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Photosynthetic plants have a special place in living nature as they generate unbelievable 

amounts of carbohydrates, i.e., ca. 150 × 1012 kg on a global scale per year, and they are 

responsible for the production of the molecular oxygen in the Earth’s atmosphere. Thus, 

historically, studies of plants have been associated in the minds of scientists and laypeople 

alike with agriculture and related biotechnology fields. However, it is very far from reality. 

Already decades ago, plants joined the ranks of other higher model organisms, such as 

insects and animals, both from the standpoint of conceptual and technical sophistication of 

experimental approaches as well as their influence on our advances in the knowledge of 

biology.

Unlike most other organisms, plants as individuals have no capacity for travel and thus 

are unable to escape their surroundings. Along the eons of their evolution therefore 

plants have accumulated many biological capabilities to adapt to the changing biotic 

and abiotic environments. For example, plants can alter the degree of lipid unsaturation 

in their cellular membranes, and, therefore, alter the membrane fluidity, depending on 

the ambient temperature, i.e., increase it in the cold and decrease it in the heat [1]. 

Or, plants, in which the outside access to the cell membrane is limited due to the 

cell walls that encase the individual cells, have evolved intercellular connections, termed 

plasmodesmata [2], which are gateable and allow cell-to-cell transport of macromolecules 

and macromolecular structures, from nucleic acids to proteins to subviral particles [3–6]. 

Whereas the plasmodesmata were discovered more than 120 years ago [7], the concept of 

macromolecule/particle transport through intercellular connections emerged only 20 years 

ago with the discovery of membrane tunneling nanotubes (TNTs) [8], and since then 

TNTs have been shown to traffic large macromolecules and viruses [9–14], translating the 

concept developed in pants to the animal organisms. Even the discovery of viruses and, 

consequently, the science of virology began with the Tobacco mosaic virus (TMV), a plant 

RNA virus [15,16]. This cell-to-cell movement of plant viruses through plasmodesmata was 

one of the two biological (and, at the time, largely enigmatic) processes that attracted me to 

plant biology. Another process historically studied in plant systems is genetic engineering. 
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In nature, diverse species of plants are genetically modified by a bacterial pathogen 

Agrobacterium tumefaciens which transfers to plants and integrates into their genome a 

segment of its plasmid DNA, termed T-DNA; the genes contained in the T-DNA induce 

neoplastic cell growth as well as biosynthesis of opines, amino acid derivatives that are 

secreted by the tumor cells into the environment and are used by Agrobacterium as carbon 

and nitrogen sources. In the laboratory, the native T-DNA is re- placed by the sequences of 

interest and used to produce transgenic plants [17–22]. Like Agrobacterium, many human 

pathogenic bacteria, e.g., Bartonella, Legionella, Helicobacter, and Shigella, have evolved to 

export their virulence effector proteins into the host cells using the type 4 secretion system 

(T4SS) machinery [23], and, at least one of these bacterial species, Bartonella henselae, was 

reported to export and integrate into a human cell genome a plasmid reporter DNA [24,25], 

although it remains unknown whether Bartonella exports its own, endogenous DNA and 

genetically transform its human host cells in vivo, during the course of infection.

The field of plant biology continues to provide excitement and intellectual and technical 

challenges to all involved. This is a very broad field of science that encompasses all aspects 

of living nature as they occur in plants. I am especially interested in three molecular 

aspects of the plant life cycle—genetic modification, intercellular communication, and 

epigenetic regulation—which include the transport of biologically active nucleic acids, 

i.e., transgenes and viral genomes, and transcriptional regulation of their expression (Fig. 

