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Abstract

Background: Machine learning (ML) approaches have been broadly applied to the prediction of 

length-of-stay (LOS) and mortality in hospitalized patients. ML may also reduce societal health 

burdens, assist in health resources planning and improve health outcomes. However, the fairness of 

these ML models across ethno-racial or socioeconomic subgroups is rarely assessed or discussed. 

In this study, we aim (1) to quantify the algorithmic bias of ML models when predicting the 

probability of long-term hospitalization or in-hospital mortality for different heart failure (HF) 

sub-populations, and (2) to propose a novel method that can improve the fairness of our models 

without compromising predictive power.

Methods: We built five ML classifiers to predict the composite outcome of hospitalization LOS 

and in-hospital mortality for 210,368 HF patients extracted from the Get With The Guidelines-

Heart Failure (GWTG-HF) registry dataset. We integrated 15 social determinants of health 

(SDOH) variables, including the social deprivation index (SDI) and the area deprivation index 

(ADI), into the feature space of ML models based on patients’ geographies to mitigate the 

algorithmic bias.

Results: The best-performing random forest model demonstrated modest predictive power, 

but selectively under-diagnosed under-served sub-populations, e.g. female, Black and socio-

economically disadvantaged patients. The integration of SDOH variables can significantly 

improve fairness without compromising model performance.

Conclusions: We quantified algorithmic bias against under-served sub-populations in the 

prediction of the composite outcome for HF patients. We provide a potential direction to reduce 

disparities of (ML-based predictive models by integrating SDOH variables. We urge fellow 

researchers to strongly consider ML fairness when developing predictive models for HF patients.
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1. Introduction

Heart failure (HF) is a complex clinical syndrome that is caused by a structural or functional 

impairment of blood ejection or ventricular filling 1. HF is diagnosed by objective evidence 

of pulmonary or systemic congestion and/or elevated natriuretic peptide levels 2. As of 2020, 

HF affects approximately 6.2 million adults in the United States 3 and accounts for 13.4% 

of all-cause mortality in the United States in 2018. The medical costs associated with HF 

lead to large financial burdens at both local and national levels and are projected to exceed 

$69.7 billion by 2030 4. HF is characterized by a high occurrence of hospital readmissions 

as well as prolonged hospital length of stay (LOS) 5. Presently, the median LOS and cost of 

hospitalization for HF is 4 days and $19,978 6. Certain sex, ethno-racial and socioeconomic 

factors, e.g., female, African American, lower household income, contribute to prolonged 

LOS as well as a higher mortality rate 7–11.

The early prediction of LOS or in-hospital mortality for HF patients is essential to the 

improvement of quality of care. From the patient perspective, an accurate prediction of LOS 

or mortality can reduce health burdens and improve health outcomes by highlighting the 

discharge barriers to prolonged stays and facilitating early interventions. From the provider 

perspective, it can help with bed management and resource planning. Researchers have 

attempted to predict LOS and mortality using statistical models 12 or recent advancement of 

ML models 13–15. However, to the best of our knowledge, no prior study has investigated the 

fairness problem behind the prediction of HF outcomes.

Fairness has various definitions in different domains, in healthcare, specifically, fairness 

addresses whether an algorithm treats sub-populations equitably. The issue of fairness has 

recently attracted more attention, as ML-driven decision support systems are increasingly 

applied to practical applications. Algorithmic unfairness, or bias, in healthcare may 

introduce or exaggerate health disparities 16,17. Cirillo et al. 18pointed out that failure 

in accounting for sex/gender differences between individuals will lead to sub-optimal 

results and discriminatory outcomes. In more recent studies, scientists seek for solutions 

to mitigating biases in ML by identifying potential biases at multiple stages of study designs 

and suggest that researchers apply strategies to reduce the risk of bias 19. However, most of 

the mitigation methods require complicated data manipulation 20,21 or algorithm adjustment 
22, but lack of interpretability. To address these limitations, we propose a novel method of 

integrating SDOH variables to the clinical predictive model in order to improve the fairness 

of ML models. We will examine our proposed approach by using a real-world clinical 

scenario that uses admission data to predict the composite outcome of prolonged LOS and 

in-hospital mortality for HF inpatients. Our contributions and novelties are listed as follows:

• We developed ML classifiers to predict the probability of long-term 

hospitalization or in-hospital mortality for HF patients using information at the 

time of admission. We found significant performance differences across different 
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sex, ethno-racial and socioeconomic subgroups. We observed that extant ML 

classifiers selectively under-diagnosed historically under-served sub-populations.

