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Abstract

Purpose—Brain metastases (BM) remain a significant cause of morbidity and mortality in breast 

cancer (BC) patients. Specific factors promoting the process of BM and predilection for selected 

neuro-anatomical regions remain unknown, yet may have major implications for prevention or 

treatment. Anatomical spatial distributions of BM from BC suggest a predominance of metastases 

in the hindbrain and cerebellum. Systematic approaches to quantifying BM location or location-

based analyses based on molecular subtypes, however, remain largely unavailable.

Methods—We analyzed stereotactic Cartesian coordinates derived from 134 patients undergoing 

gamma- knife radiosurgery (GKRS) for treatment of 407 breast cancer BMs to quantitatively study 

BM spatial distribution along principal component axes and by intrinsic molecular subtype (ER, 
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PR, Herceptin). We used kernel density estimators (KDE) to highlight clustering and distribution 

regions in the brain, and we used the metric of mutual information (MI) to tease out subtle 

differences in the BM distributions associated with different molecular subtypes of BC. BM 

location maps according to vascular and anatomical distributions using Cartesian coordinates to 

aid in systematic classification of tumor locations were additionally developed.

Results—We corroborated that BC BMs show a consistent propensity to arise posteriorly and 

caudally, and that Her2+ tumors are relatively more likely to arise medially rather than laterally. To 

compare the distributions among varying BC molecular subtypes, the mutual information metric 

reveal that the ER−PR−Her2+ and ER−PR−Her2− subtypes show the smallest amount of mutual 

information and are most molecularly distinct. The kernel density contour plots show a propensity 

for triple negative BC to arise in more superiorly or cranially situated BMs.

Conclusions—We present a novel and shareable workflow for characterizing and comparing 

spatial distributions of BM which may aid in identifying therapeutic or diagnostic targets and 

interactions with the tumor microenvironment. Further characterization of these patterns with 

larger multi-institutional data-sets may have major impacts on treatment or management of cancer 

patients.
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Introduction

In patients with breast cancer (BC), brain metastases (BM) are a significant source of 

morbidity and mortality, and average interval between diagnosis of BM and death remains 

under 2 years [1]. Despite significant advances in systemic treatment of primary breast 

cancer, treatment for BM remains mostly confined to surgical resection, stereotactic 

radiosurgery, and less commonly whole brain radiation therapy. BM from BC have 

been reported to show preferential spatial metastatic patterns within the brain, with a 

predominance of lesions arising in the posterior circulation and cerebellum [2–4]. While 

the spatial distributions for BM have been described in a qualitative (regional) fashion (e.g. 

located in cerebellum), there have been minimal efforts to systematically and quantitively 

analyze spatial distributions of BM. In addition, the influence of molecular subtype in 

topographic BM distribution remains largely unknown.

There is relevant clinical and potential therapeutic motivation for understanding the spatial 

distribution of BM, specifically according to cancer origin and molecular subtype. There 

has been growing interest in the relationship between the tumor microenvironment (TME), 

surrounding both tumor and normal brain parenchyma, and the development of BM, which 

is referred to as the ‘seed-and-soil’ hypothesis [5–7]. Recent studies have characterized a 

need for priming a metastatic niche prior to BM colonization and tumorigenesis [8–10]. A 

more thorough understanding of the patterns of spatial distribution of BM and the influence 

of TME on tumorigenesis may provide potential targets for diagnosis or treatment of BM.
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Gamma Knife Radiosurgery (GKRS) is a highly targeted form of stereotactic radiosurgery 

and is a first line therapy for many BM, particularly those in which surgical resection is 

unfavorable [11, 12]. The use of stereotactic frames and precise, predetermined locations 

in three-dimensional space allow for Cartesian coordinates of tumors to be recorded and 

studied (Fig. S1) using spatial modeling techniques. We describe a novel computational 

approach for characterizing and comparing the spatial distribution of BM arising from 

BC, using objective tumor location data from patients undergoing GKRS. Tumor locations 

were analyzed using kernel density plots and principal components analyses (data-based 

coordinates), and further characterized and compared according to BC molecular subtype. 

