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Abstract 

Background:  Automatic segmentation of brain tumours using deep learning algorithms is currently one of the 
research hotspots in the medical image segmentation field. An improved U-Net network is proposed to segment 
brain tumours to improve the segmentation effect of brain tumours.

Methods:  To solve the problems of other brain tumour segmentation models such as U-Net, including insufficient 
ability to segment edge details and reuse feature information, poor extraction of location information and the com-
monly used binary cross-entropy and Dice loss are often ineffective when used as loss functions for brain tumour 
segmentation models, we propose a serial encoding–decoding structure, which achieves improved segmentation 
performance by adding hybrid dilated convolution (HDC) modules and concatenation between each module of two 
serial networks. In addition, we propose a new loss function to focus the model more on samples that are difficult to 
segment and classify. We compared the results of our proposed model and the commonly used segmentation mod-
els under the IOU, PA, Dice, precision, Hausdorf95, and ASD metrics.

Results:  The performance of the proposed method outperforms other segmentation models in each metric. In addi-
tion, the schematic diagram of the segmentation results shows that the segmentation results of our algorithm are 
closer to the ground truth, showing more brain tumour details, while the segmentation results of other algorithms are 
smoother.

Conclusions:  Our algorithm has better semantic segmentation performance than other commonly used segmenta-
tion algorithms. The technology we propose can be used in the brain tumour diagnosis to provide better protection 
for patients’ later treatments.
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Background
Tumours have always been a feared disease; brain 
tumours have an incidence rate of 1.5% and an alarm-
ing 3% mortality rate in the population and are feared 
because of their extremely high incidence and mortality 
rate [1]. A brain tumour is a cancer of the brain tissue 
that is formed when the brain tissues become cancerous 
or metastasize to other tissues in the skull. With medical 

imaging technology development, imaging technology 
has gradually been applied to tumour detection. Initially, 
computed tomography (CT) technology was used for 
detection, but with the development of magnetic reso-
nance physics and then the combination with the theory 
and technology of digital image reconstruction, magnetic 
resonance imaging (MRI) is slowly taking shape because 
it does not cause ionizing radiation damage to the body, 
and many imaging parameters have gradually become the 
mainstream of medical brain tumour detection [2]. How-
ever, most of the current clinical brain tumour diagno-
ses are based on the clinician’s experience. The method 
of manually segmenting, diagnosing and annotating 
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tumour images is inefficient and demanding for image 
analysts, and it is easy to miss the best treatment window 
for patients [3]. Therefore, how to efficiently diagnose 
brain tumour images and reduce image diagnostic error 
has become a research direction for many researchers. 
Currently, deep learning-based intelligent algorithms are 
widely used in brain tumour analysis tasks, and CNNs 
are adopted by researchers for their good segmentation 
performance and the convenience of feature extraction 
[4]. However, CNNs are prone to computational redun-
dancy when processing a large number of dense images 
[5]. Therefore, FCN [6], U-Net [7] and other derived 
algorithms based on CNNs have been proposed. How-
ever, many brain tumour segmentation algorithms still 
have many problems, such as the segmentation accuracy 
and recognition accuracy of the algorithms are not high 
enough, and the attention to detail is not sufficient. In 
this paper, we propose an improved segmentation net-
work based on U-Net to solve these problems using a 
tandem encoding–decoding model and proposing a new 
loss function to increase the weight of samples that are 
difficult to classify. The experimental results show that 
our proposed method outperforms several other com-
monly used derived models based on CNNs in terms 
of segmentation performance and tumour recognition 
accuracy.

Performing image segmentation is a key problem in the 
computer vision (CV) field, and image segmentation gen-
erally includes semantic segmentation and instance seg-
mentation [8]. Brain tumour segmentation in this paper 
uses semantic segmentation. Evaluating the segmenta-
tion ability of the semantic segmentation model needs 
to focus not only on the overall image segmentation but 
also on edge segmentation. Therefore, how to design the 
segmentation algorithm becomes important, and dif-
ferent researchers have proposed different methods for 
segmentation algorithm research. With the rise of neural 
network models and the development of deep learning, 
segmentation networks based on deep learning have been 
rapidly developed and applied. Starting from the concept 
of neural networks proposed by Le Cun, neural networks 
have been developed rapidly, and various neural network 
structures have begun to emerge slowly, such as AlexNet 
[9], VGG [10], and ResNet [11]. Although these networks 
have advantages in the image recognition and prediction 
field, the advantages in accurate semantic image segmen-
tation are not as obvious. To change this situation, Shel-
hamer et  al. proposed FCN, applying FCN to semantic 
image segmentation [6]. They achieved segmentation by 
replacing the fully connected layers of the network with 
convolutional layers, and the results showed that the 
semantic image segmentation outperformed the other 
convolutional neural networks (CNNs). The reason is 