• We proposed a novel approach to mitigate disparities and facilitate fairness 

of clinical predictive models by integrating SDOH variables into the feature 

space of ML classifiers. We demonstrate that the proposed method significantly 

improved ML fairness without compromising predictive power.

2. Methods

2.1 Data Collection

Clinical data used in this study were collected from the Get With The Guidelines-Heart 

Failure (GWTG-HF) registry dataset, which contains patient-level data elements and 

evidence-based outcome measures of HF patients. The registry dataset is part of the GWTG-

HF in-hospital program that aims at improving health outcomes by promoting consistent 

adherence to the most advanced treatment guidelines. Our access to the GWTG-HF was 

granted through participating in the heart failure data challenge initiated by the American 

Heart Association and the Association of Black Cardiologists. This project does not require 

IRB review as all identifiable private information is completely removed from the GWTG-

HF dataset and should therefore not be considered as a human subject study. Because 

of the sensitive nature of the data collected for this study, requests to access the dataset 

(GWTG-HF) from qualified researchers trained in human subject confidentiality protocols 

may be directly sent to AHA. The source codes will be made publicly available at GitHub 

upon acceptance and can be accessed at https://github.com/YIKUAN8/MLfairHF.

We extracted patient-level information from the registry data set as the feature space for ML 

models. The extracted variables describe patients’ clinical conditions and socioeconomic 

background at admission, including demographics, medical histories, admission diagnoses, 

medications prior to admission and examinations at admission. Given that we attempted 

to achieve early prediction of the health outcomes at the time of admission, in-hospital 

treatments and discharge information were excluded from the feature space of our study. 

We would retrieve the SDOH information based on patients’ geographies. Consequently, 

those patients who didn’t not provide postal codes, or have postal codes outside of the 

USPS (United States Postal Service) postal code directory, were excluded from the study 

population. Please refer to Supplemental Method 1 for more details of pre-processing.

Dichotomized predictions are not only more compatible with fairness evaluation metrics, 

but also have more practical use in clinical decision-making systems 23. Therefore, we first 

dichotomized the LOS of each patient to long- versus, short-term hospitalization with a 

threshold of 7 days. This threshold was selected based on the previous research of LOS 
24 on the GWTG-Heart Failure dataset, which demonstrated that longer LOS (>7 days) is 

associated with more comorbidities and higher severity of disease at the time of admission. 

In order to predict a more definitive adverse outcome in HF that combines both morbidity 

and mortality, we defined the positive outcome as LOS > 7 days or disposition of death, and 

the negative outcome as LOS < 7 days and being alive at hospital discharge.
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2.2 Machine learning models

We built binary classifiers using five ML models involving naive Bayes, logistic regression, 

support vector machine with linear kernel, random forest, and gradient boosted decision 

trees. The entire data set was split into a training set and a hold-out testing set with 

a ratio of 7:3. Five-fold cross-validation was performed on the training set to optimize 

hyper-parameters for each classifier. The best-performing configuration for each model was 

then applied to the testing set. To overcome the class imbalance, the majority class in the 

training set was randomly under-sampled to match the sample size of the minority class. The 

performance of each ML models was evaluated by the area under the ROC curve (AUROC), 

precision, recall and F1 score. The model achieves a higher AUROC and F1 score shall be 

considered as having greater predictive power. The dichotomized predicted outcomes were 

derived from the probability outcomes using the threshold that maximized the F1 score in 

the training set.