We compared two distributions using the metric of mutual information which is a 

(nonlinear) measure of the mutual dependence between two random variables [13]. A 

standard interpretation of mutual information is that it quantifies the amount of information 

obtained about one random variable by observing the other, thus low values indicate that the 

distributions are more distinct (independent) than distributions with higher values.

While this study introduces new tools for quantifying spatial distributions of BM using 

reasonably large comprehensive data sets collected over a twenty-year period, it also 

paves the way for further analyses (e.g. machine learning implementations) with larger, 

prospective multi-center studies across a variety of cancers and molecular subtypes to further 

elucidate natural distribution patterns of BM and their importance for improving cancer 

treatment.

Methods

Radiosurgery setup and patient selection

Gamma Knife radiosurgery (GKRS) is a commonly used frontline treatment modality in 

which a stereotactic frame (Leksell coordinate frame, see Fig. S1) is used in conjunction 

with cobalt radiation sources to deliver precise doses of radiotherapy to highly accurate 

locations in three-dimensional space corresponding to contoured BM on MRI (Fig. 

1). Predetermined target coordinates are utilized (generated based on location of BM 

center and tumor volume as determined via MRI and via multidisciplinary consultation 

including neuro-radiology, radiation-oncology and neurosurgery), and patients are fixed to 

the stereotactic Leksell coordinate frame as depicted in Fig. S1. As a result, Cartesian 

coordinates (X,Y,Z) in 3D space of each BM central location are obtained and recorded.

All patients undergoing GKRS at The Keck Hospital of the University of Southern 

California (USC) between the years 1995–2015 for the treatment of BM were reviewed 

and analyzed following approval from the local USC IRB. Those with primary BC were 

identified, and retrospective chart review was conducted to determine molecular subtype 

(ER, PR and Her2/Neu). Samples were divided into six major subtypes based on HER2, 

ER and PR receptor status. Subtype information was available in 134 patients comprising 

a total 407 intracranial metastases. Clinical data gathered included: sex, age at diagnosis of 

primary cancer, age at diagnosis of BM, ER status, PR status and Her2/Neu status. To avoid 

potential confounders with prior radiation therapy, only patients with their first radiation 

treatment were included and those with prior radiation or radiosurgery were excluded. 
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Multiple metastases from individual patients (at one treatment) were included. See data 

summary in Table S1.

GKRS planning and treatment were performed by a multidisciplinary team including a 

neurosurgeon, radiation oncologist, and medical physicist. Tumor locations were recorded as 

(X,Y,Z) values on a Cartesian plane, corresponding to the Leksell coordinate frame axes and 

recorded using GammaPlan™ software (Elekta corporation). In addition, specific clinical 

locations (e.g. Left frontal lobe) as well as tumor volume, number of treatments, vascular 

distribution, and radiation dose were recorded.

Principal component analysis (PCA) and mutual information (MI)

The principal component (PC) coordinates are a data-based orthogonal coordinate system 

designed to bring out the directions of maximal spread of the data and used in many 

settings in which patterns are sought from large data sets [14]. The PC coordinates are linear 

combinations of the three (X,Y,Z) physical coordinates, with mean at the origin, mutually 

orthogonal (so they span the same space as X-Y-Z), and such that PC1 lies in the direction of 

maximal spread, PC2 is orthogonal to PC1 and is in the next most likely direction of spread, 

while the PC3 direction is orthogonal to both, with the least direction of spread. Since the 

method of calculating the PC coordinates is standard, we refer the interested readers to 

Kirby for theoretical details. We use scikit-learn Python package [15] for our data analysis.

To compare two distributions associated with different molecular subtypes, we use the 

notion of mutual information (MI) [13] (relative entropy) which quantifies nonlinear mutual 

dependence between two random variables. If the MI is zero between two random variables, 

they are deemed to be completely independent and unrelated, which implies that using 

observations drawn from one has no value in predicting sequences generated by the other. 