1). In these areas, as in many others in plant research, I look forward to the increased 

involvement of synthetic biology. Generally, synthetic biology principles and techniques 

allow manipulation and refactoring, i.e., replacement of endogenous regulation of natural 

gene circuits with synthetic, orthogonal regulatory elements, many aspects of eukaryotic or 

prokaryotic cells, including orthogonal control of gene expression, genetic toggle switches, 

and logic gates as means to control gene expression with precision, and computationally 

designed control of cell and tissue-specific expression [26–29]. For example, orthogonal 

systems, i.e., engineered biologically active molecules that cooperate to provide a specific 

biological function without affecting or being affected by the corresponding endogenous 

cellular systems [27,28], would allow the conversion of living cells with particular natural 

capabilities into nanomachines dedicated solely to that specific set of capabilities, e.g., 

refactoring Agrobacterium into a dedicated genetic transformation nanomachine. Because 

Agrobacterium can genetically modify a wide range of eukaryotic cells, from plant to yeast 

to human [19], under laboratory conditions, the refactored Agrobacterium cells could be 

adapted to specific target cells/organisms, facilitating their genetic modification for medical, 

research, and biotechnological purposes. Furthermore, the optimal molecular composition 

of the refactored Agrobacterium would also shed new light on the cellular mechanisms 

involved in the genetic transformation process.

Agrobacterium preferentially integrates its T-DNA into the double-stranded DNA breaks 

(DSBs) in the plant genome, presumably using the cellular DNA repair mechanisms [30–

33]. Thus, our investigation of plant genetic transformation by Agrobacterium represents 

an aspect of the broader field of studies of the plant DNA damage response pathways. 

Collectively, future advances in these studies should facilitate elucidation of perhaps 

the most important of the remaining enigmatic steps of the Agrobacterium-mediated 

genetic transformation: the identity of the cellular proteins and the bacterial effectors that 
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participate in T-DNA integration, the molecular interactions between these factors, and the 

temporal sequence of these interactions that culminates with the integration event. Similarly, 

I anticipate important advances in our understanding of the molecular reactions and 

sequential steps of targeting protein and nucleoprotein cargos to plasmodesmata, increase 

in plasmodesmal permeability, transit of the plasmodesmal channel by the cargo molecules, 

and the energy sources for this active transport. Detailed proteomic characterization of 

plasmodesmata, which has already begun [34–36], will facilitate the mechanistic studies by 

identifying and characterizing the complement of proteins associated with plasmodesmata. 

For example, by analogy to the dynamic composition of the nuclear pore complex [37], 

plasmodesmal proteins that are early in plasmodesmata assembly and stable in their 

residence time are likely structural in function whereas those that are late in the assembly 

and transient in the residence time are likely directly involved in the cell-to-cell transport 

process.

Both plant genetic transformation and, in many cases, plasmodesmal transport of viral 

and endogenous nucleoprotein complexes ultimately lead up to the expression of the 

transferred nucleic acid molecules, i.e., transgenes, viral genomic DNA or RNA, or non-

cell-autonomous transcripts. One major factor in regulating the expression and/or formation 

of these molecules is the posttranslational modification of histones, which determines the 

active or inactive state of the chromatin. These modifications, which together determine 

the transcriptional outcomes [38,39], are dynamic, effected by writers and erasers, i.e., 

histone modifying enzymes that add or remove the specific functional groups [40]. In plant 

cells, one major class of important, yet relatively sparsely characterized, erasers are histone 

deubiquitinases that have been implicated in diverse aspects of physiology, growth, and 

development [41–47]. Only about 10% of all 50 deubiquitinases encoded by the Arabidopsis 

genome [48] have been proposed to target histones and participate in epigenetic regulation 

[46,47,49–56]. Of these, two histone deubiquitinases, UBP26 and OTLD1, participate both 

in transcriptional repression and activation of their target gene expression [46,47,51,53,54], 

with the dual function of OTLD1 likely to be direct [46,47]. Future understanding of how 

deubiquitylation of the same type of histone by the same histone deubiquitinase can elicit 

two opposing effects on transcription of the direct target genes may help will define a 

potential junction in chromatin remodeling pathways leading to transcriptional repression or 

activation.

This short Commentary reflects my own specific and relatively narrow scientific interests. 

Yet, it illustrates how plant-centered model systems contribute to our understanding of 

diverse and fundamental aspects of life.
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Fig. 1. 
Schematic illustration of three biological processes—plant genetic engineering, plant virus 

cell-to-cell movement, and epigenetic regulation of plant gene expression—which involve 

the transmembrane transport of biologically active nucleic acids molecules and represent the 

focus of this Commentary.
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