2.3 Integration of social determinants of health

We leveraged two data sources of SDOH factors in this study: Social Deprivation 

Index (SDI) 25 and Area Deprivation Index (ADI) 26. Both indexes are composite 

measures of deprivation collected from the American Community Survey. SDI reflects 

the socio-economic variation in health outcomes of differing geographies. The SDI index 

as well as its constructs covers a broad range of SDOH, including housing, income, 

education, employment, transportation, community demographics and others. ADI provides 

standardized rankings for census blocks by socioeconomic disadvantage at both state 

and national levels. ADI is derived from the theoretical domains of income, education, 

employment, and housing quality. Both SDI and ADI depict the community-level social 

determinants of health and have been broadly applied to reducing health costs 27,28, 

improving health quality 29,30, and investigating health inequity 31,32. A detailed description 

of SDI and ADI variables can be found in Table 1.

We assigned ZIP Code Tabulation Areas SDI index, and its 12 constructs collected in 

2015, to each patient based on his/her 5-digit zip code. We did not use census tract level 

SDI data, because only a small proportion of patients provide their full 9-digit zip code 

information. ADI has two geographical resolutions: 12-digit FIPS codes and 9-digit zip 

codes. We spatially joined the data in 9-digit zip code level to obtain ADI values in the 

level of 5-digit zip code. Similarly, we assigned ADI rankings at state and national level to 

patients by using patients’ self-reported zip code information.

As we hypothesized that the integration of SDOH variables can reduce algorithmic bias and 

mitigate inter-racial performance gaps, each SDOH was first separately integrated into the 

feature space of the best performing ML models to build 15 new ML configurations. We also 

collectively integrated all SDOH variables to the feature space in another ML configuration. 

Each of these 16 new configurations were compared with the baseline model, respectively.

2.4 Definition and quantification of fairness

In the context of machine learning, Fairness addresses whether an algorithm treats sub-

populations equitably. Ideally, a fair ML classifier should not unfavorably or favorably 
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treat any individual on the basis of their characteristics. To quantify the fairness of ML 

models in the context of clinical decision-making, we compared the under-diagnosis rate and 

over-diagnosis rate across different sub-populations 23. Under-diagnosis rate is defined as 

the false negative rate (FNR) of the subgroup of interest; over-diagnosis rate is defined as the 

false positive rate (FPR) of the subgroup of interest. These two metrics can help us identify 

the sub-populations that are under-diagnosed or over-diagnosed by our ML classifiers. Both 

under-diagnosis rate and over-diagnosis rate were compared across different sub-populations 

including sex, race/ethnicity and insurance status. We considered the insurance type as a 

proxy for socioeconomic status in that Medicare and Medicaid beneficiaries are often in 

the lower income bracket, while patients with private insurance are likely in better financial 

standing. The uninsured/unknown group (less than 7% of all patients) was excluded from the 

analysis, because we cannot assess the socioeconomic status of those patients who did not 

provide their insurance information.

Although under- and over- diagnosis rates (i.e., false negative rate and false positive rate) 

can help us understand which subgroups are discriminated against by our ML classifiers, 

they cannot comprehensively and intuitively quantify the fairness of a ML model. Therefore, 

the fairness of each model was also quantified by additional fairness metrics: demographic 

parity ratio and equalized odds ratio 33,34 using race/ethnicity as the sensitive features. Both 

group fairness metrics were calculated by the aggregation of group-level metrics using the 

worst-case ratio. The demographic parity ratio is defined as the ratio of the smallest and 

the largest group-level selection rates across all ethno-racial groups. A high demographic 

parity ratio means that patients of all race/ethnicity are more likely to have equal probability 

of being assigned to the positive predicted class. Equalized odds ratio is defined as the 

smaller between the recall ratio and the false positive rate ratio. The former is the ratio 

of the smallest and the largest group-level recalls across all ethno-racial groups. The latter 

is defined similarly using false positive rate, i.e., over-diagnosis rate. Equalized odds ratio 

can show us whether a classifier yields equal recalls and false positive rates across all 

racial/ethnic groups. All fairness metrics are within the range of 0 to 1. The unbiased models 

shall achieve fairness scores approaching 1. We provided an illustration of how performance 

and fairness metrics were calculated in Supplemental Method 2. The technical details of 

implementation can be found in Supplemental Method 3.