The formula we use to estimate MI is [16]:

MI(X; Y ) = 1
n ∑

i = 1

n
log pXY xi, yi

pX xi pY yi
(1)

where pXY(xi, yi) is the estimated joint PDF (probability distribution function), and pX(xi) 

and pY(yi) are the estimated marginal PDF’s at (xi, yi). The larger the MI value, the more the 

distributions are correlated, i.e. one distribution carries a high amount of information about 

the other. A very useful discussion and application of MI can be found in Ref. [17].

Kernel density estimators and bootstrap method

Kernel density estimators offer a useful visual tool to convert a discrete multivariate data 

set into smoothed, multivariate distributions to extract information and patterns associated 

with the probability distribution function associated with data [18]. Color gradient bars 

and contours are then used to identify ‘hot spot’ regions of highest density (probability), 

and regions of lowest density (probability). When used in conjunction with more standard 

anatomical distribution approaches, we believe the kernel density and violin plot techniques 

add important quantitative value to more nuanced questions associated with regional BM 

clustering. In principle, the computed MI does not depend on the size of the data sets being 
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compared, although well known issues can arise from smaller data sets [16, 17]. For these 

reasons, to overcome the issue associated with small and unequal sizes of data sets for 

different molecular subtypes, we use a bootstrap (resampling) method [19], starting from 

the smoothed multivariate distributions obtained for each subtype (from the original data 

sets) to generate sample data of 1000 points and then calculate the MI values (see Table S2) 

for those points between each pair of subtypes. We carry out this re-sampling step and MI 

calculation step 1000 times, and obtain sample means and standard deviations for the MI 

for each pair using the enlarged data sets generated from sampling from the distributions 

generated from the original data sets. This method seems to yield reasonably robust results.

Anatomical distribution analysis

To contextualize distribution of metastases with respect to anatomic location (and to 

more intuitively portray the spatial distribution in a clinical context most relevant 

to neurosurgeons, neuro-oncologists and clinical researchers), individual points on the 

Cartesian plane were labeled based on their vascular circulation and their laterality. For 

the medial/lateral distribution of metastases, the X value of 100 corresponded to the center 

of our Cartesian plane. Metastases with an X value between 65 and 135 were labeled as 

“medial” and those with a X value less than 65 or greater than 135 were labeled as “Lateral” 

(Fig. 5). For the labeling of anterior/posterior, we grouped metastases in the frontal lobe 

and anterior temporal lobe as “anterior.” These metastases likely had vascular supply from 

branches of the middle cerebral artery (MCA) or anterior cerebral artery (ACA). We grouped 

all metastases in the occipital lobe, cerebellum, and brainstem as “posterior.” These likely 

had vascular supply from the posterior circulation (fed via the posterior cerebral arteries).

Results

The data set is compiled in Table S1 which shows the number of BM for each of the 

molecular subgroups, as well as details associated with Figs. 1, 2, 3, 4, 5 and 6, S2–S4. 

Figure 1 shows the entire data set of brain metastases (Fig. 1A–C) for our cohort of breast 

cancer patients, in the sagittal, axial, and coronal planes. These same views are shown in 

Fig. 1D–F as kernel density plots depicting the density distributions associated with the 

data. The darkest enclosed regions of the kernel density plots nicely depict the highest 

density regions (‘hotspots’), which generally cluster towards the midline (coronal, axial 

view), posteriorly and caudally (sagittal). Figure S2 shows the same data broken down 

according to the molecular subtype (along each column): ER−PR−Her2+; ER+PR+Her2−; 

ER−PR−Her2−(TNBC); ER+PR+Her2+ (TPBC). The red dot marks the mean position. The 

corresponding kernel density plots for the molecular subgroups are shown in Fig. 2. The 

sagittal view across all subtypes (Fig. 2, Row 1) demonstrates clear maximal clustering in 

the posterior, caudal region of brain; however TNBC appears to visually cluster superiorly/

cranially compared to the other breast cancer subtypes. We next focused on elucidating 

differences in topographic patterns associated with the molecular subgroups by using the 

principal component axis coordinates [14]. The principal component coordinates are a 

rotated orthogonal coordinate system centered at the mean of the data that are optimally 

designed to highlight the largest spread direction (PC1). In Fig. 3 we show the relationship 

between the principal component coordinates (PC1-PC2-PC3) and the physical cartesian 
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coordinates (X-Y-Z). Figure 3A shows PC1-PC2-PC3 in the X-Y-Z space, while Fig 3B–D 

shows each of the two-dimensional projections. From Fig. 3B we can see that PC1 lies 

predominantly in the anterior-posterior (Y), although with other components as well (Fig. 

