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Abstract

Temporomandibular joint osteoarthritis (TMJ OA) is a disease with a multifactorial etiology, 

involving many pathophysiological processes, and requiring comprehensive assessments to 

characterize progressive cartilage degradation, subchondral bone remodeling, and chronic pain. 

This study aimed to integrate quantitative biomarkers of bone texture and morphometry of 

the articular fossa and joint space to advance the role of imaging phenotypes for diagnosis of 

Temporomandibular Joint Osteoarthritis (TMJ OA) in early to moderate stages by improving the 
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performance of machine-learning algorithms to detect TMJ OA status. Ninety-two patients were 

prospectively enrolled (184 h-CBCT scans of the right and left mandibular condyles), divided into 

two groups: 46 control and 46 TMJ OA subjects. No significant difference in the articular fossa 

radiomic biomarkers was found between TMJ OA and control patients. The superior condyle-to-

fossa distance (p < 0.05) was significantly smaller in diseased patients. The interaction effects of 

the articular fossa radiomic biomarkers enhanced the performance of machine-learning algorithms 

to detect TMJ OA status. The LightGBM model achieved an AUC 0.842 to diagnose the TMJ OA 

status with Headaches and Range of Mouth Opening Without Pain ranked as top features, and top 

interactions of VE-cadherin in Serum and Angiogenin in Saliva, TGF-β1 in Saliva and Headaches, 

Gender and Muscle Soreness, PA1 in Saliva and Range of Mouth Opening Without Pain, Lateral 

Condyle Grey Level Non-Uniformity and Lateral Fossa Short Run Emphasis, TGF-β1 in Serum 

and Lateral Fossa Trabeculae number, MMP3 in Serum and VEGF in Serum, Headaches and 

Lateral Fossa Trabecular spacing, Headaches and PA1 in Saliva, and Headaches and BDNF in 

Saliva. Our preliminary results indicate that condyle imaging features may be more important in 

regards to main effects, but the fossa imaging features may have a larger contribution in terms 

of interaction effects. More studies are needed to optimize and further enhance machine-learning 

algorithms to detect early markers of disease, improve prediction of disease progression and 

severity to ultimately better serve clinical decision support systems in the treatment of patients 

with TMJ OA.
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Introduction

The Diagnostic Criteria (DC) for TemporoMandibular Joint Disorders (TMD) have recently 

described the condition of TemporoMandibular Joint Osteoarthritis (TMJ OA) defined 

by Ahmad et al 2009 (1) as Degenerative Joint Disease (2). In this study, we use the 

2009 term, TMJ OA, because this is a disease with a multifactorial etiology, involving 

many pathophysiological processes, and requires comprehensive assessments to characterize 

progressive cartilage degradation, subchondral bone remodeling, and chronic pain (3–5). 

TMJ OA – once thought to be a condition involving “wear and tear” over time – is now 

classified as a “low inflammatory arthritic condition” (6) and associated with inflammatory 

mediators that lead to proliferative and resorptive inflammatory response with overall 

destructive consequences on the structural components of the TMJ, such as its cartilage, 

bone, and synovium (7). The progression of TMJ-OA may be slow (8), and the initial 

stages may be subclinical until the disease process has advanced to chronical stages (9). 

The TMJ provides a unique model to study early bone changes in OA, as only a thin layer 

of fibrocartilage covers the articular bone surface in the TMJ condyle (10, 11). Numerous 

animal studies indicate that the bone microarchitecture (4, 5, 12) is an important factor in 

the OA pathogenesis initiation, preceding articular cartilage changes (12, 13), and should 

be investigated in human studies for early TMJ OA detection. As treatments to reverse the 

chronic damage of TMJ OA are for the most part unavailable and limited (14), it is clear 
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that early diagnosis may provide the best opportunity to prevent extensive and permanent 

joint damage. Current diagnosis standard protocols recommended in the DC/TMD criteria 

(1, 2) are based on pre-existent condylar damage, such as subcortical cysts, surface erosions, 

osteophytes, or generalized sclerosis.

