer, as shown 

in Figure 2A, 2B, and 2C, respectively. In previous work,38 we noted that dimer-dimer 

ERMS plots were likely to result from tetramers with a single dominant interface (in terms 

of size, i.e., a dimer of dimers) and that monomer-trimer ERMS plots were likely to come 

from tetramers with relatively even interface sizes. Table S3 (first three columns) shows 

the structural prediction (based on the relative interface strengths as outlined above) and 

the actual ERMS shape. Except for one (6ALD), all cases either agree or almost agree 

(a competitive pathway is involved, at least at higher energies). Based on this previous 

observation, we sought to test whether the relationship between relative interface strength 

and ERMS breakdown pathway could be reproduced using the simulation method described 

here. To test this, we predicted ERMS data under the following conditions: one strong 

interface (dimer-dimer expected), relatively even interfaces (monomer-trimer expected), and 

somewhere in between (competitive expected). As predicted, setting B values to match 

these conditions (B=1200, −750, 250 eV; B=750, 500, −250 eV; B=750, 750, 750 eV, 

respectively) produced ERMS plots with these three relative shapes, as shown in Figure 

2D, 2E, and 2F. While the hypothesized ratios of interface strengths could reproduce the 

observed shapes relatively well, the monomer-trimer shape of the prediction exhibited 

a pathway that appeared to be shaped more similar to dimer-dimer than experimentally 

observed for many complexes (Figure 2F). However, based on the methodology, this can 
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be understood. If all interfaces were even, then monomer-trimer was more likely than 

dimer-dimer (3 interfaces breaking compared to 4, all with equal probability, ex: A_B, A_C, 

and A_D versus A_D, A_C, B_C, and B_D), however dimer-dimer is still likely to occur 

for a fraction of complexes in the simulation. Despite these understood discrepancies, using 

relatively even interfaces was best able to reproduce the monomer-trimer shape.

While the previous discussion relates to the D2 tetramers, we also tested a linear, C2 

tetramer (1WBJ, see Table S1 for connectivity diagram). In this case, if the outer interface 

is weaker, then monomer-trimer is expected and if the inner interface is weaker, dimer-dimer 

is expected. The experimental ERMS plot showed a slight preference for monomer-trimer 

(within the pathway competition). Based on this, the prediction would be that the outer 

interface was slightly weaker than the inner, but on the same order of strength. This expected 

observation matched the calculated interface areas remarkably well: 2961 Å and 3615 Å, 

respectively. Similar to the D2 tetramers, the shapes of the different observed pathways 

could be constructed based on the hypothesized relative interface strengths (outer interface 

stronger: dimer-dimer, inner interface stronger: monomer-trimer, relatively even strength: 

competitive) using the simulation method (data not shown).

Structural features relating to interface strength correlate with experimental data

To (i) examine correlations between structure and experimental data and (ii) develop an 

approach to predict ERMS from structure, we first determined the optimal values of the 

probability curve midpoint (the optimal B value) that would most closely reproduce the 

experimental ERMS data (without yet taking structure into account). For the majority of 

proteins in the dataset, a constant value of the probability steepness (A) was used. However, 

to account for the observed steeper slopes in the ERMS plots for dimers with particularly 

rigid subunits, a higher value of A was used in these cases (defined as dimers with at 

least one intrasubunit disulfide bond). For dimers with more rigid subunits, less energy 

is redistributed into unfolding the subunits after the SID collision. For this reason, the 

dissociation (from dimer to monomers) occurs closer to an “all or nothing” pathway once 

the acceleration energy reaches a certain threshold, i.e., either breaks close to completely 

or little at all. On the other hand, less rigid dimers undergo a more gradual dissociation 

(with respect to the increasing acceleration energy). In the dataset, two proteins met this 

criterion for a larger A value (4R0F and 6QI6). An example comparison of the effect of 

these different steepnesses on the probability curve is shown in Figure S1. The curve with 

larger steepness has a smaller range of acceleration energies that produces a probability of 

breaking in the ~0.2-0.8 range. This same phenomenon was not observed for complexes 

larger than dimers. We hypothesize that this was due to the larger number of degrees of 

freedom for the larger complexes. Because they have more possible avenues to redistribute 

energy, the rigidity might play less of a role in breakage slope.

