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Abstract

Knowledge of protein structure is crucial to our understanding of biological function and is 

routinely used in drug discovery. High-resolution techniques to determine the three-dimensional 

atomic coordinates of proteins are available. However, such methods are frequently limited 

by experimental challenges such as sample quantity, target size, and efficiency. Structural 

mass spectrometry (MS) is a technique in which structural features of proteins are elucidated 

quickly and relatively easily. Computational techniques that convert sparse MS data into protein 

models that demonstrate agreement with the data are needed. This review features cutting-edge 

computational methods that predict protein structure from MS data such as chemical cross-linking, 

hydrogen-deuterium exchange, hydroxyl radical protein footprinting, limited proteolysis, ion 

mobility, and surface-induced dissociation. Additionally, we address future directions for protein 

structure prediction with sparse MS data.
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Introduction

Proteins are involved in nearly every life process, making them important subjects for 

studying the molecular basis of disease. Additionally, protein structures can be harnessed 

for structure-based drug discovery with existing and designed drug-like molecules (1). 

However, a disparity currently exists between the number of known protein sequences and 

the number of determined structures. Methodologies to elucidate protein structure are vital 

to our understanding of molecular biology and for continued use in drug discovery.

Multiple experimental techniques exist to determine high-resolution protein structure. X-ray 

crystallography is a popular method in which a high concentration of a protein target 

is crystalized. Then, the crystals are struck with an X-ray beam in order to elucidate a 

diffraction pattern from which atomic protein coordinates can be determined (2). While 

powerful, crystallography is rate-limited by the crystallization process, as ascertaining 

experimental conditions ideal for crystal growth can be a tedious if not impossible process. 
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X-ray crystallography has historically been more successful for ordered and monomeric 

proteins. Nuclear magnetic resonance (NMR) spectroscopy is another high-resolution 

technique. It utilizes the chemical shifts of protein atoms for structure determination (3). 

It is in most cases limited to smaller proteins in order to avoid overlapping peaks. Cryo-

electron microscopy (cryo-EM) has recently emerged as a promising structure determination 

technique that can elucidate larger, more complex proteins while bypassing the need for 

crystallization, probing the protein more physiological conditions (4). However, further 

optimization of cryo-EM methodologies is required to consistently determine higher 

resolution density maps.

Due to the limitations of above techniques, many proteins or protein complexes currently 

evade high-resolution structure determination. Thus, additional experimental methods are 

needed to provide insight into structural features. Structural mass spectrometry (MS) is 

a powerful complementary approach that can overcome limitations of above-mentioned 

methods with its high sensitivity, theoretically unlimited size constraint, and speed. 

Although the data provided by MS are too sparse for full high-resolution structure 

elucidation, structural MS can be used to examine size, solvent accessibility, and 

topography of proteins (5-7). Several MS techniques exist that can elucidate elements 

of protein tertiary and quaternary structure, including chemical cross-linking (XL-MS) 

(8; 9), hydrogen-deuterium exchange (HDX-MS) (10), covalent labeling (CL-MS) (11; 

12), limited proteolysis (13), ion mobility (IM-MS) (14), and surface-induced dissociation 

(SID-MS) (15), reviewed here (Figure 1). In chemical cross-linking, residue modifications 

provide insight into spatial proximity of modified residues. HDX-MS, CL-MS, and limited 

proteolysis data are used to infer residue solvent exposure. IM-MS data reveal information 

about the size and shape of proteins, while SID-MS is used to analyze protein complex 

connectivity and stoichiometry. Sparse experimental data from structural mass spectrometry 

generally must be interpreted in combination with computational methods to elucidate 

protein structure.

Computational methods have increasingly been employed to complement experimental 

techniques in order to elucidate protein structures (16; 17). As experimental data becomes 

more readily available, software packages can be employed to combine sparse data with 

advanced structure sampling and scoring techniques. A number of computational tools 

currently exist for protein structure modeling, including the Rosetta software suite (17; 

18), I-TASSER (19), Phyre2 (20), Integrative Modeling Platform (IMP) (21), HADDOCK 

(22), and MODELLER (23). Sparse experimental data can be implemented during the 

computational modeling process or used as a filter during post model generation analysis. 

Here, we will be highlighting work that combines computational efforts for protein 

structure examination with sparse experimental data from MS. We will be discussing work 

that incorporates XL-MS, HDX-MS, CL-MS, limited proteolysis, IM-MS, and SID-MS 

experimental data into computational modeling.

Chemical cross-linking

Chemical cross-linking (XL) utilizes reagents to chemically link two amino acids, 

particularly the side chain atoms within lysine residues, in order to assess proximity 
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within a protein or within protein complexes (9). After digestion and separation via 

liquid chromatography, crosslinks can be identified via tandem MS. XL-MS experiments 

provide insight into protein structure. Residues that are distant to one another in amino 

acid sequence can be identified as being within spatial proximity. Interactions between 

protein complex subunits can also be inferred by residues that are identified as crosslinked. 

