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Abstract

The Apocynaceae tree Voacanga thouarsii, native to southern Africa and Madagascar, produces monoterpene indole alka-
loids (MIA), which are specialized metabolites with a wide range of bioactive properties. Voacanga species mainly accumu-
lates tabersonine in seeds making these species valuable medicinal plants currently used for industrial MIA production. 
Despite their importance, the MIA biosynthesis in Voacanga species remains poorly studied. Here, we report the first genome 
assembly and annotation of a Voacanga species. The combined assembly of Oxford Nanopore Technologies long-reads and 
Illumina short-reads resulted in 3,406 scaffolds with a total length of 1,354.26 Mb and an N50 of 3.04 Mb. A total of 33,300 
protein-coding genes were predicted and functionally annotated. These genes were then used to establish gene families and 
to investigate gene family expansion and contraction across the phylogenetic tree. A transposable element (TE) analysis 
showed the highest proportion of TE in Voacanga thouarsii compared with all other MIA-producing plants. In a nutshell, 
this first reference genome of V. thouarsii will thus contribute to strengthen future comparative and evolutionary studies 
in MIA-producing plants leading to a better understanding of MIA pathway evolution. This will also allow the potential iden-
tification of new MIA biosynthetic genes for metabolic engineering purposes.

Significance
Voacanga species are major industrial resources of tabersonine, an important intermediate in the synthesis of 
aspidosperma-type monoterpene indole alkaloids (MIA), that are of high pharmaceuticals importance. Despite their sig-
nificant role in the pharmaceutical industry, no previous study reported genomic analysis of MIA metabolism in 
Voacanga species. Here, we provide the first annotated reference genome of a Voacanga species that, together with 
the previously published MIA-producing plant genomes, will help understand evolution and diversification of MIA in 
plants as well as identifying MIA biosynthetic genes to enrich the molecular MIA toolbox used for production of MIA 
in heterologous hosts.
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Introduction
The wild frangipani, Voacanga thouarsii, is a small 
Apocynaceae tree native to southern Africa and 
Madagascar. Apocynaceae species are known to accumu-
late a broad spectrum of specialized metabolites including 
monoterpene indole alkaloids (MIA; Leeuwenberg, 1980). 
These compounds are part of the plant defense mechan-
isms to face both biotic and abiotic pressures (Dugé de 
Bernonville et al. 2015). Due to the high diversity of their 
bioactive properties, MIAs are active substances of many 
drugs such as antihypertensive and anticancer ones 
(O’Connor and Marseh, 2006; Macabeo et al. 2009).

MIAs originate from the condensation of secologanin 
and tryptamine yielding strictosidine followed by its sub-
sequent decorations and/or cyclisation (De Luca et al. 
1987; Maresh et al. 2007). Their biosynthetic pathways 
have extensively been studied over the last three dec-
ades mainly in Catharanthus roseus (as reviewed by 
Pan et al. 2016 and Kulagina et al. 2022). More than 
100 MIAs have been reported in Voacanga species 
(see Hussain et al. 2012 for extensive review) including 
the valuable voacamine, resulting from the dimerization 
of vobasine and ibogaine (fig. 1A.iii). Voacamine is used 
in several African countries to fight malaria and also dis-
plays strong antimicrobial and cardiotonic properties 
(Diavara et al. 1984; Ramanitrahasimbola et al. 2001). 
Voacanga thouarsii and V. africana also stands out for 
a high accumulation level of the aspidosperma-type 
MIA tabersonine (fig. 1A.ii) especially in seeds 
(Dzoyem et al. 2013; Kunesch et al. 1977; Rolland 
et al. 1975; Goldblatt et al. 1970). Tabersonine is a 
key intermediate in the synthesis of many important 
medicinal MIA (e.g., vindoline, pachysiphine). Even 
though these two Voacanga species are major industrial 
sources of tabersonine, the biosynthetic routes of their 
MIAs have not been studied to date. Here, we report 
the first Voacanga genome assembly. Together with 
the eight previously published MIA-producing plant 
genome (Stander et al. 2022), this new genome re-
source will increase our understanding of MIA diversifi-
cation as well as the evolution of their biosynthetic 
pathways.

Results and Discussion

Genome Assembly and Annotation

Voacanga thouarsii was assembled into 3,451 contigs with 
an N50 of 2.91 Mb. The pilon-polished assembly consisted 
in 1,341.26-Mb distributed across 3,406 scaffolds with an 

N50 of 3.04 Mb (table 1) and a GC content of 34.31%. 
Currently reported Apocynaceae assemblies (Calotropis 
gigantea, Catharanthus roseus, Vinca minor), ranging from 
157.28 to 679.10 Mb, are smaller than the one reported 
here (table 1). The base-level QV of 36.8732, corresponding 
to more than 99.999% accuracy, and the k-mer complete-
ness of 93.9624% are good indicators of the high quality 
of the assembled genome.

Based on the identification of core Eudicotyledons 
Benchmarking Universal Single-Copy Orthologs (BUSCO), 
the assembled genome is 97.1% complete (fig. 1B). Gene 
prediction with MAKER2 (Holt and Yandell, 2011) annota-
tion tool identified 33,300 protein-coding genes in the as-
sembled genome which is comparable to the previously 
published Apocynaceae species (table 1). Based on 
Eudicotyledons BUSCO, this predicted set of genes is 
90.7% complete with a very low duplication rate (2.5%, 
fig. 1B).