that full convolutional networks (FCNs) require a high 
data volume, and such brain tumour images are relatively 
few and precious in medicine. To solve this problem, 
Ronnerberger et al. modified the fully convolutional net-
work by adopting transposed convolution, upsampling, 
and fusing context features and detail features to form 
U-Net, which can obtain enough data features with few 
brain images, and the segmentation effect is significantly 
better than that of a fully convolutional network (FCN). 
However, there are still problems of incomplete infor-
mation and low segmentation accuracy when perform-
ing brain tumour segmentation. To solve the remaining 
problems of the U-Net network, Alom proposed a recur-
sive neural network based on U-Net and a recursive 
residual convolution neural network based on the U-Net 
model [12]. Zhang et al. used the U-Net extended path to 
design residual connections and proposed a depth resid-
ual U-Net for image segmentation [13]. Milletari pro-
posed a 3D U-Net model, which uses a 3D convolution 
kernel to expand the original U-Net structure and then 
adds residual units to further modify the original U-Net 
structure [14]. Salehi used an auto context algorithm to 
enhance U-Net to improve the segmentation effect [15]. 
Zhou et al. used the nesting method to replace the origi-
nal connection method [16]. Wanli Chen, Yue Zhang 
et al. proposed a stacked U-Net with a bridging structure 
to address the problem of increasing training difficulty as 
the number of layers of the network increases [17]. The 
above segmentation model can only segment images but 
cannot grade segmented tumours. To achieve this clinical 
need, Mohamed A. Naser and M. Jamal Deen first used 
the trained segmentation model and MRI images for 
mask generation and then used a densely connected neu-
ral network classifier to classify the tumour [18].

Materials and methods
Brain tumour MRI images
The dataset was obtained from the Kaggle open source 
database "Brain Tumour MRI Image Classification", 
which contains three main types of brain tumours: 
glioma tumours, meningioma tumours, and pituitary 
tumours. The sample size of the training set containing 
brain tumours was 2,475, and the sample size of the test 
set was 289. First, we screened the dataset and selected 
sections with brain tumours in the sample as our exper-
imental dataset. Then, image enhancement was carried 
out, and the sample size of the enhanced dataset was 
2,624. Finally, manual labelling of the enhanced sec-
tions was completed with the help of graduate students 
from the medical college. The labelled images were 
reassigned according to the 10:1 ratio of the training set 
and test set.
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Encoding module and decoding module
The SCU-Net proposed in this paper consists of two 
encoding modules and two decoding modules. The 
VGG16 net and HDC model chosen in this paper are 
used as the basic framework of the encoding module. 
Most neural network models use maximum pooling to 
reduce the network volume and highlight the main fea-
tures when performing feature extraction. This method 
may ignore the segmentation details and lose the spa-
tial location information of the main features. However, 
brain tumour cutting requires accuracy to the millime-
tre or micron level, which requires us to obtain more 
detailed features and minimize feature loss in training. 
We know that larger convolutional kernels may capture 
more positional information than smaller convolutional 
kernels because a larger receptive field can better resolve 
positional information [19]. Therefore, we chose hybrid 
dilated convolution (HDC) [20]. The HDC module can 
increase the receptive field, improve the ability to obtain 
global information, and alleviate the grid problem of 
dilated convolution. The hybrid dilated convolution oper-
ator is as follows:

In the formula, l1 to ln are hybrid dilated convolution 
operators with different dilation factors, and the maxi-
mum common divisor of L1 to Ln is not greater than 1. 
F : Z2 → R is a discrete function. �r = [−r, r]2 ∩ Z

2 and 
k : �r → R are discrete filters.