Only residues that are solvent exposed should be modified by a crosslinking reagent. As 

such, the crosslinking agent can give insight into proximity between surface residues, 

from which contact information can further be derived with computational methods that 

utilize XL-MS data. XL-MS efforts have been incorporated into the Critical Assessment of 

protein Structure Prediction (CASP) challenges to integrate high-density XL-MS data into 

prediction methods (24).

Kahraman and coworkers developed methodologies for applying crosslinking data to 

homology modeling, de novo modeling, and protein-protein docking (25). A database, 

XLdb, was also assembled which contained XL-MS data for individual proteins and protein 

complexes along with the corresponding protein data bank entries, providing a source of 

accessible data for the mass spectrometry and computational communities. Building on an 

earlier publication in which X-walk, a program that determines the shortest distance between 

crosslinked amino acids within solvent accessible regions (26), was established, distance 

restraints determined from XL-MS data were implemented into the Rosetta scoring function. 

The Rosetta functionality penalized models that conflicted with the experimental data. For 

instance, models with residues participating in a cross-link that were spatially farther apart 

than the spacer length of the crosslinker received a penalty. The distance restraints were 

also applied as filters to examine existing models. Overall, it was found that usage of the 

crosslinking distance restraints improved the RMSD of the top scoring models and improved 

protein-protein docking (Figure 2). Similar methodology was applied in work by Lössl and 

colleagues in which crosslinking data was used to determine differences in conformational 

ensembles and interaction modes of singular and interacting proteins (27). Additionally, 

recent work by Piotrowski and colleagues used XL distance restraints in combination with 

Rosetta to build models of calmodulin interacting with bMunc13-2 and then subsequently 

identify a unique binding mode (28).

XL-MS data was used in protein structure investigation of human serum albumin protein 

domains by Belsom and colleagues (29). Instead of traditional XL reagents, this work 

employed a photo-XL agent that led to increased XL data to probe the protein in isolation 

and within blood samples. Upon modeling with XL-MS data as restraints and residue 

contacts predicted with a newly developed software, serum albumin protein models were 

successfully identified with low RMSD values (3-6 Å) for both the purified and sample 

models. A similar approach was explored in work from dos Santos et al. in which XL-MS 

data along with coevolutionary information was applied to protein structure prediction (30). 

In the work, simplified models containing only alpha carbons were used in combination 

with restraints from XL-MS and coevolutionary data via direct coupling analysis to elucidate 

tertiary structure. Models were evaluated by clustering and TM-score for multiple proteins. 

Quality models were identified from the method, validating the effectiveness of the proposed 

methodology.
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Hauri et al. used computationally determined models for a very large (1.8 MDa) protein 

complex found in human plasma in order to examine specific peptides from XL-MS, 

an effort denoted as targeted chemical cross-linking MS (31). Targeted XL-MS used 

different MS acquisition techniques to discriminate between computational models of the 

protein complex modeled by Rosetta’s homology modeling protocol. Proteins from the 

complex were docked together in order to produce a collection of potential models that 

represented the quaternary structure of the complex. Models of the protein-protein complex 

that scored well with the crosslinking data were used to identify a short list of potentially 

crosslinked lysine pairs. Models then underwent a flexible backbone docking workflow with 

crosslinking data as distance restraints. Overall, the development of targeted XL-MS paved 

the way for continued improvement of quaternary structure prediction of highly complex 

systems. Recent work by Khakzad and others sought to elucidate another large protein 

complex, the membrane attack complex (32). A streamlined protocol for targeted XL-MS 

was pursued to examine the bacterial protein complex in human plasma. The crosslinking 

results were utilized to obtain a complete model of the complex that was corroborated with 

existing models from crystallography and cryo-EM. This work further demonstrated the 

applicability of XL-MS, particularly to complex targets from bacterial systems relevant to 

human disease.

XLFF, a force field that relied upon XL-MS restraints was applied to Rosetta’s ab initio 

protocol by Ferrari and colleagues (33). This was accomplished by determining the 

probability of identifying residues that could potentially crosslink within a nonredundant 

set of proteins from the protein data bank. The resulting probability curve was then used 

to determine a potential energy function reliant on the crosslinker length and the residues 

involved in linkage. It was observed that usage of the XLFF force field resulted in higher 

quality, more native-like models occurring within the top scoring model distributions.