Radiomics is the conversion of digital medical images into mineable high-dimensional 

data (15) – it refers to the extraction and analysis of advanced quantitative imaging from 

medical images to diagnose and/or predict diseases. This process is motivated by the 

concept that biomedical images contain information that reflect underlying pathophysiology 

and that these relationships can be revealed via quantitative image analyses (15). With 

high-throughput computing, it is now possible to promptly obtain countless quantitative 

features from relatively new high resolution low radiation CBCT (hr-CBCT) (16), and new 

software applications, with a user-friendly interface, can now easily extract large amounts 

of quantitative features from hr-CBCT greyscale images (17, 18). A study conducted by 

Bianchi et al. using quantitative bone imaging biomarkers for diagnosis of TMJ OA from hr-

CBCT scans of mandibular condyles showed differences in subchondral bone microstructure 

between control and TMJ OA groups, and that they provided an acceptable diagnostic 

performance for the diagnosis of TMJ-OA. This opens up the notion that these biomarkers 

could be clinically significant in recognizing early onset of TMJ OA and enabling early, 

conservative therapy (19).

This study seeks to investigate whether the inclusion of articular fossa data improves the 

performance of machine-learning algorithms to detect TMJ OA status. Dislocation of the 

mandibular condyle from the articular fossa (mimicking the absence of the condyle) results 

in the arrested development of the fossa (20). This suggests that normal fossa development 

depends on normal condyle development, and the fossa bony microstructure may show 

signs of TMJ OA comparable to the condyle. Literature on changes related to the articular 

fossa in patients with TMJ OA is limited to roof thickness and joint space narrowing (21–

22). The present study aims specifically to evaluate whether the integration of condyle-to-

fossa distances and quantitative bone texture and morphometry imaging biomarkers in the 

articular fossa improve the performance of machine-learning algorithms for the diagnosis of 

TMJ OA in early to moderate stages.

Materials and methods

This study followed the STROBE guidelines for observational studies. This cross-sectional 

study was approved by the Institutional Review Board of the University of Michigan 

(HUM00113199). All patients signed an informed consent and agreed to participate.

Study design and participants

The following inclusion criteria were applied for all patients: age between 21 and 70 years, 

no history of systemic disease, no history of TMJ trauma, surgery, or recent TMJ injections, 

no current pregnancy, and no congenital bone or cartilage disease. The control subjects were 

recruited by advertisements placed in the University Of Michigan School Of Dentistry and 

at The University of Michigan Dentistry Hospital; potential participants were first screened 

by telephone interview. The TMJ OA patients were recruited at their appointment with the 
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TMD specialist from the University of Michigan. A total of 92 patients were selected, for a 

total 184 h-CBCT scans of the mandibular condyles. All subjects were clinically evaluated 

by the same TMD specialist using the Diagnostic Criteria for Temporomandibular Disorders 

(DC/TMD) (1–2) They were then divided into two groups: a control group (n = 46 patients, 

46 condyles) and a TMJ OA group (n = 46 patients, 46 condyles). The inclusion criteria for 

control subjects were no history of clinical signs/symptoms of TMD. The inclusion criteria 

for the TMJ OA group were the presence of TMJ pain for less than 10 years, with clinical 

signs and symptoms evaluated using the DC/TMD: TMJ noise during movement or function 

in the last 30 days and crepitus detected during mandibular excursive movements. The 

radiographic CBCT interpretation was conducted by two oral and maxillofacial radiologists 

to confirm the presence of TMJ OA and was positive for at least one of the following: 

subchondral cyst, erosion, generalized sclerosis, and/or osteophytes (1). The exclusion 

criteria for the TMJ OA group were subjects with more than 10 years since the diagnosis 

of TMJ OA, or condyles with severe stages of bone destruction, subchondral cyst, erosion, 

generalized sclerosis, and/or osteophytes. The subjects were age and sex matched, with a 

mean 36 ± 11.4 years for control subjects and 40.2 ± 13.1 years for TMJ OA patients; 

with 4 control and 4 TMJ OA male subjects. The majority of female subjects than male 

subjects corroborates the sex distribution reported in the literature (22, 23). This study data 

included 3 sources of diagnostic features: clinical, biomolecular (levels of proteins in serum 

and saliva), and imaging features.

Clinical signs and symptoms

The same investigator collected and measured the clinical signs and symptoms of the 

participants based on the DC/TMD criteria (1, 2). The variables measured and selected for 

further statistical analysis were: Age, Pain began in years - TMJ OA group only, Current 

Facial Pain -TMJ OA group only, Worst Facial Pain in last 6 months -TMJ OA group 

only, Average Pain -TMJ OA group only, Last 6 Months Distressed by Headaches, Last 6 

Months Distressed by Muscle Soreness, Vertical Range Unassisted Mouth Opening Without 

Pain (mm), Vertical Range Unassisted Maximum (mm), Vertical Range Assisted Maximum 

(mm).