2.5 Statistical Analysis

We used McNemar’s test 35 to compare the proportion of errors across five machine learning 

classifiers to select the candidate model for the research of fairness improvement. In order 

to examine whether the performance improvement or degradation is statistically significant 

when integrating SDOH variables, McNemar’s test was also used to compare the difference 

of proportion of errors between the baseline and the SDOH integrated models. An alpha of 

0.05 was used as the threshold for statistical significance.

3. Results

After data extraction, exclusion and pre-processing, we obtained 175 features of 210,368 

HF patients admitted from April 2017 to October 2020, among which 17.38% patients had 
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a LOS over 7 days or died during admission. The patients came from 15,364 different zip 

codes representing approximately 37% of all possible zip codes in the USPS postal code 

system. The distribution of each sex, ethno-racial groups, insurance and age subgroups, as 

well as their statistics of long-term hospitalization or in-hospital mortality can be found in 

Table 2. Descriptive statistics as well as missing rates of all features are shown in Table S1.

The performance of all five machine learning classifiers can be found in Table 3. The 

receiver operating characteristic curve is visualized in Figure S1. Among all five types of 

ML models, random forest classifier yielded the best performance (AUC 0.680, Precision 

0.286, Recall 0.654, and F-measure 0.398), followed by GBDT (AUC 0.668, Precision 

0.254, Recall 0.610, and F-measure 0.358) and logistic regression (AUC 0.620, Precision 

0.272, Recall 0.654, and F-measure 0.380).

The random forest classifier also achieved higher recall, when compared to other models. 

High recall score is more practical in the development of clinical decision support systems, 

where we aim at alerting health providers and patients of the potential risk of prolonged 

length of stay or in-hospital mortality. The proportion of errors between random forest 

and all other models were statistically significant upon McNemar’s test on the 2x2 

contingency tables as shown in Table 3. In terms of group fairness metrics, random forest 

(demographic parity ratio 0.813, equalized odds ratio 0.815) also significantly outperformed 

other models. We also conducted more experiments that using a hierarchical design of 

mixed effect random forest (MERF) 36, which considered all SDOH variables as random 

effects. The comparison, shown in Table S2, suggested that the classical random forest 

model outperformed the MERF on both predictive power and fairness metrics. Therefore, we 

selected the random forest classifier as the candidate model to discuss fairness quantification 

and improvement in the remainder of this paper.

We further investigated the under-diagnosis and over-diagnosis rates (i.e. false negative and 

false positive rates) differences of random forest classifier on each sex, ethnoracial and 

insurance sub-populations as shown in Figure 1. Specifically, female patients were 5 percent 

more likely to be under-diagnosed and 4 percent less likely to be over-diagnosed by our 

classifier when compared with its male counterparts; Asian patients had the highest under-

diagnosis rate of 0.427, followed by Black (0.395), Hispanic (0.390), and White (0.371); 

White patients had the highest over-diagnosis rate of 0.368, leading Asian (0.324), Hispanic 

(0.341), and Black (0.341) patients. In terms of insurance status, which we considered as 

an imperfect proxy for socioeconomic status, Medicare and Medicaid beneficiaries were 2 

percent more likely to be under-diagnosed and over-diagnosed than private insured patients.

The results in Table 4 validate our hypothesis that the integration of SDOH variables 

were able to mitigate algorithmic bias of ML classifiers. Specifically, 15 out of 16 SDOH 

integrated configurations reduced the racial disparities. Notably, inclusion of all SDOH 
improved demographic parity ratio more than 5 percent, and percent non-Hispanic Black 
improved equalized odds ratio up to 6 percent. In addition, no variables demonstrated 

performance deterioration when evaluated by AUC and recall and examined by the 

McNemar’s test. In addition, the under-diagnosis difference between White and Black 

patients was 2.3% before the integration of all SDOH variables and was reduced to 1.3% 
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after the integration. Similarly, the over-diagnosis difference dropped from 0.047 to 0.007 

after the integration of SDOH variables. Visualization comparisons of how under- and over- 

diagnosis rate were impacted by the integration of SDOH variables can be found in Figure 

S2.