In addition to inclusion of crosslinking data within Rosetta, software has been developed 

outside the Rosetta suite. Degiacomi and coworkers implemented a software tool called 

DynamXL to consider the implications of dynamics when modeling crosslinking data 

(34). Contrasting other methods that rely upon the beta carbon for distance measurements, 

the DynamXL algorithm employed the side chain nitrogen atom of lysine for distance 

calculations, which was suggested as more experimentally accurate and less computationally 

expensive. Additionally, the method took the flexibility of residue side chains into account 

by examining different rotamers and backbone conformations. The work sought to minimize 

the elimination of reasonable crosslinks, while simultaneously excluding impossible 

crosslinks, which led to less error when classifying cross linkages. Overall, application of 

this methodology led to improved RMSD values from protein-protein docking, highlighting 

the accuracy of the implementation.

Recent work by Mintseris and Gygi explored high density XL-MS efforts in combination 

with IMP and Rosetta (35). The methodology was used to model carbonic anhydrase 

proteins and the yeast proteasome. To minimize computational cost, the implemented 

software reduced sampling of decoy and target peptides to minimize false discovery 

rates and simplify false discovery rate calculations. Alternative reagents that established 

crosslinks with additional residue types promoted the crosslinking density, thus providing 
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better results. XL-MS data was applied to modeling of inhibitor-bound carbonic anhydrase 

via restraints applied during protein-protein docking with Rosetta. High-quality models were 

identified. Additionally, the work tackled the modeling of the yeast proteasome with both 

Rosetta and the IMP based on the XL-MS data. Coase-grained models of the complex were 

elucidated, and regions were verified by existing cryo-EM models.

Hydrogen-deuterium exchange

Hydrogen-deuterium exchange (HDX) is a prevalent non-specific covalent labeling 

technique in which a protein is exposed to a deuterium-rich solvent (10). Amide hydrogen 

atoms are able to exchange with deuterium atoms to label the protein backbone. After 

digestion and separation with liquid chromatography, MS can be used to identify regions 

of exchange. HDX-MS has also been used in combination with other techniques such as 

electron capture dissociation to assess hydrogen bonding configurations (36). Regions of 

the protein are more likely to be modified by HDX if the amide hydrogens are solvent 

accessible and not actively participating in a hydrogen bond. HDX data is often resolved to 

fragment level but occasionally residue-specific modifications are reported. From there, data 

can be expressed as percentage modification, rate constants, or protection factors (PF), all of 

which are routinely used as input into computational modeling to guide results based upon 

agreement with HDX data.

HDX-MS data has been used in combination with homology modeling, as seen in work 

from Zhang and coworkers (37). Homology modeling with MODELLER, Phyre2, and 

I-TASSER were used to model the tertiary structure of cytochrome C. HDX-MS results 

were taken into account when examining the models. Additionally, the relationship between 

HDX modification and SASA was examined to identify the best models. It was determined 

that the modeling efforts with Phyre2 demonstrated best agreement with the HDX-MS 

results, and the SASA values from this model led to a better correlation with the 

percent modification identified from HDX experiments. The results of this work effectively 

demonstrated that both HDX data and solvent exposure could be used to identify better 

homology models and to improve upon our previous understanding of the cytochrome C 

mechanism. While HDX-MS data has not been applied to ab initio modeling, HDX-NMR 

data has been recently implemented into protein structure prediction (38).

HDX-MS data in combination with molecular dynamics (MD) simulations were employed 

to examine empirical and fractional population models for G-protein signaling regulator 

proteins in work from Mohammadiarani et al. (39). Using long timescale MD simulations 

with AMBER and CHARMM forcefields, PFs were calculated from simulation frames and 

then compared to experimentally determined percent modification data. It was determined 

that fractional population models were more accurate and less prone to error than empirical 

models, arguing that the SASA of amide hydrogens coupled with the distance between 

the amide hydrogen and first polar atom could be used for accurate predictions. It was 

also indicated that amide hydrogen atoms could fluctuate in exposure over a sub 100 

ps timescale. HDX-MS and MD simulations were also applied to examine interactions 

between lipids and membrane proteins such as lipid-induced conformational changes in 

proteins in work from Martens and coworkers (40). The framework developed in the study 
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emphasized a multi-step protocol. After using HDX-MS to evaluate the protein in the 

presence and absence of lipids, interactions were interpreted via MD simulations in various 

bilayer conditions. The interactions identified from the simulation were then corroborated 

by experimental mutagenesis of relevant sites. The methodology presented in this work was 

suggested as a basis for further study of various lipid-protein interactions in membranes. 

Beyond this work, size-exclusion chromatography in combination with HDX-MS and 

circular dichroism were used with computational techniques such as homology modeling 

and MD simulations to examine the activity of transaminases in work from Makarov and 

others (41). The study demonstrated that the protocol could be applied to enzyme-directed 

evolution efforts.