Biomolecular data

The participants had 5 ml of venous blood collected by a trained nurse at the University 

of Michigan. The blood was centrifuged for 20 min at 1,000 RPM to separate only the 

serum that was then aliquoted in 2 ml Eppendorf tubes and stored at −8 °C. For the saliva 

collection, the participants received a 14 ml sterile test tube with a funnel inserted; they 

were instructed to tilt their head forward and drip the saliva off into the tube until 2 ml 

was collected. They were informed to not spit, talk, or swallow during this process. We 

evaluated 14 proteins (10) in serum and saliva associated with nociception, inflammation, 

angiogenesis and bone resorption: 6ckine, Angiogenin, BDNF, CXCL16, ENA-78, MMP-3, 

MMP-7, OPG, PAI-1, TGFb1, TIMP-1, TRANCE, VE-Cadherin and VEGF. However, the 

expression of 6ckine was below the limit of detection in the serum and saliva samples in this 

study, and MMP-3 was not expressed in saliva. Those proteins were selected in a previous 

study that detected these markers in the TMJ synovial fluid and saliva of OA patients, 

showing correlations with bone surface changes (24). Custom human quantibody protein 
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microarrays obtained from RayBiotech, Inc. Norcross, GA, was used to quantitatively assess 

the saliva and serum samples for the 14 specific biomarkers. Each participant had duplicates 

run for the saliva and serum samples.

Imaging

All small field of view 0.08 mm isotropic voxel CBCT scans were acquired using a 3D 

Accuitomo scanner (J. Morita Mfg. Corp., Tokyo, Japan). The TMJ acquisition protocol 

was as follows: field of view (FOV) of 40 × 40 mm, 90 kVp, 5 mAs and scanning time 

of 30.8s. The limitation of the exposure to the smallest FOV possible is in accordance to 

the ALARA (as low as reasonably achievable) principle, and this radiation reduction to the 

patient, maintaining or even improving the level of precision and accuracy in the diagnosis, 

supports the concept “as low as diagnostically acceptable” (ALADA) (25). Imaging features 

of one condyle per patient were included to reduce possible bias due to non-specific side 

data in systemic biological samples and comorbidities, technical problems in the hr-CBCT 

image acquisition, and presence of unilateral TMJ OA. The detailed image analysis protocol 

provided applied to the articular fossa region is shown in Figure 1 and all imaging features 

included have previously been validated for the mandibular condyle by Bianchi, et al (2021) 

(19) using 3D Slicer (26) and ITK-SNAP (27) open-source software. Anterolateral and 

articular eminence volume of interest (VOI) articular fossa regions in the FOV (Figure 2A) 

were selected and extracted using the “crop-volume” module in 3D Slicer (Figure 2B) with 

30 × 30 × 30 slices. The posterior regions of the articular fossa were not included due to 

the presence of air cells in the temporal bone samples and difficulty distinguishing from 

trabecular bone. A total of 23 surrogate imaging biomarkers were evaluated (19, 28–30), 

as described in the Table 1. The BoneTexture module in 3D Slicer was used to compute 

the bone imaging biomarkers and obtain the subchondral bone microstructure values. The 

software computation parameters were chosen based on the pilot calibration studies from 

Bianchi et al (2021). The following computational software parameters were selected: (1) 

for GLCM: mask “inside” value = 1; number of bins = 10; voxel intensity range min = 

−1,000, max = 2,500; neighborhood radius = 4; (2) for GLRLM: mask “inside” value = 1; 

number of bins = 10; voxel intensity range min = −1,000, max = 2,500; distance range min = 

0, max = 1; neighborhood radius = 4. For bone morphometry (BM), the software parameters 

were threshold = 250 and neighborhood radius = 4. Five measurements of joint space 

(Figure 2C) were measured as condylar-to-fossa distances (anterior, anterolateral, medial, 

superior and posterior). The statistical analysis of the imaging protocol was performed using 

IBM SPSS Statistics version 27.0 (IBM Corp., Armonk, NY). With an interval of 2 weeks 

between repeated measures, intra-class correlation coefficients (ICC) were used to assess the 

study error of the method in the selection of VOIs and computation of radiomic and bone 

morphometry features, as well as repeatability and interobserver reproducibility of joint 

space measures. The t-test for independent samples was used to compare the TMJ OA and 

Control groups with Levene’s Test for Equality of Variances to determine the assumption for 

homogeneity of variance.