3C, D). The precise linear relationship between the two coordinate systems is given by:

PC1 = − 0 . 0486 1, 0, 0 + 0 . 7672 0, 1, 0 + 0 . 6396 0, 0, 1

PC2 = − 0 . 6140 1, 0, 0 − 0 . 5280 0, 1, 0 + 0 . 5867 0, 0, 1

PC3 = − 0 . 7878 1, 0, 0 + 0 . 3642 0, 1, 0 − 0 . 4968 0, 0, 1

In Fig. S3 we compare the spatial distributions in the original X-Y-Z coordinates and the 

principal component axes (PC1-PC2-PC3) from the full data set for the six molecular 

subtypes: Her2+, ER+, PR+, PR−, Her2−, ER− separately. In each plot, the yellow 

horizontal bar marks the mean, while the white dot marks the median. The colors mark 

the molecular subtype, as shown in Fig. S3A which most clearly shows the divergence 

along the PC1 axis which is the direction of maximal spread. To understand the advantages 

of using the principal component coordinates over the cartesian coordinates, in Fig. S3A 

it is clear that the median lies below the mean (i.e. is shifted back with respect to the 

mean), with the three negative subtypes shifted further back than the three positive ones. 

Comparing this with Fig. S3E (spread along Y-axis), the pattern is not nearly as clear. 

For each pair of violin plots (distributions), we calculate the mutual information score 

(MI) along with standard deviations using the bootstrap method described earlier. Lower 

MI score indicates less mutual dependence between the compared distributions, higher 

MI score indicates more mutual dependence. Figure 4A–F shows the same as Fig. S3, 

but using the molecular subgroupings: TPBC; ER+PR+Her2−;ER−PR−Her2+; TNBC. The 

divergence between the mean and the median is largest in the triple negative grouping, 

shown most clearly in Fig. 4A along the PC1 axis. An ordered listing of all of the MI 

scores for each pair of molecular subtypes is shown in Table S2 and presented visually 

for the individual subtypes in Fig. S4 as a heat map. The ordering in Table S2 goes from 

smallest to largest along the PC1 axis (first column), with all other axes also shown. In 

Table S2 and Fig. 4A we draw attention to the fact that the pair with the smallest MI value 

(8.966 ± 3.394) is between ER−PR−Her2+ and ER−PR−Her2−, i.e. those two groupings 

are the most molecularly distinct. The two groups with the largest MI value (14.808 ± 

3.589) is between ER+PR+Her2+ and ER+PR+Her2−, i.e. those two groupings are the most 

molecularly similar (more important than the nominal values of these MI scores are the 

differences between them).

Figures 5 and 6 show the differences between anterior vs. posterior and lateral vs. medial 

lesions from the sagittal, axial, and coronal views (Fig. 5) and according to molecular 

subtype groupings. While Fig. 6A–D show the Count (number of metastatic lesions), Fig. 

6E–H shows the proportion in each of the regions. It is clear that from Fig. 5, the majority of 

lesions are located in the posterior circulation or watershed areas, and BMBC are relatively 
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rare in the anterior circulation. Figure 6G, H demonstrate the differences in medial vs 

lateral distribution of these tumors. It is clear from Fig. 6G that midline tumors are most 

common across all molecular subtypes. In addition, it appears that Her2+ tumors have 

the highest proportion of medial metastases, and more rarely metastasize laterally. This is 

consistent (Fig. 6H) within the molecular subgroups as well, with ER+PR+Her2+ tumors 

having similar categorical distributions to ER−PR−Her2+ tumors but significantly different 

than TNBC or ER+PR+Her2− tumors.