4. Discussion

In real-world settings, under-diagnosis of heart failure may delay patients’ access to care and 

is associated with a higher risk of 30-day readmission 37,38whereas over-diagnosis of heart 

failure may result in inappropriate patient management 39. ML classifiers have frequently 

perpetuated these biases in diagnosis and may have contributed to confusion regarding 

racial and socioeconomic disparities. We observed that Female and Black patients were 

more likely to be under-diagnosed and less likely to be over-diagnosed by our classifiers 

when compared with Male and White patients. Medicare and Medicaid beneficiaries, many 

of whom may be socioeconomically disadvantaged, were at higher risk of being falsely 

predicted as having short-term hospitalization and would potentially receive less healthcare 

resources, when compared with private insured patients. In short, we found that ML 

algorithms selectively under-diagnosed under-served heart failure patients, such as Female 

and Black patients and patients of lower socioeconomic status. These sub-groups have 

higher rates of HF and poorer HF prognosis as shown in epidemiology studies 40. An ML 

algorithm that under diagnoses such patients would represent a “double jeopardy” to those 

under-served groups.

We found several general patterns when investigating the improvement in fairness resulting 

from the integration of SDOH. First, all three composite SDOH features (SDI and ADI at 

both state and national levels), can mitigate the above-noted disparities. Second, among the 

other 12 independent SDOH constructs that were obtained from the American Community 

Survey (ACS), we found that ethno-racial composition of a community plays a most 

important role in the improvement of fairness and performance. Inclusion of percent 
non-Hispanic Black improved the equalized odds ratio from 0.828 to 0.866. The percent 
Hispanic is also one of the leading factors that achieved performance boosting. Third, 

the integrated SDOH variables importantly contribute to the proper classification. When 

collectively integrated, 14 of 15 SDOH variables ranked among the top 30 most important 

features of random forest classifier. The ranking of the feature importance for the random 

forest classifier can be found in Figure S3.

We admit that the model performance of random forest classifier is modest. The reason 

might be that we only used the information collected at the time of admission and excluded 

all in-patient histories enabling us to better predict the outcome of the entire hospital 

course. Previous research with similar objectives also achieved a similar range of AUROC 

scores 41,42. We did not expect to boost the model performance when integrated those 

SDOH variables as this process cannot bring more clinical information. However, this 

study leans to a proof-of-concept to establish the feasibility of using SDOH variables to 

mitigate algorithmic bias. Our proposed method has potential generalizability. It can be 

applied to any clinical predictive model only if the SDOH information can be retrieved. If 

social determinants are well defined with domain knowledge, it may also have potential in 
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other research fields out of the scope of healthcare. Moreover, the method is not limited 

to the study of racial disparities. Researchers can easily form separate studies regarding 

sex or cultural biases by replacing race/ethnicity with other sensitive attributes of interest. 

We adopted area-level SDOH which is the smallest geographical granularity that we were 

able to use for GWTG-HF patients as HIPAA regulations do not allow us to retrieve 

SDOH variables at the individual-level for each patient in a registry or electronic health 

records dataset. However, area-level SDOH can help depict access and quality of care in 

communities, which has been shown to greatly affect the outcomes of heart failure patients 
43.