Recently, Zhang and colleagues used both XL-MS and HDX-MS data to evaluate protein-

protein docking models of interleukin 7 and its alpha receptor (Figure 3) (42). HDX-MS 

analysis was performed on free interleukin 7 and when it was bound with its receptor 

to elucidate changes in exposure. XL-MS was also applied to the system in order to 

identify residues involved in the receptor binding interface of interleukin 7. Protein-protein 

docking with RosettaDock produced models of the complex and top-scoring models were 

subsequently clustered. Clustering data was analyzed for different numbers of crosslinks and 

subsequently validated by HDX data. When examining the crosslinking data, it was deduced 

that some crosslinks that suggested an interface at a particular region were undermined 

by the HDX data that implied protection at the same region, implying that a two-pronged 

approach was necessary to verify findings. Solvent exposure was additionally examined 

using SASA for identified models to determine if the models corroborated with regions of 

protection and exposure identified by HDX. Overall, this methodology elegantly emphasized 

the importance of more than one structural MS technique being applied to quaternary 

structure prediction.

HDX-MS data has also been applied to antibody-antigen modeling. Huang et al. used 

HDX-MS data along with electron-transfer dissociation to examine binding of the mAb1 

antibody with a cytokine with implications in autoimmune disease (43). SASA calculations 

and protein-protein docking provided additional insight into the antibody-antigen binding 

interface. The study emphasized the importance of HDX-MS data and complementary 

computational efforts for epitope elucidation. Additionally, recent efforts from Jeliazkov and 

others were applied to the improvement of Rosetta software for antigen-antibody modeling, 

RosettaAntibody and SnugDock (44). The SnugDock feature relies upon flexible docking to 

elucidate the complementarity determining region (CDR) loop, indicated in antigen binding 

and unique amongst antibody structures, and to configure an adjustment of the heavy and 

light fragments relevant to antigen-antibody interactions. Restraints from HDX-MS data 

were used to score antigen-antibody complexes based on agreement with the data. When 

testing the HDX-MS restraints on an antibody-antigen complex with available labeling 

data, it was deduced that the HDX-MS restraint-based methodology led to more native-like 

structure of the CDR loop.
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Hydroxyl radical protein footprinting

Hydroxyl radical protein footprinting (HRPF) is a non-specific CL-MS technique in which 

hydroxyl radicals can covalently modify nineteen of the twenty amino acids types in proteins 

(11). Synthesized via photolysis or radiolysis of water or hydrogen peroxide, hydroxyl 

radicals modify residues with varying degrees of reliability and reactivity, as indicated 

by a broad range of relative intrinsic reactivities (12). Rate constants for labeled peptide 

fragments and individual residues can be determined and used to calculate protection factor 

(PF), the relative intrinsic reactivity divided by the labeling rate constant for the particular 

residue. Because HRPF is more likely to occur in regions that are solvent exposed, residues 

that are more protected (higher PF) are correlated with lower solvent exposure, and vice 

versa.

Xie and colleagues recently examined the relationship between residue protection and 

solvent exposure using MD simulations (45). The work emphasized that normalization of 

HRPF data should be sequence-dependent, not based on standard values determined from 

free amino acids. With labeling data for myoglobin and lysozyme, a method was proposed 

in which accurate side chain SASA values are derived from HRPF data by normalizing 

labeling data based on sequence context. This was validated by improvements in correlation 

between labeling data and SASA. When examining the relationship between normalized 

PF and relative SASA, the correlation was determined to worsen as the relative intrinsic 

reactivity of the amino acids considered decreased, suggesting that only residues with higher 

intrinsic reactivity should be used in structural analysis based on PF. When the rate constant 

of a particular residue in the folded protein was normalized with the rate constant of the 

same residue in the denatured protein, the correlation improved for all non-sulfur-containing 

residues (Figure 4). A prediction equation that established a relationship between relative 

SASA and the normalized rate constant was determined such that relative SASA could be 

calculated from HRPF data. When the prediction equation was tested with homology models 

of lysozyme, it was observed that models with backbone RMSD less than 3 Å could be 

differentiated from models with backbone RMSD greater than 4 Å.

Our group has used HRPF labeling data for protein structure prediction. We used the 

relationship between the natural logarithm of PF (lnPF) and a residue exposure metric, 

spherical neighbor count, for 15 relaxed crystal structures of calmodulin as a prediction 

equation. The equation was then implemented in the first available software to use HRPF 

data for protein structure prediction (46). When tested on ab initio models for four 

benchmark proteins, the addition of our score term within the Rosetta framework led to 

improvement in the best scoring model RMSD and funnel-like quality of the score versus 

RMSD distributions. Results were further validated through use of a confidence metric that 

assessed the funnel-like quality of the score versus RMSD distribution when RMSD was 

calculated to the best scoring model. Follow-up work explored the incorporation of labeling 

data into the ab initio folding algorithm, as opposed to using it for model rescoring.(47)

More recently, we sought to improve the correlation between lnPF and neighbor count, as 

we hypothesized that accounting for side chain flexibility would improve the relationship 