Discussion

Accurate quantitative characterization and analysis of BM distributions for primary breast 

cancer, broken down according to molecular subtypes, is an important step in the direction 

of highly personalized oncologic therapy and an understanding of the dynamics between 

BM subtypes and the TME that promote or inhibit the formation of metastasis. To further 

classify the relationship between a tumor and the microenvironment in which growth 

is facilitated or the genetic influences which allow for tumor growth in a particular 

environment, the specific location of tumor foci must be accurately and quantitatively 

analyzed. Although collecting, quantifying, and processing this information from large 

multicenter datasets is ongoing, our intention was to develop and share a practical and 

novel workflow for objective and data-driven analysis of BM distribution, along with useful 

quantitative techniques that are broadly applicable to other cancer types, larger data sets, and 

a wide range of centers whom intend to investigate similar relationships.

It is worth discussing how a molecular subtype would have a predilection for a particular 

area of the brain. While the seed-and-soil hypothesis has been an accepted overarching 

framework for over 100 years, detailed information about the spatial distributions of 

metastases in sensitive organs and broken down by tumor types and molecular subtypes 

is lacking [13]. There are numerous theories on how individual molecular subtypes may 

preferentially metastasize to a particular area of the brain, however studying this distribution 

has been challenging partly given the lack of methodology for qualitatively analyzing 

BM location without MRI analysis. However, it has been shown that, in-vitro, human 

breast and lung cancer, when spread to the CSF (leptomeningeal disease) displays two 

distinct phenotypes which can be reliably reproduced based on tumor microenviornment 

[20]. Others have postulated that differences of gyral density and increased grey-white 

matter junctions, differences in blood supply volume, and varying neurotransmitter levels 

may trigger varying phenotypes based off of molecular subtypes, or may create a 

microenvironment for certain subtypes to proliferate more freely [1, 21]. In this study, 

we emphasize novel methods for quantifying the spatial distribution of brain metastases, 

describe the utility of GKRS coordinates to facilitate this quantification, and discuss future 

applications and possibilities using widespread coordinate mapping and analysis.

In preliminary analyses, triple negative breast cancers or TNBC (i.e. estrogen receptor 

negative, progesterone receptor negative) with varying her2 status were the most spatially 

distinct. In contrast, hormone receptor positive tumors with differing her2 status were the 

most similar. This suggests that hormone receptor status may disproportionately influence 

the spatial distribution of metastases. One hypothesis is that hormone receptor status, when 
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‘silent’, then allows her2 status to drive spatial distribution of BM. Conversely, when 

‘activated’ (e.g. progesterone positive and estrogen positive), differences in her2 status may 

be more muted, at least in the context of spatial distribution. Clinically, luminal breast cancer 

(hormone receptor positive, Her2 negative) demonstrates distinct responses to therapies, and 

have a slower rate of growth and more positive outcomes. In addition, there is a relationship 

between TNBC, Her2−negative/hormone receptor positive tumors and mutations in the 

genes BRCA1 and BRCA2. These additional genetic markers may influence the spatial 

makeup of these subtypes and may validate the mutual information scores determined 

between these subtypes. Furthermore, hormone receptor positive tumors, regardless of their 

Her2 status, tend to portend the best clinical outcomes for patients. While this phenomenon 

is currently largely driven by therapeutic targets afforded by hormone receptor positivity, 

there may be additional genetic drivers which also influence spatial distribution.

While several groups have aimed to categorize tumor location by subtype using MRIs, 

these studies are generally pilot studies and relatively small in sample size [1, 22–24]. 

The non-granular level of anatomical precision from MRI studies (e.g. describing tumor 

location qualitatively as ‘frontal lobe’) often prevents further downstream analysis of 

these tumor distributions using advanced mathematical and computational means. This 

precision becomes important when discussing embryologic, signal-based and/or genetic and 

epigenetic influences in tumor development; discriminating between the midline frontal lobe 

and more lateral aspects is meaningful as these regions have different vascular distributions, 

functions and are likely embryologically driven by different mechanisms, despite being 

in the same lobe [24]. FOX genes, for instance, are theorized to drive midline brain 

development and Sonic Hedgehog (SHH) has been shown to drive cerebellar development 

[25–27]. The process of anatomical mapping of brain metastases when performed via MRI 

is also sensitive to variations in institutional MRI sequence protocol, and can influence the 

spatial mapping of tumors, as shown by a study by Kyeong et al. [27] and Izustsu et al. [28] 

who mapped genetic subtypes of breast cancer with differing MRI sequences and obtained 

conflicting results [27, 28]. Lastly, MRI reading requires a trained neuro-radiologist and 

is time consuming and tedious, preventing its widespread adoption. While advancements 

in machine learning and computer vision may allow for precise anatomical landmark 

distinction at scale, these techniques are not widespread [29].