We use multiple convolution blocks with different 
expansion rates and connect them in the same way. Each 
hybrid dilated convolution and a ReLU function form an 
HDC module, and three HDC modules with different 
expansion rates form an HDC module group. We replace 
the ordinary convolution of each layer in the two VGG 
encoding modules with an HDC module group. The 
dilation rates are selected as 1, 2 and 3 to satisfy the for-
mula, Mi = max [Mi+1 − 2ri,Mi+1 − 2(Mi+1 − ri), ri] , 
where M represents the maximum distance between 
two nonzero values. The distribution of the dilation 
rate into the sawtooth wave pattern helps the top layer 
obtain more information while keeping the receiving field 
unchanged compared with the original configuration in 
which the dilation rate is the same [20]. The encoding 
network structure is shown in Fig.  1, which is divided 

(1)

F ∗l1 k (p) =

s+l1t=p

F(s)k(t)

F ∗l2 k (p) =

s+l2t=p

F(s)k(t)

...

F ∗ln k (p) =

s+lnt=p

F(s)k(t)

into 5 layers. Each layer is composed of a group of dilated 
convolution blocks and maximum pooling. Each group 
of dilated convolution blocks is composed of three 3 × 3 
dilated convolutions (the dilation rate of dilated convolu-
tion is 1, 2, and 3), three BN layers, and three ReLU func-
tions. The input image is 512 × 512 × 1, and the image 
under the RGB channel is obtained through conversion. 
Then, a 64-channel 512 × 512 feature map is obtained 
through a dilated convolution block with a convolution 
kernel size of 3 × 3. After the first layer HDC module 
group and downsampling, a feature map with 128 chan-
nels of 256 × 256 size is obtained. Through the second 
layer HDC module group and downsampling, a 128 × 128 
feature graph of 256 channels is obtained. Through the 
third layer HDC module group and downsampling, the 
512 channel number and 64 × 64 size feature graph are 
obtained. Through the HDC module group and down-
sampling in the fourth layer, the 512 channel number and 
32 × 32 size feature map are obtained. Then, these feature 
graphs are introduced into the decoding network and 
the second encoding network. SCU-Net using the HDC 
module can better solve the chessboard effect of dilated 
convolution, increase the receptive field of the coding 
network, and improve the capture of the details of the 
input image, the edge information, and the relative posi-
tion information of the tumour in the input image.

The decoding module of SCU-NET is composed of 
multiple convolutions and transposed convolutions. The 
information of the next layer is first expanded by a 3 × 3 
transposed convolution of pixels and then concatenated 
and convolved with the feature map of the same layer. If it 
is in the second decoding net, it also needs to be spliced 
and convolved with the image of the same layer after the 
first decoding, then upsampled and concatenated with 
the upper layer, and repeatedly upsampled, concatenated 
and convolved, thus continuously recovering pixels until 
the pixels are the same as the original image, and finally 
convolved again, so that the number of channels is the 
number of the desired classification. The specific con-
catenation method and other details are introduced in 
Series Section and Concatenation.

Such a decoding method combining all the informa-
tion from the previous layers and the serial network 
can obtain more contextual semantic information and 

Fig. 1  SCU-Net backbone network
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effectively extract the feature information of the same 
layers many times and then obtain more accurate predic-
tion results and segmentation capability.

Series section and concatenation
The complete architecture of SCU-Net connects two 
encoding–decoding modules in series and then bridges 
each layer for feature sharing purposes. Several existing 
works show that the interactions between global fea-
tures or contexts help to perform semantic segmentation, 
and we experimented with two bridging approaches, a 
pixel summing approach and a channel concatenation 
approach. Finally, we used the concatenation approach to 
connect the different modules.

Figure  2 shows the overall architecture of SCU-Net, 
which is composed of two encoding–decoding structures 
in series and has many concatenation operations between 
two series to add the interactions between two encod-
ing–decoding nets. As shown in Fig.  2, we defined the 
feature obtained from the input image through the HDC 
module group with a convolution kernel size of 3 × 3 in 
the first layer of the first encoding structure as feature 1 
and the feature obtained from the image downsampling 
in the previous layer through the HDC module group 
with a convolution kernel size of 3 × 3 in the second layer 
as feature 2, and the other feature maps are defined in 
the same order. We defined the matrix obtained by trans-
posed convolution with a convolution kernel size of 4 × 4 
and convolution operation with a convolution kernel size 
of 3 × 3 in the first layer of the first decoding structure 
as up1, and the matrix named up2 is finally obtained 
by concatenating with the image upsampled in the next 
layer and two convolutions in the second layer. The other 
matrices after upsampling are defined in the same order. 
In the first layer of the second encoding structure, up1 