(48). We utilized a conical neighbor count for a subset of residue types selected based 
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on intermediate to high intrinsic reactivity and simulated side chain flexibility with MD 

simulations and with a Rosetta mover ensemble for four benchmark proteins. Upon 

determining that the normalized root mean square error of lnPF versus conical neighbor 

count was comparable between MD and the mover ensemble, we developed a new Rosetta 

score term. 20,000 ab initio models were scored with our term, then a total score was 

calculated by combining the HRPF score with the Rosetta score. The top 20 scoring 

models were used as inputs for mover model generation, then scored with both Rosetta 

and HRPF data. Upon including mover models in our distributions, we found that the 

best scoring model RMSD was identified at accurate atomic detail for three of the four 

proteins, indicating that HRPF in combination with a Rosetta mover ensemble can be used 

to significantly improve model quality.

Other covalent labeling methods and limited proteolysis

Besides the popular HDX and HRPF techniques, other covalent labels have been used 

to elucidate protein structure. Carbene, another nonspecific covalent labeling reagent, has 

been used for structural mass spectrometry. Carbene footprinting was applied by Manzi 

and coworkers to examine the binding sites of lysozyme and a large protease (49). 

Additional work by Manzi et al. demonstrated that carbene footprinting could be applied 

to more complex cases by elucidating the interfaces of a trimer membrane protein (50). 

Radical trifluoromethylation, in which 18 amino acids can be modified, has also been 

used for covalent labeling structural MS. Myoglobin, beta-lactoglobulin, and membrane 

protein vitamin K epoxide reductase were explored by radical trifluoromethylation in novel 

efforts by Cheng and coworkers (51). This work paved the way for an additional study 

in which trifluoromethyl radicals were produced via synchrotron radiolysis (52). Radical 

trifluoromethylation is a particularly promising technique for future structure prediction 

efforts.

In addition to non-specific covalent labeling reagents, other covalent labeling reagents 

that modify only specific residues have been used to probe protein structure. 

Diethylpyrocarbonate (DEPC) is a readily available labeling reagent that modifies Cys, 

Lys, His, Ser, Thr, and Tyr residues along with the N-terminus. It was recently shown that 

the residue microenvironment played a role in labeling weakly nucleophilic Ser, Thr, and 

Tyr (STY) residues, as labeled STY residues with lower solvent exposure were found to 

be in the vicinity of hydrophobic residues (53). Based on this study, we developed a score 

term within Rosetta to reward models that demonstrated agreement with DEPC labeling 

data (54). Labeled STY residues with 5-35% relative SASA were rewarded for having more 

hydrophobic neighbors, while unlabeled STY residues with the same solvent exposure were 

rewarded for having less hydrophobic neighbors. Additionally, our term rewarded labeled 

His and Lys residues with higher solvent exposure, as residues that are more exposed are 

more likely to be covalently labeled. The DEPC score was added to the Rosetta score, and 

models were ranked by total score. We tested our term with ab initio and homology models 

for six benchmark proteins and found that the best scoring model RMSD and funnel-like 

quality of the score versus RMSD distributions improved with use of our term.
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Similar to covalent labeling, limited proteolysis is a technique in which a protein is exposed 

to a low concentration of protease that cleaves solvent accessible regions of the protein 

(13; 55). Hennig and coworkers developed a pipeline between MDMDAT, software that 

analyzes MS data, and HADDOCK, a protein-protein docking algorithm (56). Limited 

proteolysis data was first analyzed by MDMDAT and then utilized by HADDOCK to dock 

the protein Rpn13 with ubiquitin. This work demonstrated that limited proteolysis data 

could be applied to a protocol for protein complex modeling that was easier and quicker 

than structure determination methods such as NMR. Limited proteolysis was also applied 

to examine protein complexes in work by Proctor and colleagues (57). Limited proteolysis 

elucidated by MS guided the modeling of the Cu,Zn superoxide dismutase (SOD1) trimer 

protein complex. Software was developed to translate locations of proteolysis into restraints 

that were applied to discrete MD simulations. Such restraints emphasized the importance of 

regions affected by proteolysis being solvent exposed. After coarse-grained and full atom 

MD simulations to isolate the lowest energy model, computational mutagenesis was applied 

to examine interface residues of importance to SOD1 trimer generation.

Ion mobility

Ion mobility (IM) is a structural native mass spectrometry technique in which proteins are 

subjected to soft ionization in the gas phase and then exposed to a nitrogen or helium gas 

chamber in which an electric field is applied. Instead of residue or fragment-resolved data 

as for the previously described techniques, IM-MS provides insight into the shape of the 

protein. Commonly calculated from IM-MS data is the collision cross section (CCS), which 

is the rotationally averaged two-dimensional projection area of the protein. Computational 

methods currently exist to predict CCS from protein structure, including the trajectory 

method (58; 59), projection superposition approximation (60), and projection approximation 

(61).