Our work also has some limitations, each of which may lead to further investigation. First, 

we only applied our proposed debiasing method to one clinical predictive scenario. We 

will conduct more experiments on various predictive outcomes in the next step. Secondly, 

the proposed method was only examined using a registry dataset. There are, however, 

known difficulties in using the EHR as a data source. Most publicly available EHR datasets 

carefully de-identify PHI information, which makes it impossible to extract or assign 

SDOH variables based on an individual patient profile. We are planning to leverage our 

in-house data warehouse (Northwestern Medicine Enterprise Data Warehouse) to validate 

the adaptability of our approach to an EHR dataset. Thirdly, we only used conventional 

ML models and structured clinical variables to build predictive models. The impact of 

the integration of SDOH on the fairness and performance of deep learning models is 

unknown. We plan to develop more complex deep neural networks for other data sources, 

e.g., clinical notes or medical images, and investigate the fairness improvement by using a 

similar approach. Fourthly, for the assignment of SDOH variables, we could only obtain SDI 

and ADI derived from the multiple year estimates of ACS between 2009 and 2015, which 

has a two-year time lag with our clinical data and ignores the temporal change of SDOH at 

community level. We will keep SDOH variables up to date once the 2016–2020 ACS 5-Year 

Data is released.

5. Conclusion

In conclusion, this study demonstrated the substantial performance disparities across ethno-

racial and socioeconomic subgroups of ML models in the prediction of composite heart 

failure outcomes. We also showed that the integration of SDOH to ML models can mitigate 

such disparities without compromising predictive power. Further studies are necessary to 

validate the adaptability of our proposed approach on other clinical outcomes and data 

sources. We urge peer researchers to duly consider ML fairness when pursuing state-of-the-

art performance in clinical predictive models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Nonstandard Abbreviations and Acronyms

ML Machine Learning

HF Heart Failure

LOS Length-of-Stay

SDI Social Deprivation Index

ADI Area Deprivation Index

SDOH Social Determinants of Health

AHA American Heart Association

USPS United States Postal Service

AUROC Area Under the Receiver Operating Characteristic Curve

FPR False Positive Rate

FNR False Negative Rate

ACS American Community Survey

HIPAA Health Insurance Portability and Accountability Act

HER Electronic Health Record
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Clinical Perspective

What is new?

• Investigating the overlap between under-served sub-populations and under-/

over- diagnosed patients to quantify and interpret the algorithmic biases of 

ML based HF predictive models.

• Integrating the community-level social determinants of health to the feature 

space of individuals in order to improve the performance and fairness of ML 

based HF predictive models.

Clinical Implications.

• ML models can identify high-risk patients who are most likely to experience 

prolonged hospitalization or in-hospital mortality.

• The improvement of fairness can facilitate the real-world applications of ML 

predictive models.

Li et al. Page 13

Circ Heart Fail. Author manuscript; available in PMC 2023 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Underdiagnosis (false negative rate) and overdiagnosis (false positive rate) rates in each 

sex, ethnoracial, and insurance subgroup, when using random forest classifier to predict the 

composite heart failure outcome.
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Table 1.

Description of Social Determinants of Health (SDOH) variables used in our study to mitigate the algorithmic 

bias. We leveraged two data sources of SDOH factors in this study: Social Deprivation Index (SDI) 25 and 

Area Deprivation Index (ADI) 26. Row 1 – 12 are the 12 constructs of SDI index. Each SDOH variable (row 1 

– 15) was separately integrated into the feature space to build 15 new ML configurations. We also collectively 

integrated all SDOH variables into the feature space as the 16th ML configuration.

Variables * Description Domain

fpl_100 Percent population less than 100\% federal poverty level Income

sing_parent_fam Percent single-parent households with dependents less than 18 years Household

dropout Percent drop-out (persons with no high school diploma estimate) Education

no_car Percent population with no car Transportation

rent_occup Percent renter occupied (tenure housing) Housing

crowding Percent crowded (tenure by occupants per room, greater than 1.01 to 1.50 occupants per room) Housing

nonemp Percent non-employed and not seeking work Employment

unemp Percent un-employed but actively seeking work Employment

highneeds Percent in high-needs age groups (children under the age of 5 and female between the ages of 15 and 44) Demographics

hisp Percent Hispanic Demographics

foreignb Percent foreign born Demographics

black Percent non-Hispanic Black Demographics

SDI Social Deprivation Index Comprehensive

ADIstate Area Deprivation Index - ranking at state level Comprehensive

ADInational Area Deprivation Index - ranking at national level Comprehensive

all SDOH Integration of all SDOH variables above Collective

*
The abbreviated variable names were inherited from the original source of Social Deprivation Index database.
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Table 2.