passes through the HDC module group with a kernel size 
of 3 × 3 to obtain feature6. In the second layer, feature7’ is 
obtained through max-pooling with a kernel size of 2 × 2 
and the HDC module group with a kernel size of 3 × 3. In 
the third layer, feature8’ is obtained through downsam-
pling of the upper layer feature and passing through the 
HDC module group with a kernel size of 3 × 3. The defi-
nitions of other layers are similar to those above. In the 
first layer of the second decoding structure, the upsam-
pling results of the next layer are skip-connected to fea-
ture 6 and then convolved twice with a kernel size of 3 × 3 
to obtain up6. In the second layer, the image obtained by 
upsampling the next layer and two convolutions with a 
kernel size of 3 × 3 is called up7’. In the third layer, the 
image obtained by upsampling the next layer and two 
convolutions with a kernel size of 3 × 3 is called up8’. The 
definitions of other layers are similar to those above.

The two serial encoding–decoding structures are con-
nected using many concatenations. The specific connec-
tion mode is as follows: feature 5 and feature10’ of layer 5 
perform a concatenation operation, and then the number 
of channels of the image is recovered by two 3 × 3 convo-
lutions to obtain feature10 with 512 channels. Feature 4 
and feature 9’ of the fourth layer perform concatenation 
and then recover the number of channels by two 3 × 3 
convolutions to obtain feature 9 with 512 channels. Up4 
and up9’ perform concatenation and then recover the 
number of channels by two 3 × 3 convolutions to obtain 
up9 with the channel of 512. Feature3 of the third layer 
and feature8’ perform concatenation and then recover 
the number of channels by two 3 × 3 convolutions to 
obtain feature8 with the channel of 256. Up3 and up8’ 
perform concatenation and then recover the number of 
channels by two 3 × 3 convolutions to obtain up8 with 
the channel of 256. Feature 2 of the fourth layer and 
feature 7’ perform concatenation and then recover the 
number of channels by two 3 × 3 convolutions to obtain 
feature 7 with 128 channels. Up2 and up7’ perform con-
catenation and then recover the number of channels by 
two 3 × 3 convolutions to obtain up7 with 128 channels.

Unlike stacked U-Net, SCU-Net directly uses the 
output of the previous encoding–decoding structure 
as the input of the next encoding–decoding structure, 
maximizing the use of the image information after 
the previous decoding, avoiding structural redun-
dancy, and being more conducive to the extraction of 
key information and mining. Linking the same layers 
of two encoding–decoding structures through con-
catenation can deepen the interconnection between 
the two encoding–decoding structures, strengthen 
semantic information sharing between two encod-
ing–decoding networks, reduce feature redundancy, 
and accelerate learning speed. In addition, performing Fig. 2  Overall architecture of SCU-Net
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secondary feature extraction of the previous informa-
tion can obtain richer semantic information and thus 
can obtain a better segmentation effect.

Focal dice loss function
This paper proposes a new loss function called focal 
Dice loss. It combines the advantages of focal loss and 
log-cosh Dice loss and improves the disadvantage that 
log-cosh Dice loss can only assign the same weight to 
all samples so that the loss function can assign more 
weight to the samples that are difficult to segment to 
enhance the model’s learning ability for the sample.

The Dice coefficient is a commonly used performance 
metric for segmentation tasks and thus has also been 
modified as a loss function to obtain higher segmentation 
performance, but since the Dice coefficient loss is a non-
convex function, the training process may not achieve the 
desired results; therefore, Shruti Jadon et al. proposed the 
log-cosh Dice loss to solve the problem of the nonconvex 
loss function by adding smoothing through Lovsz expan-
sion [21]. The formula is as follows:

Although log-cosh Dice loss accounts for the non-
convexity problem, the same loss coefficient is used for 
different segmentation samples. It is not conducive to 
the network’s learning of segmentation samples with 
different training difficulties. We improve the log-cosh 
Dice loss so that it can achieve adaptive changes for 
different samples by reducing the weights of easily seg-
mented samples and adding the weights of difficult seg-
mented samples, making the model focus more on the 
hard-to-segment samples during training. In addition, 
the improved log-cosh Dice loss and focal loss are com-
bined so that the loss function can focus on both model 
classification ability and model segmentation ability. 
The loss function we propose is called focal Dice loss, 
as shown in formula (4). ω1 and ω2 are used to adjust 
the weights between the focal loss and the improved 
log-cosh Dice loss.(DiceLoss)γ adaptively adjusts the 
weight of log-cosh Dice loss in the focal Dice loss. If the 
log-cosh Dice loss of the current sample is large, which 
means the segmentation effect is poor, then (DiceLoss)γ 
increases. If the log-cosh Dice loss of the current sam-
ple is small, which means that the segmentation effect 
is good, excessive weight is not needed, and the for-
mula automatically decreases (DiceLoss)γ to weaken the 
dependence on the log-cosh Dice loss.