In elegant work by Bleiholder and Liu (62), MD simulations were employed to model 

ubiquitin at various charge states for ion spectra prediction. The structure relaxation 

approximation (SRA) method was introduced to examine the similarity of ubiquitin ions 

to the native protein. SRA operated with input MD simulation frames by removing solvent, 

adjusting the charge state via charged residues with high exposure, relaxing the structure 

with a short simulation of the gas-phase protein, calculating average cross sections with 

the projection superposition approximation, and then determining the ion mobility spectrum 

based on Gaussian distributions of the averaged cross sections. The method was validated 

by the agreement of residue interactions between the crystal structure and modeled states, 

demonstrating that ubiquitin remained native-like during the procedure.

Hall and colleagues examined a modeling method in which coarse-grained models of 

protein complexes were evaluated with a scoring function based on their agreement with 

CCS data (63). Complexes from the protein data bank were used to validate the use of 

coarse-grained models, and it was demonstrated that the CCS of the coarse-grained models 

were similar to those calculated using all-atom models. The coarse-grained model relied 

upon spheres to represent individual proteins while a complex was represented by multiple 

spheres. For the scoring function, volume and CCS restraints were implemented based on 
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the findings from a benchmark set. This method was then applied to influenza B virus 

neuraminidase, where models were scored based on volume and CCS restraints and then 

clustered by similarity to other models. The most native-like model was identified within 

the largest cluster. The method was further applied to tryptophan synthase and nitrobenzene 

dioxygenase complexes. The case study of nitrobenzene dioxygenase successfully identified 

high quality models, while the tryptophan synthase uncovered the relevance for symmetry 

data, which was identified by other experiments. This work confirmed that IM-MS data was 

able to play a valuable role in protein complex structure investigation.

Eschweiler and coworkers used IM-MS data and computational modeling to elucidate a 

structural model of the urease activation complex (64). CCS values were determined for 

the subcomplexes of interest and used to guide coarse-grained model generation with 

the IMP, representing subunits within the complex as individual spheres. A Monte Carlo 

algorithm was applied to sample conformational space with the aid of restraints from both 

CCS data and previous experimental data that established connectivity between particular 

subunits. IMPACT was applied to determine CCS values for complex models, followed 

by a clustering and comparison to existing complex structures. This study effectively 

modeled a very large complex using numerous restraints from experimental and calculated 

CCS, XL-MS, and SAXS data. A similar methodology was applied in recent work by 

Wang and others. In order to model apolipoprotein E oligomers relevant to Alzheimer’s 

disease, IM-MS data was used to identify coarse-grained models using the IMP (65). 

Additionally, collision-induced unfolding was used to examine the monomer and tetramer 

of apolipoprotein E. This work deviated from the use of spheres for each individual 

subunit within the complex. Instead, the monomer was modelled with two domains, or two 

spheres, within the coarse-grained model, which corroborated the CCS data. A Monte-Carlo 

algorithm was applied to identify models, which were subsequently clustered by similarity 

in order to determine a likely complex structure. Intriguingly, electron-capture dissociation 

was also implemented to validate models based on identification of flexible portions of the 

complex, demonstrating the capability of IM-MS and IMP modeling coupled with additional 

experimental techniques.

Finally, our group has developed Rosetta functionality to use IM-MS data in protein tertiary 

structure prediction (66). An algorithm, Projection Approximation using Rough Circular 

Shapes (PARCS), was implemented to calculate CCS from protein structure. PARCS was 

shown to perform as accurately and efficiently as the popular IMPACT method. A score 

term reliant upon IM-MS data was also incorporated into the Rosetta framework based 

on the PARCS predictions. The score term penalized models with differences in observed 

and predicted CCS. It was first tested on models for a benchmark set of proteins with 

PARCS-computed CCS values in which the RMSD of best scoring models was improved 

for 82 of the 100 proteins examined (Figure 5). The funnel-like quality of the score versus 

RMSD distributions for model sets also tended to improve upon scoring with IM-MS data. 

Additionally, the score term was examined with ab initio and homology models for 23 

proteins for which experimental IM-MS data was available, with the RMSD improving or 

exhibiting no change for all 23 instances. This work further solidified the capability of 

IM-MS methods to elucidate protein structure.
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Surface-induced dissociation

Recently emerging as a structural native MS technique, surface-induced dissociation (SID) 

relies on the breakage of interfaces within a protein complex when the complex strikes a 

surface. During SID-MS, protein complexes undergo soft ionization, then are collided with 

a surface, which can provide insight into the stoichiometry and interfaces within a protein 

complex. It has been demonstrated that the dissociation observed in SID experiments can be 

correlated with identified assembly pathways (67-69).