Analysis using GKRS is a promising alternative to qualitative anatomical location analysis 

for a variety of reasons. GKRS Leksell coordinates are already collected at the time of 

radiosurgery and utilized in routine clinical care, allowing for ease of implementation. 

They are specific to each patient and each tumor and provide accurate, three-dimensional 

coordinates of tumor centroids. Finally, GKRS data are easily scalable and standardizable 

across institutions for future data collection and does not require manual annotation by 

skilled professionals, and can be analyzed in an objective and quantitative fashion rather 

than using categorical descriptors, thereby increasing internal validity of the analyses.

By transforming the data from the original Leksell anatomical coordinates to the principal 

coordinate axes, we are using an optimal data-derived coordinate system that highlights 

the axis along which there is the largest spread (PC1), the second largest spread (PC2), 

and the least spread (PC3) of the data. What we lose in this linear transformation is 
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an easily interpretable anatomical frame, but we gain the ability to quantify what would 

otherwise be very subtle differences among molecular subgroups. We have retained the 

original anatomical frame, however, to depict the kernel density plots showing the clustering 

regions along the 3 two-dimensional projections, in order to more easily discern the physical 

locations in the brain where the clusters occur and to correlate this with blood flow patterns.

We further demonstrate that the results obtained by the GKRS coordinate spatial distribution 

system are accurate and can elucidate meaningful differences in molecular subtype 

distribution patterns. It has been well described that breast cancer preferentially metastasizes 

to the cerebellum; KDE plots from GKRS data demonstrate the preference for the posterior 

circulation and below the central cranio-caudal axis, consistent with a cerebellar distribution 

[2, 23]. Izutsu et al. [28] found that in their cohort of 67 patients with 437 tumors, 

Her2 positivity was associated with metastases in the putamen and thalamus and less 

frequently in the cerebellum [28]. Figure 6 corroborates these findings, wherein Her2+ 

tumors appear to be preferentially distributed on the midline (thalamus and putamen are 

midline structures). Kyeong et al. [27] found that TNBC was evenly distributed in the brain, 

which is supported by Fig. 6F, where TNBC appears to have a relatively uniform distribution 

between anterior, posterior and watershed areas of circulation [27]. It is important to note 

that our study did not corroborate all of the findings within the literature- for example 

Kyeong et al. [27] contradicted the findings by Izutsu et al. [28] (and our analysis) and 

found BM from Her2 positive and luminal type tumors more common in the cerebellum 

and occipital lobe. These inconsistencies (and differences in sequence methods) highlight 

the need for high quality, standardized data collection and analysis methods. Using mutual 

information, data on subtype similarity may be explored: for instance, TPBC and hormone 

negative BC (TNBC, ER−PR−Her2+) had two of the most divergent patterns of distribution. 

This supports known characterization of BC, where hormone receptor positivity portends 

significantly improved outcomes [30]. Further characterization of and groupings of subtypes 

with higher MI coefficients (higher similarity) should also be explored (with larger data 

sets), such as between ER+PR+Her2+ tumors and ER+PR+Her2− tumors; it may be that 

the clustering of these tumors are both relatively non-preferential, hence they have high MI 

coefficients, however there may be underlying factors related to tumor microenvironment 

or other genes which may drive tumorigenesis in similar locations. Subsequent translational/

animal models which attempt to categorize growth of tumors based on their location should 

prioritize investigating tumor subtypes with the most convergent and divergent MI indices.