(2)cosh x =
ex + e−x

2

(3)Llc−dce = log(cosh(DiceLoss ))

Evaluation metrics
TO verify the scientific nature of the research in this 
paper, the evaluation index of image semantic seg-
mentation is selected for evaluation. It includes MIoU, 
MPA, precision, Dice, accuracy, Hausdorff, and ASD.

Mean-intersection-over-union (MIoU), which is the 
average of the ratio of intersection and merge of all cat-
egories calculated and is a common standard metric 
function for semantic segmentation, is as follows:

where k denotes the category, i denotes the true value, j 
denotes the predicted value, pij denotes the number of 
pixels that predict i to j , pji denotes the number of pix-
els that predict j to i , and pii denotes the number of cor-
rectly predicted pixels.

MPA is the average of PA. PA denotes the ratio of the 
number of pixels correctly predicted to the total num-
ber of pixels. MPA denotes the cumulative averaging of 
each category, as follows:

In the formula, TP indicates that both the predicted 
and real values of the sample are positive, FP indicates 
that the predicted value of the sample is positive and 
the real value of the sample is negative.

The Dice coefficient is a similarity measurement func-
tion that judges the similarity of two samples. The greater 
the similarity between the two input sets, the greater the 
Dice coefficient, and the more accurate the segmentation 
model. It is one of the important indicators for image 
segmentation, and the specific formula is as follows:

Y represents the predicted target, and X represents the 
ground truth.

Accuracy is our most common evaluation metric, 
which refers to the ratio of the number of samples that 
are scored correctly to the number of all samples, and 
the higher the accuracy is, the better the model effect.

(4)
Focal − DiceLoss = ω1(FocalLoss)

+ ω2(DiceLoss)
γ log(cosh(DiceLoss ))

(5)
MIoU =

1

k + 1

k
∑

i=0

pii
k
∑

j=0

pij +
k
∑

j=0

pji − pii

(6)
MPA =

1

k + 1

k
∑

i=0

pii
k
∑

j=0

pij

(7)Dice =
2TP

2TP + FP + FN
=

2|X ∩ Y |

|X | + |Y |
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TN indicates that both the predicted and real values of 
the sample are false. FN denotes that the predicted value 
of the sample is false and the real value of the sample is 
true.

The Hausdorff distance is used to calculate the distance 
between the real value boundary and the predicted value 
boundary, and a smaller distance between the two indi-
cates a higher segmentation accuracy. The specific for-
mula is as follows:

The average surface distance (ASD) is the average of all 
distances from a point on the object boundary to the GT 
boundary, and the specific formula is as follows:

Result
The experiment is divided into three parts. First, we 
modify the convolution part of the UNetVGG16 back-
bone network by replacing the original convolution block 
with an HDC block and compare it with the original 
UNetVGG16 model. Then, we modify the loss function 
of UNetVGG16, replace the original cross-entropy loss 
function with our proposed focal Dice loss, and compare 
it with the original UNetVGG16 model. Finally, we com-
pare the performance capability of our proposed SCU-
Net with several commonly used semantic segmentation 
models on our brain tumour dataset.

Experimental environment
The framework used in the experiments is PyTorch, and 
the specifications of the machine are as follows: graph-
ics card: Tesla P40; video memory: 22 G; CPU: Intel(R) 
Xeon(R) CPU E5-2680 v4; memory: 440 G, cores: 56. We 
optimize the model using the Adam optimizer and adjust 

(8)Accuracy =
TP + TN

TP + TN + FP + FN

(9)HD = max
{

�dH (A,B), �dH (B,A)
}

(10)ASD =
1

|BAS |

∑

x∈BAS

d(x,BGT )

the learning rate using the cosine annealing function by 
setting the cosine annealing function.