We demonstrated that it is possible to predict SID appearance energy (AE) from protein 

structure (70). AE, specified as 10% fragmentation, was predicted from quantities such as 

the number of residues at the interface, number of unsatisfied hydrogen bonds, and rigidity 

factor, which was determined by intermolecular interactions such as hydrogen bonds, salt 

bridges, and disulfide bonds. A weighted sum of these terms was used in a prediction 

equation such that a strong correlation was observed between predicted and experimental 

AE. The development of this model suggested that the methodology could be applied to 

structure prediction applications.

Our group then developed a computational algorithm to use SID-MS data for protein 

complex structure prediction (71). The number of residues at the interface, rigidity 

factor, and buried hydrophobic surface area were combined to better predict AE. The 

new model that combined these three terms was then used in the creation of a Rosetta 

scoring term that combined SID data with RosettaDock scoring. It was first tested on 57 

protein systems using crystal structures to calculate the ‘experimental’ AE, with 54/57 

cases demonstrating improvement or no change in best scoring model RMSD. When 

using experimentally determined AE from SID-MS, it was determined that six of the 

nine complexes examined demonstrated near-native structures within the top three scoring 

models (Figure 6). Additionally, a confidence metric was established in this work, using the 

average score per residue for the best 1,000 models to independently verify the accuracy of 

scoring. The confidence metric allowed identification of successful predictions, as proteins 

with more-negative score per residue tended to have improved RMSD values compared to 

complexes with a higher score per residue. Overall, this work demonstrated that SID data in 

conjunction with RosettaDock can be used to improve protein complex structure prediction 

effectively. In follow-up work, it was shown recently that using SID-MS data in combination 

with cryo-EM data resulted in improved flexible docking results for protein complexes and 

required less prior knowledge of structures (72).

Future directions of the field

While advances in MS and computational technologies have propelled the field forward in 

recent years, obstacles still exist and will require provocative solutions to overcome.

As MS data are too sparse to determine protein structure unambiguously, computational 

techniques will remain relevant to interpret MS data for structure elucidation. One way 

in which the community can support computational method development is through 

the establishment of central data repositories. Such databases currently exist for other 
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experimental techniques (73-75). Kahraman and coworkers (25) have started to pave the 

way for this effort by establishing a crosslinking database. Hopefully, other MS databases 

will follow suit in the near future. Publicly available datasets can lead to the creation 

and development of freely accessible, competitive algorithms that can harness sparse 

experimental data, such as the mass spectrometry data outlined here, to improve structure 

prediction with machine learning and artificial intelligence methodologies.

Because MS data is sparse, even advanced computational methodologies will inevitably 

predict false positive structures. Going forward, integrative structural modeling that 

combines multiple sets of experimental data will be instrumental in reducing the rate 

at which false positives occur. Further exploration of protein complexes remains a key 

endeavor for the future of protein structure modeling. Protein complexes have been 

implicated to have roles in many biological processes, and structural changes to complexes 

can lead to human disease (76). Elucidation of protein complex structure can provide insight 

into the mechanisms of such complexes. Structural information can complement efforts to 

target protein complexes with drugs to alleviate implications in disease. The study of protein 

complexes benefits greatly from integrative experimental techniques to combat modeling 

ambiguities. This has been nicely demonstrated in work by Zhang and colleagues that 

applied both HDX and XL data to quaternary structure investigation (42). The field should 

continue to emphasize combination of multiple techniques to elucidate structural features of 

protein complexes.

Recently, the performance of AlphaFold at CASP14 has raised questions about the 

role of experimental techniques in protein structure determination (77). AlphaFold relies 

upon artificial intelligence to accomplish protein structure prediction from amino acid 

sequences. Its impressive global distance test (GDT) median score of 92.4 (78) redefined 

the field’s expectations of how precise modeling algorithms could be. This inevitably 

caused speculations about the ability to determine protein structure purely computationally. 

We believe that this is unlikely to happen in the near future. As AlphaFold is currently 

not accessible to the academic community, computational researchers should continue to 

establish techniques that mimic AlphaFold. Callaway indicated in the Nature synopsis of 

CASP14 (77) that purely computational structure determination is unlikely, but rather that 

sparse experimental data will soon be sufficient for unambiguous structure elucidation in 

combination with the new wave of artificial intelligence technologies. As such, we anticipate 

that MS data will play a continued, if not growing, role alongside tools like AlphaFold.

An additional future avenue of protein structure prediction from MS data is citizen science. 

FoldIt is one such tool that enlists video game enthusiasts for structure prediction (79). 

With its colorful graphical user interface and endearing symbols for relevant scientific 

concepts like steric hinderance and solvent exposure of hydrophobic regions, FoldIt uses the 

Rosetta software suite to reward user-sampled conformations of proteins. Users can advance 

through multiple levels of the game while supporting scientific efforts by sampling protein 

conformations that may be inaccessible to automated protein sampling algorithms. Overall, 

games such as FoldIt inspire a new generation of scientists while tackling the sampling 

problem and examining novel protein conformations.
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In summary, the future of MS techniques with complementary computational methods 

appears promising. The combination of MS and computational protocols will, in our 

opinion, lead to the elucidation of many challenging protein structures.