Diagnostic performance of the markers in machine learning algorithms

The data from this study was incorporated into two artificial intelligence-based tools – 

TMJOAI (TMJ Osteoarthritis Artificial Intelligence) tool (31) that integrates biological, 
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clinical and imaging data; and the TMJPI (TMJ Privileged Information) tool (32). The 

Learning Using Privileged Information (LUPI) implemented in the TMJPI tool uses 

biological data to train the machine learning model but classifies new patients based 

on clinical and imaging data only, which is the current standard of care. These tools 

are available in an open-source web system DSCI (Data Storage for Computation and 

Integration) used for data management with storage and integration of patient information 

from multiple sources (33).

The TMJOAI tool approach included feature normalization, selection, and model evaluation. 

We normalized all features to have zero mean and one standard deviation. Next, we 

calculated the AUC (Area Under the Curve), p-value and q-value from a two-sample 

Mann-Whitney U test to evaluate the significance of each feature. Then, we performed 

cross-validation (CV) to avoid overfitting – 100 times five-fold CV – resulting in 500 

models in total. Each subject was predicted by the ensemble (averaging) of 100 models 

whose training set did not include that subject. Top main effect features and interactions, 

filtered with AUC > 0.7 and AUC > 0.65, respectively, calculated from the training subjects 

were then fed into models to make diagnostic predictions. We trained Extreme Gradient 

Boosting (XGBoost) (34) and Light Gradient Boosting Machine (LightGBM) (35) machine 

learning models. For both XGBoost and LightGBM models, we fixed the depth D = 1, and 

tuned the iteration steps by further splitting the training subjects into training and validation 

subjects. The following metrics were calculated to evaluate the performances of the model: 

accuracy, precision, recall, F1-score, and AUC, where AUC was chosen as the evaluation 

criterion to measure the test’s discriminative ability, i.e., how good is the test in a given 

clinical situation, with an AUC > 0.7–0.8 as fair, 0.81–0.9 as good and 0.91–1 as very good 

(36).

The TMJPI tool approach tested the performance of RVFL and KRVFL+ models using 

biological data as privileged information (32). Considering that biological data is not 

routinely acquired for TMJ OA patients, we performed five-fold cross-validation and hyper-

parameter tuning using a grid-search approach, utilized feature selection approaches such 

as normalized mutual information feature selection (NMIFS), MRMR (maximum relevancy 

minimum redundancy) and calculated Shapley Additive explanations values to rank features 

by their importance (37). We tested the performance of the TMJPI model using AUC, 

F1-score, sensitivity, specificity, precision, accuracy.

Results

In the articular eminence and anterolateral VOIs, 22 of the 23 proposed markers had 

an ICC value of greater than 0.8, indicating good repeatability of these values. In the 

articular eminence, the ICC value for Cluster Shade was 0.549, and in the anterolateral 

region, the ICC value for Correlation was 0.539, and these values were excluded from the 

machine learning models. The ICC values for all five distances in the 3D measurement were 

greater than 0.8, indicating good repeatability and reproducibility. Statistical significance 

was detected between patients exhibiting early to moderate stages of TMJ OA and control 

patients in the 3D measurement of the superior condyle-to-fossa distance (p = 0.013) with 

diseased patients exhibiting a smaller superior condyle-to-fossa distance.

Mackie et al. Page 6

Front Dent Med. Author manuscript; available in PMC 2022 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Using the TMJOAI tool, we found that articular fossa radiomics, bone morphometry and 

joint space data improved the performance of machine learning models in detecting TMJ OA 

status mainly through interaction effects among the integrated features. The best performing 

machine learning model was LightGBM model, even better than XGBoost + LightGBM 

combined, with the highest AUCs and F1- scores. Our results in Table 2 show that the 

LightGBM model now implemented in the TMJOAI with these features and interactions 

achieves the accuracy of 0.804, AUC 0.842, and F1-score 0.804 to diagnose the TMJ OA 

status with 3,081 features interactions.