We hypothesized that interfaces with higher optimal B values (a value extracted from 

experimental data) would have stronger structural features, i.e., larger interface area, more 

favorable energy, etc. To test this, we calculated interface features using the relaxed crystal 

structures for the complexes in our dataset. As noted in the previous section and in 

previous work,38 relative interface size between different interfaces correlated with the 
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shapes of the tetramer ERMS plots (see first 3 columns of Table S3: structure class, 

experimental class, and prediction class). Here, we examined the correlations between 

optimal B (experimental) and interface features, as shown in Figure 3. Panels A and B 

of Figure 3 show correlations between interface surface area (SA) and per residue energy 

of interface (PRE), respectively, with the optimal B. The observed correlations matched the 

expected trends. Larger interfaces tended to have higher optimal B values (R2 = 0.64), i.e., 

dissociate at higher acceleration energies. Stronger interfaces (lower PRE) tended to also 

have higher optimal B values (R2 = 0.41). These data demonstrate that (i) the entire ERMS 

data correlate with structural features of protein-protein interfaces (rather than just “onset” 

appearance energy) and (ii) that the previously qualitatively observed phenomenon regarding 

interface sizes and tetramer shape can be generalized quantitatively.

ERMS data can be reliably predicted from structure

To use these correlations in the prediction method (i.e., to predict ERMS data from 

structure), we used a combination of the SA and PRE to determine the B input for the 

simulation. The correlation between predicted B and optimal B value is shown in Figure 

3C (corresponding to Equation 2) and had an R2 value of 0.71. The resulting ERMS plot 

predictions are shown in Figure 4 and S2. Overall, the average RMSE was 0.20 (median of 

0.18) with only three cases of root-mean-square error (RMSE) greater than 0.30, indicating 

good agreement with the experimental data for most of the 20 benchmark cases. The 

breakdown of average RMSE of the different complex types is the following for dimers, 

tetramers, pentamers, and hexamer, respectively: 0.26, 0.18, 0.19, and 0.12.

The dimer results varied the most. The best RMSE of 0.06 was observed for PDB ID 

1KTN, while the two worst predictions were for 8TIM and 6QI6, with RMSE values of 

0.36 and 0.53 respectively. Of the six dimers in the dataset, two had RMSE less than 0.2, 

two had RMSE greater than 0.2 and less than 0.3, and two had RMSE greater than 0.3. 

This variability for dimers can be explained by the need to predict the single B value very 

accurately to match the experimental ERMS plot, while the other complex types were more 

forgiving. The pentamers and hexamers were all at least moderately accurate (RMSE < 0.30 

for all). For the tetramers, we additionally examined the shapes of the predicted ERMS 

plots, as discussed previously. Though the RMSE was poor for a couple cases (1AQF: 

RMSE = 0.29 and 1T75: RMSE = 0.31), in every case, the RMSE was low and/or the 

shape matched the experimental shape (dimer-dimer vs. monomer-trimer vs. competitive), 

as shown in Table S3. There were three cases where a competitive ERMS was predicted 

for a dimer-dimer or monomer-trimer (1GZX: RMSE = 0.12, 2EHJ: RMSE = 0.20, and 

6ALD: RMSE = 0.19), however, the RMSEs were still low (indicating the general breakage 

occurring at acceleration energies near the actual).

Furthermore, when comparing the accuracy of each subcomplex type over all the 

predictions, the monomer curves were typically the most inaccurate. This is likely due the 

monomers having the most variability in the experimental curves, where they can vary from 

0 up to almost 1 in many cases. This is likely due to the fact that monomers can be produced 

from secondary cleavage in addition to primary. This phenomenon is further emphasized 

when comparing the monomer experimental curves to trimers (which are typically low 
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intensity and stable regardless of acceleration energy and predictions are very accurate). 

The average RMSE values for the monomers, dimers, trimers, tetramers, pentamers, and 

hexamers were 0.26, 0.20, 0.08, 0.11, 0.14, and 0.15, respectively.