UNetVGG16 + HDC
To verify the effectiveness of the UNetVGG16 model 
using the HDC module, we compare UNetVGG16 with 
the HDC added with UNetVGG16. We replace the con-
volution in the original UNetVGG16 with the HDC 
module, train 25 epochs, and set the dilation rates of the 
three dilated convolutions of the HDC module to r1 = 2, 
r2 = 3, r3 = 4; the padding to padding1 = 2, padding2 = 3, 
padding3 = 4. The experimental results are shown in 
Table 1. As shown in Table 1, the results of HDC under 
each index are better than those of UNetVGG16. The 
index with the most improvement is Hausdorf95 with an 
increase of 27.08 percentage points, followed by MIoU 
with an increase of 9.51 percentage points.

UNetVGG16 + focal dice loss
After the validity of the HDC module was proven, we 
removed the HDC module and replaced the cross-
entropy loss function in UNetVGG16 with the proposed 
focal Dice loss. The focal Dice loss weight was set to 4:1. 
As seen in Table 1, the use of the proposed focal Dice loss 
greatly improved, or reduced, the values of most perfor-
mance indicators. MIoU and Hausdorf95 changed the 
most, with MIoU increasing by 9 percentage points and 
Hausdorf95 decreasing by 14.5 percentage points.

SCU‑Net
Finally, we use SCU-Net to carry out 50 iterations, and 
the initial learning rate is set to 10−4. The weight of the 
focal Dice loss function was set to 4:1. For UNetVGG16 
and UNetResNet50, we use the weights pretrained by 
VGG16 and ResNet50 on the VOC dataset for migra-
tion learning. The initial learning rate is set to 10−4 in 
the freezing phase and 10−5 in the unfreezing phase. For 
U-Net, DeepLabv3ResNet50, and FCN8s, we directly 
conduct 50 iterations for training, and the initial learn-
ing rate is set as 10−4. Table  2 shows the performance 
of SCU-Net and several commonly used segmentation 
algorithms under different indices in the same tumour 
dataset. It can be seen in the figure that all indices of 

Table 1  Performance of UNetVGG16 after adding different modules

Networks \ Evaluations MloU (%) MPA (%) MPrecision (%) MDice (%) Hausdorf95 (mm) ASD (mm)

UNetVggl6 68.3 78.96 81.04 79.87 52.87 1.99

HDC + UNetVggl6 77.81 84.57 89.75 86.9 25.79 0.49

Focal-Dice Loss + UNet-
Vggl6

77.01 83.77 89.27 86.39 38.29 1.29
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SCU-Net are ahead of other networks and have the best 
performance, followed by UNetVGG16 and the balanced 
performance of all indices, followed by FCN8s. U-Net 
and DeepLabv3ResNet50 perform poorly. They do not 
achieve good segmentation accuracy and classification 
accuracy.

Figure  3 shows the comparison of the segmenta-
tion results and the ground truth of 6 different types of 
tumours by different models, in which the red region 
represents glioma tumours, the green region represents 
meningioma tumours, and the yellow region represents 
pituitary tumours. It can be seen in the figure that the 
first segmentation result of UNetVGG16 is quite differ-
ent from the ground truth. The segmentation results of 
other classes by UNetVGG16 are basically consistent 
with the ground truth, but the edges are still too smooth, 
and the segmentation details of the edges are not ideal. 
Some glioma tumours are incorrectly predicted as men-
ingioma tumours in the second segmentation figure of 
UNetResNet50, and the segmentation result is a triangle, 
which is quite different from the ground truth. The sec-
ond segmentation result graph of U-Net almost does not 
segment the tumour, so the effect was poor. The last seg-
mentation map of DeepLabv3ResNet50 has nearly 50% 
of the regions incorrectly classified, while the segmenta-
tion results of other segmentation maps are obviously too 
smooth, although the categories are correctly predicted. 
The effect of the second segmentation map of FCN8s is 
poor, which is quite different from the ground truth. The 
segmentation result of SCU-Net (Ours) is the best, there 
is almost no error prediction, and the edge segmentation 
effect is obviously better than other models. The experi-
mental results show that SCU-Net has good robustness 
on the brain tumour dataset presented in this paper.