Conclusion

The field of structural mass spectrometry has significantly benefited from the development 

of hybrid computational techniques for MS-guided protein structure prediction. Algorithms 

that use XL-MS, HDX-MS, HRPF-MS, limited proteolysis, IM-MS, and SID-MS data for 

tertiary and quaternary structure prediction, described here, successfully allow structure 

elucidation from sparse MS data. The field will continue to thrive with efforts to maintain 

accessible datasets and software packages, to combine multiple techniques for the purpose 

of protein complex elucidation, and to pursue out-of-the-box methods like FoldIt that recruit 

the general public into structure prediction efforts. While it is encouraging to see how far the 

field has progressed recently, it remains even more exciting to envision where the field will 

go with continued advances in techniques and technology.
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Figure 1. 
Mass spectrometry-based methods and computational modeling explored in this review. 

Chemical crosslinking involves the modification of residues, commonly lysine, to provide 

information regarding spatial proximity. Hydrogen-deuterium exchange examines the 

exchange rate of amide hydrogens with deuterium solvent to give insight into solvent 

exposure and residue flexibility. Covalent labeling is reliant upon the irreversible covalent 

modification of residues, illuminating solvent exposure and topology. Limited proteolysis 

uses a protease enzyme to cleave proteins into fragments based on solvent exposure. Ion 

mobility is used to investigate shape and size of proteins based on the collision cross 

sectional area. Appearance energies (AE) can be deduced from surface-induced dissociation, 

which is used to study the stoichiometry and connectivity of protein complexes. Data 

from these techniques is then incorporated into computational modeling techniques such 

as protein-protein docking to examine complexes, structure prediction via ab initio or 

homology modeling, and molecular dynamics based on experimental restraints.
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Figure 2. 
Improvement of model prediction and scoring with XL-MS data. A, Best scoring models 

of IgBP1 (green) complexed with PP2AA (purple), with the opaque cartoon depicting the 

best scoring model from the largest cluster and the more transparent cartoons depicting the 

best scoring models from 2-4th largest clusters. Crosslinks are depicted as green, red, and 

blue spheres, with black spheres representing mutations. B, Rosetta score versus RMSD to 

the largest cluster plot for models with minimum of six inter-protein XLs (grey), minimum 

of six inter-protein XLs with binding interface larger than 900 Å2 (blue), and representative 

models from the four biggest clusters (red). Figure reproduced under the Creative Commons 

License from Kahraman et al. (2013); copyright 2013 PLOS.
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Figure 3. 
IL-7 (multi-colored, colored with HDX uptake) complexed with IL-7Rα (green) models. 

Models were docked, clustered, then sorted into types by similarity. Models from each type 

are depicted in A-C, each utilizing two crosslinking restraints. D, the type 3 model with 

only one crosslinking restraint. Figure reproduced with permission from Zhang et al. (2019); 

copyright 2019 American Chemical Society.
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Figure 4. 
Comparison of prediction equations using SASA and HRPF data. a, prediction equation 

between relative SASA (<SASA>/<SASA>GXG) and normalized protection factor (slopeN/

relative intrinsic reactivity) using myoglobin data for residue types WYFHLI. b, lysozyme 

<SASA> calculated using prediction equation derived from (a) versus SASA observed in 

MD simulations. c, prediction equation between relative SASA of the native (<SASA>N/

<SASA>GXG) and rate constant ratio (slopeN/slopeD) for all non-sulfur containing 

myoglobin residues. d, lysozyme SASA calculated using prediction equation shown in (c) 

versus SASA observed in MD simulations. Figure reproduced under the Creative Commons 

License from Xie et al. (2017); copyright 2017 Springer Nature.

Biehn and Lindert Page 21

Annu Rev Phys Chem. Author manuscript; available in PMC 2023 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Incorporation of IM-MS data into Rosetta improved RMSD of best scoring models. a, 

Depiction of a protein and its projection on a plane upon space-filling measures by 

the PARCS application. b, Structural alignments of the crystal structure (grey) with the 

best scoring model when scoring without IM-MS data (burgundy) and with IM-MS data 

(yellow). c, Comparison of best scoring model RMSDs when scoring with and without IM 

data. Helium buffer gas conditions are depicted in teal while nitrogen buffer gas conditions 

are gold. Figure credit: SM Bargeen Alam Turzo.
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Figure 6. 
Utilization of SID-MS data improved RMSD of best scoring models. Alignment of the 

crystal structures (green) with one of the top three best scoring models when scoring without 

SID data (blue, top row) and when including SID-MS data in scoring (pink, bottom row) for 

three protein complexes. Figure credit: Justin Seffernick.
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