The values for the AUC, p-value, and q-value for all features are shown in Figures 3A, 

4A. Figure 3A shows the AUC (upper plot), p-value (middle plot) and q-value (lower 

plot) for each category of variables (biological, clinical, condylar radiomics, articular fossa 

radiomics, and joint space). Figure 5 shows the 12 features with >90% top contributions 

sum: Headaches, VE-cadherin in Serum and Angiogenin in Saliva, TGF-β1 in Saliva and 

Headaches, Gender and Muscle Soreness, PA1 in Saliva and Range of mouth opening 

without pain, Lateral Condyle Grey Level Non-Uniformity and Lateral Fossa Short Run 

Emphasis, Range of mouth opening without pain, TGF-β1 in Serum and Lateral Fossa 

Trabeculae number, MMP3 in Serum and VEGF in Serum, Headaches and Lateral Fossa 

Trabecular spacing, Headaches and PA1 in Saliva, and Headaches and BDNF in Saliva. 

Most of the features with significant AUC values are clinical or condylar radiomics; 

no fossa radiomic or joint space features are detected with AUC > 0.65 (Figure 3A). 

The highest AUC value for a main effect fossa radiomic or joint space features was the 

superior joint space distance (Figure 3A); the interaction of Headaches and Lateral Fossa 

Trabecular spacing, Lateral Condyle Grey Level Non-Uniformity and Lateral Fossa Short 

Run Emphasis, and TGF-β1 in Serum and Lateral Fossa Trabeculae number were found to 

significantly contribute to the prediction of TMJ OA status (Figures 3B, 4B, 6A).

For articular fossa markers, prediction models show that the interaction between Lateral 

Condyle Grey Level Non-Uniformity and Lateral Fossa Short Run Emphasis, TGF-β1 in 

Serum and Lateral Fossa Trabeculae number, and Headaches and Lateral Fossa Trabecular 

spacing, are found to be top features for accurate diagnosis of early stages of this clinical 

condition (Figure 6A). After the selection of the best features and interactions (Figure 

6A), Figure 6B displays the boxplots for comparison between OA and control groups with 

corresponding AUCs, further demonstrating performance in diagnosis of TMJ OA status. 

Figure 5B shows the ROC curves of diagnostic sensitivity and specificity for individual 

features with top mean importance and the mean prediction of XGBoost, LightGBM 

and their ensemble with LightGBM demonstrating the largest ROC curve and highest 

discriminative ability of the models and features (Table 2).

Using TMJPI, when combining clinical, radiomic (condyle and fossa), and 3D joint space 

features, LUPI-based models with additional biological features significantly enhanced the 

model performance on clinical, joint space measurement, and condyle datasets. The best 

clinical performance was obtained with the KRVFL+ model, keeping all clinical criteria 

and applying feature selection on the condyle and joint space features (Evaluation metrics 

shown in Table 2). The Shapley ranking of features based on their importance indicated 

12 top features: 3 Clinical (Headaches, Muscle Soreness, Vertical Range Unassisted 
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Mouth Opening Without Pain), 7 condylar radiomics and morphometry (Trabecular 

thickness, ShortRunHighGreyLevelEmphasis, Cluster Prominence, Entropy, Correlation, 

InverseDifferenceMoment and Energy) and 2 joint space features (Superior and Medial).

Discussion

This study demonstrates the diagnostic performance of joint space distances and radiomic 

biomarkers of the subchondral bone in hr-CBCT scans of TMJ OA patients in the articular 

fossa region. Surrogate articular fossa bone morphometry and textural features were not 

significantly different between TMJ OA patients and controls, whereas the superior joint 

space was significantly smaller in TMJ OA patients. This may suggest that joint space 

narrowing in the superior region may serve as an early sign of TMJ OA as found in previous 

studies (22).