Opportunities for advancement in diagnosis and treatment

Neurotransmitters (e.g. gamma-aminobutyric acid (GABA), glutamate, dopamine, etc) are 

the biochemical backbone for synaptic signaling, but are also utilized for other cellular 

functions. These neurotransmitters are present in varying concentrations in different regions; 

for example, GABA-ergic communication is predominant in cerebellum. This difference is 

also highlighted by blood-flow; and it is speculated that BM have a predominance in the 

cerebellum due to the difference in blood flow to those regions, however it is unknown why 

this affect has a nonuniform impact across primary cancers and subtypes. Understanding the 

spatial distribution of BM based on molecular subtype may further characterize tumor ability 
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to adapt to regional microenvironments based on these neurotransmitter distributions, and 

may promote BM progression [4, 11, 31].

There is a need for large, multi-center studies which utilize standardized data collection 

criteria to accurately map our brain metastases to avoid inaccuracies as previously 

mentioned, and enhance generalizability and external validity of this work. In addition, 

the current advantage of MRI mapping vs GKRS is the ability to develop a 1–1 anatomic 

map. Accordingly, efforts should be made to create a Leksell-Anatomic mapping, wherein 

specific X,Y,Z coordinates map to a specific location on a standardized cartesian plane. 

These mapping classifications must be corroborated with in-vitro and animal models, 

demonstrating the ability to seed tumor more readily in certain areas of the brain, or 

identify DNA/RNA lineages specific to tumor locations. Finally, this data must be correlated 

with clinical factors (e.g. time to diagnosis, overall survival, etc.) which can allow for 

the development of clinical decision trees. Groups have postulated that the accurate 

classification of subtypes and correlation with high-risk subgroups might warrant increased 

surveillance in the period following cancer diagnosis but before BM diagnosis, or even 

prophylactic, low dose radiation to regions of the brain with high susceptibility [28]. These 

clinical implementations remain distant, however the systematic, quantifiable mapping of 

BM distributions is an important first step in personalized oncologic care for the patient with 

BMBC.

Limitations

There are limitations to the current study. While stereotactic headsets are standardized 

in their size, they are fit to a patient’s specific head size which may introduce variation 

in coordinate recordings. Studied across a cohort of hundreds or thousands of patients, 

however, these individual cranial-frame variations are likely to normalize and not preclude 

meaningful statistical comparison. Secondly, the anatomical distributions demonstrated 

(anterior/posterior, medial/lateral) are Cartesian-derived and may have a limited degree 

of inaccuracy, although GKRS accuracy has been reported to be on the order of 1mm. 

The data itself introduces a level of systematic bias as it only accounts for patients who 

had GKRS for treatment of BM, and not patients who elect not to undergo GKRS, those 

who undergo whole brain radiation, or have undiagnosed BMBC. Furthermore, correlation 

with MRI endpoints would significantly strengthen this work. However, advanced imaging 

studies which may allow us to make more definitive claims regarding the tumor-tumor 

microenvironment specific to anatomic endpoints (e.g. MR angiograms, perfusion MRI, 

tractography, etc.) were not performed systematically across any significant subset of 

patients. Lastly, given that individual cancers themselves have differential distribution 

patterns, by definition, variance within cancers will be far more subtle. Accordingly, our 

samples may be significantly underpowered to detect meaningful difference in cancer 

subtype distribution, which is why we employ the bootstrap/re-sampling method. Scaling 

the analysis described using the current workflow to thousands of BMK patients from multi-

center consortia will increase power and allow more meaningful and granular comparison of 

cancer and molecular BM subtypes. Additionally, larger data sets might well allow for novel 

machine learning based methods of pattern classification that were not possible using our 

current data cohort.
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Conclusion

We demonstrate a novel, objective, data-based methodology for classifying and analyzing 

the spatial distribution of brain metastases by breast cancer molecular subtypes using 

stereotactic coordinates, principal component coordinates (PC), and kernel density 

estimators (KDE) to highlight clustering regions in the brain. We then compare distributions 

associated with different molecular subtypes using the mutual information (MI) metric, 

which is a widely used bioinformatic metric [16, 17], but to our knowledge has not 

been used in the current context. This systematic, quantitative method for classifying BM 

distribution is easy to scale, accurate, and a meaningful step forward towards understanding 

the relationship between BM tumor microenvironment and tumorigenesis. Her2+ vs. Her2− 

cancers may show differential patterns based on this pilot study data and novel methodology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Scatter and kernel density plots showing the spatial distribution of metastatic brain tumors 

for all breast cancer patients in sagittal, axial, and coronal views. A Scatter plot, sagittal 

view, red dot indicates the mean; B Scatter plot, axial view, red dot indicates the mean; 