Improved accuracy for ERMS data prediction with additional information

While we demonstrated in the previous section that SID ERMS data can be predicted 

directly from structure, additional information can also be included in the predictions to 

improve the results further. In the previously described method, simulated breakage occurs 

immediately at acceleration energies greater than 0 eV. However, for some cases, the 

experimental ERMS plots reveal that the complexes do not start to break until they reach 

slightly larger energies. For example, in the predicted ERMS plot for 1SAC in Figure 4 

(solid line), breakage occurs immediately after 0 eV. However, in the experimental ERMS 

plot (dotted line), breakage is only observed for acceleration energies higher than 360 

eV. If that specific energy where breakage begins is known (via an experiment), then 

the simulations can be adjusted to begin breakage at that point. The breakage cutoff was 

defined as the maximum observed acceleration energy with at least 95% precursor (ex: 

breakage cutoff = 360 eV for 1SAC). Including this additional information improved the 

predictions, as will be described further. However, we also sought to explore the origin of 

these breakage cutoffs and whether they correlated with structure. The extracted breakage 

cutoffs did weakly correlate with structural features of the protein complexes such as total 

number of residues, number of residues per chain, SA of largest interface, and Rosetta 

∆G of the strongest interface, as shown in Figure S3. This generally indicates that larger 

complexes and complexes with larger or stronger interfaces tend to only begin breaking 

at higher SID acceleration energies, which are correlated with ion activation energies. 

This is consistent with RRKM (Rice–Ramsperger–Kassel–Marcus) theory (kinetic theory 

of fragmentation by mass spectrometry), which shows that fragmentation will only occur 

once the pathway-dependent activation energy for a given fragmentation reaction has been 

exceeded to allow fragmentation at a particular rate, which is determined by the instrument 

time frame. The excess energy that is required to drive a fragmentation reaction with an 

instrument-dependent rate is called the kinetic shift. Thus, overall, the reaction rate depends 

on the activation energy and the kinetic shift. Fragmentation kinetics are determined by 

the activation free energy (ΔG#), i.e., barrier height and not the equilibrium thermodynamic 

value of ΔG. We did not calculate the microstates above the barrier (transition state, TS) 

to determine (or, at least, estimate) the kinetic shift. As Beynon and Gilbert noted,49 

at high (internal) energies and for large molecules this procedure becomes increasingly 

impracticable (see, page 43 in 49). Our approach is somewhat related to Cooks’ kinetic 

method in that dissociation trends are used to determine thermodynamic parameters.50 

Generally speaking, the larger the size of the protein complex the larger and stronger 

the interface area, which drives the correlation between the experimentally observed 

fragmentation efficiency and laboratory SID energy (see curves in Figure 4). Lastly, we 

note that the Prell group recently showed that the conversion of lab frame SID collision 

energy likely increases in efficiency with ion size.51 We do not have direct evidence 

for T–V transfer as a function of protein complex size and, especially, about the kinetic 

shift. Furthermore, we previously showed that interface features (similar to the features 

used in this work) correlated much better than overall size with SID dissociation.38 Thus, 
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Prell’s results (albeit important for unfolding protein ions) have no direct influence on our 

interpretation.

When including the breakage cutoff, the ERMS predictions improved notably overall, as 

shown in Figure S4. Note that different parameters were used for these simulations based 

on the observed correlations (the R2 value between predicted and optimal B also improved 

slightly to 0.72). The average RMSE of these predictions was 0.17 (median of 0.15) with 

only two cases of RMSE greater than 0.30, indicating good agreement with the experimental 

data for all but a few cases. The breakdown of average RMSE of the different complex types 

was the following for dimers, tetramers, pentamers, and hexamer, respectively: 0.20, 0.17, 

0.16, and 0.13. Overall, 16/20 cases improved with the additional information and different 

weights, though the average RMSE difference between the original and new values for the 

other 4/20 was only 0.01. The average improvement in RMSE for the remaining 16 was 

0.04. While the data suggest that the additional information can be beneficial, the prediction 

method from structure alone was nearly as accurate.