The inclusion of quantitative articular fossa radiomics and joint space to machine-learning 

algorithms proved to be useful in enhancing the performance of TMJ OA classifiers. While 

articular fossa imaging biomarkers alone may not be diagnostic of early disease stages, 

through interactions with condylar, clinical and biological changes, fossa features may serve 

to strengthen the performance of machine-learning algorithms. Headaches and Range of 

mouth opening without pain and interactions of VE-cadherin in Serum and Angiogenin in 

Saliva, TGF-β1 in Saliva and Headaches, Gender and Muscle Soreness; PA1 in Saliva and 

Range of mouth opening without pain, Lateral Condyle Grey Level Non-Uniformity and 

Lateral Fossa Short Run Emphasis, TGF-β1 in Serum and Lateral Fossa Trabeculae number, 

MMP3 in Serum and VEGF in Serum, Headaches and Lateral Fossa Trabecular spacing, 

Headaches and PA1 in Saliva, and Headaches and BDNF in Saliva were the top features/

interactions to accurately diagnose early stages of this clinical condition. Three of these 

interactions include fossa components showing that the assessment of fossa markers proves 

useful in diagnosis, as shown in our results with TMJOAI interaction effects. Therefore, 

while the articular fossa markers alone are not ranked among the features with highest AUC 

(Figures 3A, 4A), many articular fossa feature interactions present higher AUC (Figures 3B, 

4B). The prediction model shows that the interaction between Lateral Condyle Grey Level 

Non-Uniformity and Lateral Fossa Short Run Emphasis, TGF-β1 in Serum and Lateral 

Fossa Trabeculae number, Headaches and Lateral Fossa Trabecular spacing are found to 

be top contributing features for accurate diagnosis of early stages of this clinical condition 

(Figure 6). This finding is similar to that of Bianchi et al. (2020) (10) prediction models 

that showed that the interaction between VE-cadherin in Serum and Angiogenin in Saliva, 

Headaches and PA1 in Saliva, TGF-β1 in Saliva and Headaches, VE-cad_Sal*Headaches 

(AUC= 0.698), TGF-β1 in Saliva and Headaches, and PA1 in Saliva and Range of mouth 

opening without pain are top features with mean >80% contribution to the information 

gain in the XGBoost and LightGBM predictive models. Therefore, our preliminary results 

suggest that while the condyle imaging features may be more important in regard to main 

effect (Figure 3A), the fossa features may have a larger contributing factor in terms of 

interaction effects (Figure 3B) – though future studies with larger sample sizes are needed.

In TMJPI, the machine learning models only tested the original features and the main effect 

of each feature in overall TMJ OA status, whereas in TMJOAI, the machine models also 
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tested interactions between features. This could explain why model performance decreased 

in TMJPI with the inclusion of all radiomic features, as TMJOAI models showed that the 

radiomic contribution is predominantly through interaction effects. Currently, the TMJPI 

tool is limited in computational approaches for testing features interactions due to the 

fact that it is supercomputing intensive and it takes a long time to train the model with 

interactions built in. As our baseline sample recruitment continues, larger sample sizes will 

allow further training of non-LUPI and LUPI-based algorithms on the TMJ OA datasets 

using grid search and 5-fold cross-validation (CV) on the training set to determine the 

optimal hyperparameters and features for each algorithm.

A limitation of the study similar to that of Bianchi et al. (2021) (10) was the use of 

the DC/TMD (1, 2) imaging criteria to confirm the diagnosis of the TMJ OA; however, 

the hr-CBCT used has a voxel size of 0.08 mm3, showing higher resolution and details 

than described in the DC/TMD imaging data, which uses CT scans with 0.7–1 mm slice 

thickness. Even with the addition of radiographic criteria to the DC/TMD – the standardized 

and widely used protocols for TMJ OA assessment – there is still a reliance on subjective 

radiological interpretation of pre-existing bone changes and clinical symptoms (1, 2). 

Furthermore, the cross-sectional study design does not allow assessment of the disease 

progression and how different disease stages affect the proposed biomarkers. This study 

was conducted only at baseline – providing another classification of disease vs. control 

that is already available with imaging and clinical symptoms. However, the ultimate goal 

of this work is the longitudinal assessments that will follow that test the potential of 

these baseline predictor values to also be predictive of risk of disease progression. This 

is valuable in determining which subjects are at greater risk of worsening over time, or 

which subjects would respond better to conservative approaches such as a mouthguard 

or splint therapy. Therefore, these initial markers detected in this study can serve as 

surrogate markers to be tested in future studies of risk of disease progression. Future 

studies using the proposed machine learning models and longitudinal data will provide 

better information on the feature’s behavior and disease progression. However, a drawback 

currently is that feature extraction from Cone-Beam Computed Tomography (CBCT) images 

remains time consuming before this integrative model can be applied in larger scale studies. 