C Scatter plot, coronal view, red dot indicates the mean; D Kernel density plot, sagittal 

view. Color shading indicates density, closed dark regions indicate highest density of 

metastatic tumors. Distributions on top and right are probability distribution functions 

(pdf’s) describing the distribution of tumors. E Same as (D) axial view; F Same as (D), 

coronal view
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Fig. 2. 
Kernel density plots of metastatic tumor distributions according to genetic subgroups, 

sagittal, axial, and coronal views. Color shading indicates density, closed dark regions 

indicate highest density of metastatic tumors. Distributions on top and right are probability 

distribution functions (pdf’s) describing the distribution of tumors. A Column showing 

ER−/PR−/Her2+ subgroup, three views; B Column showing ER+/PR+/Her2− subgroup, 

three views; C Column showing TNBC subgroup, three views; D Column showing TPBC 

subgroup, three views
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Fig. 3. 
Scatter plot of all breast cancer metastatic brain tumors in X-Y-Z coordinates showing 

the Principal component axes PC1-PC2-PC3. A 3D data representation in (X,Y,Z) space 

showing the orientation of (PC1,PC2,PC3). B 2D projection onto (X,Y) plane; C 2D 

projection onto (X,Z) plane; D 2D projection onto (Y,Z) plane
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Fig. 4. 
Violin plots (probability distribution functions) of metastatic distributions according to 

molecular groupings (indicated by color), comparing distributions in original Cartesian 

X-Y-Z coordinates, and Principal component coordinates (PC1-PC2-PC3). MI metric is 

shown for each pair. A Distribution along PC1-axis according to molecular grouping. 

Yellow dash indicates mean, white dot indicates median; B Distribution along PC2-axis 

according to molecular grouping. Yellow dash indicates mean, white dot indicates median; C 
Distribution along PC3-axis according to molecular grouping. Yellow dash indicates mean, 

white dot indicates median; D Distribution along X-axis according to molecular grouping. 

Yellow dash indicates mean, white dot indicates median. We use this representation to 

arrange the subtypes from left to right in order of increasing divergence between the 

means and medians; E Distribution along Y-axis according to molecular grouping. Yellow 

dash indicates mean, white dot indicates median; F Distribution along Z-axis according to 

molecular grouping. Yellow dash indicates mean, white dot indicates median
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Fig. 5. 
Scatter plots of metastatic tumors, anterior/posterior, lateral/medial, three different views. A 
Sagittal view, blue indicates anterior, pink indicates posterior, grey dots indicate washout 

region; B Axial view, blue indicates anterior, pink indicates posterior, grey dots indicate 

washout region; C Coronal view, blue indicates anterior, pink indicates posterior, grey dots 

indicate washout region; D Sagittal view, blue indicates lateral, red indicates medial; E 
Axial view, blue indicates lateral, red indicates medial; F Coronal view, blue indicates 

lateral, red indicates medial; G Topographical illustration (axial) showing the X-coordinates 

corresponding to the lateral and medial regions
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Fig. 6. 
Histograms (Count and Proportion) showing spatial distribution (anterior/posterior; lateral/

medial) by molecular subtypes and groupings. A Count per molecular subtype, anterior 

(blue), posterior (pink), watershed (grey); B Count per molecular grouping, anterior (blue), 

posterior (pink), watershed (grey); C Count per molecular subtype, lateral (blue), medial 

(red); D Count per molecular grouping, lateral (blue), medial (red); E Proportion per 

molecular subtype, anterior (blue), posterior (pink), watershed (grey); F Proportion per 

molecular grouping, anterior (blue), posterior (pink), watershed (grey); G Proportion per 

molecular subtype, lateral (blue), medial (red); H Proportion per molecular grouping, lateral 

(blue), medial (red)
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