Summary statistics of heart failure patients within different subgroups. The positive outcome is defined as the 

patients that having long-term hospitalization (length-of-stay is longer than 7 days) or disposition of death.

Subgroups Number of Subjects Percent of Subjects Percent of Subjects in Positive Class

Sex

 Male 115,791 115,791 19.22%

 Female 94,484 44.91% 19.19%

 Unknown 93 0.04% 27.96%

Race/Ethnicity

 White 136,684 64.97% 19.39%

 Black 47,345 22.51% 18.89%

 Hispanic 16,254 7.73% 18.20%

 Asian 4,032 1.92% 17.46%

 Others/Unknown 6,053 2.88% 21.15%

Insurance

 Medicare 102,042 48.51% 19.08%

 Private/HMO*/Others 56,616 26.91% 18.92%

 Medicaid 38,381 18.24% 19.76%

 Uninsured/Unknown 13,329 6.34% 19.69%

Age

 greater than 80 63,785 30.32% 17.82%

 60 to 80 96,351 45.80% 20.16%

 40 to 60 43,943 20.89% 19.06%

 less than 40 6,289 2.99% 18.44%

All 210,368 100.00% 19.20%

*
HMO: Health maintenance organization
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Table 3.

Performance and fairness of five machine learning classifiers in the prediction of long-term hospitalization or 

in-hospital mortality for heart failure patients. p-Value was derived from the McNemar’s tests, where we may 

in favor of the alternative hypothesis that the classifier of interest has a different proportion of errors than the 

random forest classifier on the test set if p is less than 0.05.

Models Performance Fairness

AUROC Precision Recall F1 p-Value Demographic parity ratio Equalized odds ratio

Naive Bayes 0.576 0.249 0.561 0.346 <0.001 0.533 0.525

Logistic Regression 0.610 0.270 0.627 0.377 <0.001 0.655 0.663

Support Vector Machine 0.620 0.272 0.630 0.38 <0.001 0.670 0.683

GBDT* 0.668 0.254 0.610 0.358 0.007 0.772 0.754

Random Forest 0.680 0.286 0.654 0.398 - 0.828 0.826

*
GBDT: Gradient Boosted Decision Trees.
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Table 4.

The impact of fairness and performance when integrating each SDOH variables into the feature space of 

random forest classifier. Each integrated model was compared to the baseline model (the model without any 

SDOH integrated). McNemar’s test was also used to compare the difference of proportion of errors between 

the baseline and the SDOH integrated models. The fairness score is underlined if we observe improvement on 

fairness when compared with the baseline model. The highest score for each metric is bold.

Integrated Variables* Fairness Performance

Demographic parity ratio Equalized odds ratio AUROC Recall p-Value

Baseline 0.828 0.826 0.680 0.654 1.000

fpl_100 0.851 0.845 0.682 0.656 0.952

sing_parent_fam 0.821 0.821 0.681 0.651 0.076

dropout 0.865 0.864 0.681 0.654 0.201

no_car 0.835 0.821 0.682 0.655 0.545

rent_occup 0.844 0.851 0.682 0.657 0.484

crowding 0.873 0.872 0.682 0.654 0.856

nonemp 0.833 0.831 0.681 0.655 0.349

unemp 0.841 0.838 0.681 0.656 0.951

highneeds 0.852 0.857 0.682 0.657 1.000

hisp 0.848 0.851 0.683 0.657 0.178

foreignb 0.845 0.845 0.683 0.655 0.114

black 0.866 0.885 0.682 0.653 0.551

SDI 0.855 0.865 0.680 0.654 0.879

ADInational 0.850 0.857 0.681 0.653 0.220

ADIstate 0.830 0.829 0.682 0.653 0.366

all SDOH 0.881 0.863 0.681 0.654 0.071

*
The abbreviated variable names were inherited from the original source of Social Deprivation Index database. For a detailed description of these 

variables, please refer Table 1.
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