Discussion
UNetVGG16 + HDC
To verify whether UNetVGG16 with the HDC module 
can capture more detailed information, we compare 
UNetvGG16 with HDC with the original UNetVGG16. 
It can be seen in Table  1 that HDC + UNetVGG16 

has great improvements in both segmentation ability 

and classification accuracy. This is because the HDC 
module enlarges the receptive field of the model and 
solves the problem of incomplete information capture 
caused by the traditional expanded convolution chess-
board phenomenon so that the algorithm can better 
extract the characteristics of the image. Therefore, it is 
a good choice to use HDC in the backbone network of 

Table 2  Performance comparison between Scu-Net and several commonly used partition networks

Networks \ Evalustions MloU (%) MPA (%) MPrecision (%) MDice (%) Hausdorf95 (mm) ASD (mm)

UNetVgg16 84.22 90.31 92.06 91.17 27.35 0.85

UNetResNet50 62.08 67.67 86.31 74.6 59.79 0.95

UNet 76.26 79.77 93.76 85.9 37.37 0.42

Deep1abv3ResNet50 69.48 79.5 82.58 80.82 44.01 1.07

FCN8s 81.16 84.72 94.52 89.23 30.09 0.74

SCU-Net (Ours) 86.8 90.74 94.63 92.62 17.71 0.37

Fig. 3  Comparison of segmentation results of different types of 
tumours by different networks
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UNetVGG16, which can improve the model’s classifica-
tion accuracy and segmentation accuracy.

UNetVGG16 + focal dice loss
To verify whether our proposed focal Dice loss can spe-
cifically learn samples that are difficult to segment and 
classify to improve the overall performance of the algo-
rithm, we designed a comparative experiment between 
UNetVGG16 + focal Dice loss and UNetVGG16, as 
shown in Table  1. The experimental results show that 
the proposed focal Dice loss contributes to the seg-
mentation network performance and greatly improves 
tumour recognition accuracy and segmentation per-
formance. We accelerate the training of difficult train-
ing samples by increasing the loss weight of difficult 
segmentation and classification to improve the model 
performance, which means that we can better deal with 
brain tumour samples that are more difficult to train 
in the training set to effectively solve the problems of 
unbalanced tumour category samples and different 
qualities of tumour sample images.

SCU‑Net
Table  2 shows that our SCU-Net is different from 
U-Net and the other four commonly used segmentation 
algorithms. It can be seen in the table that SCU-Net has 
the best performance under most indicators, and its 
performance is far better than that of U-Net. Figure 3 
shows the segmentation results of SCU-Net, U-Net and 
several other commonly used segmentation algorithms. 
It can be seen that the effect of SCU-Net is closest to 
the ground truth, and the detail processing is also bet-
ter than the other algorithms. According to the experi-
ment, it can be inferred that although FCN8s adopt 8 
times upsampling, which is much better than 32 times, 
it still lacks details and is not sufficient to achieve a 
high segmentation effect. UNetResNet50 and DeepLab-
v3ResNet50 easily produce gradient disappearance and 
other problems because the backbone network model 
is too deep. The tumour images are composed of sim-
ple textures and shapes and the most typical features. 
If ResNet50 is used, it may cause feature redundancy, 
which affects the final result, so VGG16 as the SCU-Net 
backbone network is the best choice. Through serial 
operation, SCU-Net not only does not result in feature 
redundancy but also uses two decoding networks for 
feature extraction twice, as well as the fusion of features 
and pixels, which improves the semantic segmentation 
performance of the network.

Conclusion
In this paper, we proposed an improved U-Net algo-
rithm, called SCU-Net, for segmenting brain tumours. 
We operate two U-Net models with VGG16 as the 
backbone in tandem and perform feature splicing and 
decoding module splicing at each layer so that the two 
encoding–decoding blocks before and after can form a 
tighter connection to obtain more semantic informa-
tion, reduce feature redundancy, and further improve 
the generalization ability of the model. Since location 
information is extremely important for brain tumour 
category classification, we add another HDC mod-
ule to the U-Net encoding network to obtain a larger 
receptive field to capture more location information. 
In addition, the proposed focal Dice loss enables the 
model to consistently focus not only on pixel classifi-
cation accuracy but also on segmentation performance 
during training and focus more on the samples that are 
difficult to classify and divide. We compared SCU-NET 
with commonly used brain tumour segmentation mod-
els under 6 indicators. Experimental results show that 
the proposed method can significantly improve target 
segmentation and tumour prediction performance.
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