Automatization of image processing steps and further refinements in machine-learning 

algorithms to detect early markers of disease have the potential to improve prediction of 

disease progression and severity to ultimately better serve and treat patients with TMJ OA.

Conclusion

Our results indicate that the condyle imaging features may be more important in regard to 

main effect; whereas, for interaction effect, the fossa features may play a crucial role in 

the diagnosis of TMJ OA. Narrowing of the superior joint space was observed in TMJ OA 

patients. We developed a methodology for extraction of articular fossa radiomics and joint 

space distances utilizing machine learning for a comprehensive integration and management 

of data from various sources to improve articular joint health and predict patient-specific 

TMJ OA status.
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FIGURE 1. 
Image processing workflow adapted from bianchi et al. (2021) using 3D Slicer and ITK-

SNAP open source software. (A) hr-CBCT files were anonymized and compressed. (B) 

The condyle and articular fossa were segmented. (C) 3D Slicer was used to convert the 

segmented articular fossa volume to a 3D surface. (D) Using the “transform” module, a 

standardized spatial orientation for each 3D TMJ bones model was made. Left TMJ scans 

were mirrored to the right side. (E) The spatial orientation matrix created in the last step was 

applied to the TMJ scan. (F) Using the “crop-volume” tool, two regions of the articular fossa 

(anterolateral, and articular eminence) were selected. (G) Using the “BoneTexture” module, 

all of the radiomic variables were computed.
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FIGURE 2. 
TMJ imaging protocol. (A) Small FOV hr-CBCT scans for TMJ imaging features analysis. 

Note that marked bone destruction is seen in the condyle and the articular fossa also shows 

erosion. (B) Volumes of interest (VOIs) in the lateral portion of the articular fossa and in the 

articular eminence regions. (C) Superior condylar-to-fossa distance as indicated by the blue 

axis line seen in the coronal and sagittal views.
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FIGURE 3. 
General association analysis of risk factors for 79 features (A) and 66 top interactions (B). 

(A,B) The outer circle shows the AUC, middle circle shows the p-values, and the inner circle 

shows the q-values for each single feature.
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FIGURE 4. 
Graphic displays of 79 features (A) and 3,081 interactions (B). (A,B) The upper graphic 

shows the AUC, the middle graph shows the p-values, and the lower category shows the 

q-values for each category of features.
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FIGURE 5. 
ROC curves of diagnostic sensitivity and specificity for individual features with top mean 

importance and the mean prediction of XGBoost and LightGBM.
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FIGURE 6. 
Top 12 features in the LightGBM prediction model. (A) Mean contribution (according to 

feature importance) greater than 90% for 100 times 5-fold CV. (B) Boxplots of normalized 

features to diagnose disease status.
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TABLE 1

Description of the variables for radiomic and bone morphometry features.

Features Variables Definitions

Grey-Level Co-occurrence Matrix (GLCM) Energy Uniformity of the grey-level textural organization.

Entropy Randomization of the grey-level distribution.

Correlation Grey-level linear dependence among the pixels.

Inverse Difference Moment Local homogeneity of the grey-level distribution.

Inertia Contrast between a pixel and its neighbor.

Cluster Shade Skewness and uniformity of the grey-level distribution.

Cluster Prominence Skewness and asymmetry of the grey-level distribution.

Haralick Correlation Linear dependence between the pixels.

Grey-Level Run Length Matrix (GLRLM) Short Run Emphasis Distribution of short run lengths.

Long Run Emphasis Distribution of long run lengths.

Grey Level Non Uniformity Variability of the grey-level intensity.

Run Length Non Uniformity Similarity of run lengths in the image.

Low Grey Level Run Emphasis Distribution of the lower grey-level values.

High Grey Level Run Emphasis Distribution of the higher grey-level values.

Short Run Low Grey Joint distribution of shorter run

Level Run Emphasis lengths with lower grey-level values.

Short Run High Grey Joint distribution of shorter run

Level Run Emphasis lengths with higher grey-level values.

Long Run Low Grey Joint distribution of long run

Level Run Emphasis lengths with lower grey-level values.

Long Run High Grey Joint distribution of long run

Level Run Emphasis lengths with higher grey-level values.

Bone Morphometry BV/TV Ratio between bone volume and total volume.

Tb.Th Trabecular thickness.

Tb.Sp Trabecular separation.

Tb.N Trabecular number.

BS/BV Ratio between bone surface and bone volume.
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