ERMS predictions using native protein models were more accurate than for those from 
non-native structures

As the ERMS prediction method was developed to accurately predict ERMS data for relaxed 

native structures, we hypothesized that prediction results would be inferior for inaccurate 

structures (which have high RMSD to the native structure). To test this hypothesis, we 

performed simple docking simulations (see Supporting Information for details) that allowed 

for the generation of high RMSD protein complex models. A set of 25 models with RMSD 

in the range of 15-30 Å were chosen. To curate this set, we specifically chose structures 

that also had favorable Rosetta interface scores (independent of structural accuracy). These 

structures were then used to predict ERMS data using the method developed in this work 

(without including breakage cutoff information). In this experiment, we found that the 

average RMSE of the incorrect structures (comparing ERMS prediction to experimental 

ERMS) was worse than that of the native for 17/20 cases, the same for 1/20 cases, and 

better for only 2/20 cases (which were both already inaccurate for the native structures, 

RMSE > 0.35), as shown in Table S4. These results indicated that inaccurate models with 

favorable interface scores (meaning that they could possibly be in competition with low 

RMSD models when ranking in a blind test) matched the experimental data significantly 

worse than natives when using our ERMS prediction method.

Conclusions

We have developed a method to predict ERMS distributions for SID experiments from 

the structures of protein complexes. Based on the interface strengths in a complex, the 

computational method simulates breakages based on a probability curve that was able 

to reproduce the shape of the experimental curves. Using this method, ERMS data 

were reliably predicted (average RMSE of 0.20), and for cases with multiple competing 

dissociation pathways, the correct pathway was typically predicted. We also demonstrated 

that there is a correlation between structural features of all protein-protein interfaces in a 

complex and the entire ERMS plot. Next, we showed that the prediction results can be 

Seffernick et al. Page 10

Anal Chem. Author manuscript; available in PMC 2023 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



improved further if the acceleration energies where the complex begins to break apart are 

known, though the method was accurate for most cases without this additional information. 

Finally, based on a simple docking study, it was observed that incorrect structures with 

favorable scores predicted worse ERMS data than native structures using the same method.

This novel algorithm for predicting full SID ERMS data from structure represents a 

significant improvement from previous modeling efforts. This method allows us to model 

entire ERMS data, rather than a single appearance energy, as was the focus of previous 

work. The prediction method has been developed as a Rosetta application, which is freely 

available for use. The application can handle any structure with arbitrary connectivity, but 

has been benchmarked against some relatively simple complex stoichiometries here. A 

tutorial can be found in the Supporting Information. The ERMS prediction results obtained 

with high RMSD models showed that inaccurate structures which Rosetta flags as favorable 

can be identified to be unfavorable based on SID ERMS prediction. This preliminary 

study demonstrated the potential of our method in SID-guided protein complex prediction 

in future work to assist in scoring. Future work will focus on incorporating the ERMS 

prediction algorithm to guide complex modeling methods. This method could be applicable 

to any complex where multiple potential structures can be generated computationally (e.g. 

by symmetric docking or other), benefitting model selection. Furthermore, because SID 

provides information on interface strength, integrative modeling could be performed with 

additional types of MS data providing different structural information, such as overall size/

shape from ion mobility21 and buried/exposed residues from covalent labeling.52

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Flowchart describing the ERMS plot simulation process.
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Figure 2: 
(A-C) Examples of experimental ERMS plots for tetramers of the three possible pathways: 

dimer-dimer (1SWB), competitive (5HJG), and monomer-trimer (2EHJ), respectively. (D-F) 

Examples of predicted ERMS plots with the corresponding hypothesized relative interface 

strengths for the three pathways.
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Figure 3: 
Correlations between structural features and experimental data for all interfaces. (A) and (B) 

show correlation between surface area (SA) and Rosetta per-residue interface energy (PRE), 

respectively, with the optimal B values from the experimental data (Bopt). (C) shows the 

predicted B value (Bpred) used in the simulations calculated using Equation 2. Blue points 

are tetramer interfaces and orange points are non-tetramer interfaces (dimer, pentamer, or 

hexamer).
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Figure 4: 
Predicted ERMS plots for select complexes (remaining shown in Figure S2). The following 

complexes shown here by PDB ID: 1KTN, 4R0F, 1VGT, 1SWB, 1AQF, 1T75, 1SAC, 

1FGB, 1GNH, 1HK9, 1GZX, and 1WBJ. Solid line: prediction, dotted line: experimental 

ERMS.
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