The combination of BLASTP and BLASTX against UniProt 
database and hmmscan against the PFAM database led to 
the functional annotation of 65.7% of the predicted genes 
(21,890 of the 33,300 genes, fig. 1C, supplementary table 
S1, Supplementary Material online). To identify putative 
orthologs of MIA biosynthetic genes, we used functionally 
validated MIA pathway genes from Catharanthus roseus, V. 
minor, Tabernanthe iboga, Gelsemium sempervirens and 
Rauwolfia species to conduct BLAST searches considering 
hits of at least 90% coverage and 40% identity 
(supplementary tables S2-S3, Supplementary Material on-
line). The most probable orthologues were then selected 
based on best hits and phylogeny analysis (supplementary 
table S4, Supplementary Material online). Based on this ap-
proach, we were able to identify putative orthologs with 
high confidences (76–94% protein identity) for almost 
90% of terpenoids, iridoids, and MIA biosynthetic genes 
up to tabersonine. Interestingly, putative orthologs of 
genes from the terpenoids and early iridoid pathway tend 
to be more expressed in leaves while orthologs of genes 
from the late iridoid, indole, and central MIA pathways 
tend to be more expressed in roots, thus suggestion a spe-
cialization of MIA synthesis (supplementary table S4, 
Supplementary Material online). Very poor confidences 
were obtained for putative orthologs of the MIA pathways 
genes downstream of tabersonine (<64% protein identity). 
As an example, identity between orthologs is so weak that 
we were not able to discriminate putative orthologs of 
T16H and TEX. This thus suggests two possible evolution 
scenarios of the genes encoding tabersonine-modifying en-
zymes relying either on a wide diversification in plants accu-
mulating several tabersonine-derived MIAs such as in 
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FIG. 1.—The annotated Voacanga thouarsii genome. (A) Voacanga thoaursii flowers (i) and the molecular structure of two main MIA: tabersonine (ii) 
and voacamine (iii) which results in the combination of a vobasine (1) and an ibogain (2). (B) BUSCO scores of genome and annotated genes. (C) Functional 
annotation of genes using SwissProt, Pfam, KEGG, and GO databases. (D) Transposable element proportion and classification. TIR: terminal inverted repeat, 
LTR: long terminal repeat, other LTR: LTR containing retrotransposons except for Gypsy and Copia, non-LTR: retrotransposons without LTR sequence, non 
TIR: DNA transposons without TIR sequence. (E) Synonymous substitution (Ks) rate distribution plot for V. thouarsii orthologs compared with other eudicots. 
(F) Phylogenetic tree of V. thouarsii and 10 other species including three Apocynaceae (purple: C. roseus, V. minor, C. gigantea), one Gelsemiaceae (yellow: 
G. sempervirens), two Rubiaceae (green: O. pumila, M. speciosa) and one Cornales (pink: C. acuminata). Gene family expansion (+) and contraction (−) were 
calculated using Cafe5 in each lineage (light bordered blue boxes) and in internal nodes of ancestral population for each taxon (thick bordered grey boxes).
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Catharanthus roseus or to their non-functionalization in V. 
thourasii leading to their loss and the high accumulation of 
tabersonine. Indeed, such an evolutionary process has al-
ready been described in benzoxazinoid biosynthesis (Frey 
et al. 2009). By contrast, confident gene orthologs of the 
voacamine biosynthesis branch were found in agreement 
with its accumulation in Voacanga species (Hussain et al. 
2012).

Transposable Element Annotation

Transposable elements (TE) have well-known roles in gen-
ome evolution, genetic instability and gene expression regu-
lation (Sahebi et al. 2018), prompting us to analyze TE 
composition in V. thouarsii. This analysis showed that 
75.16% of the genome consists of TE (fig. 1D), which main-
ly corresponds to long terminal repeat retrotransposons 
(63.9% of total TE) with a similar proportion of Copia and 
Gypsy elements (29.1% and 24.4%, respectively, fig. 1D). 
Interestingly, V. thouarsii genome displayed the highest pro-
portion of TE compared with all other MIA-producing plants 
studied that could be a reason for the low scaffolding levels. 
Indeed, V. thouarsii genome is composed of 3,406 scaffolds 
when all other Apocynaceae genomes we studied ranged 
between 296 and 2,090 scaffolds (table 1). Moreover, a 
similar phenomenon is observed with Papaver somniferum 
genome, which has a similar TE content to V. thoaursii 
(72.58%), a genome size that is almost twice as large and 
a high number of scaffolds (table 1, fig. 1D).

Whole-Genome Duplication Analysis

We then searched for whole-genome duplication (WGD) 
events by calculating synonymous substitution per syn-
onymous sites (Ks) for paralogous gene pairs across 

different plant species (fig. 1E). Here, we detected the con-
served γ whole-genome triplication (Jiao et al. 2012) com-
mon to all eudicots at a Ks of around 2 in all studied 
species. No other secondary peak could be observed indi-
cating that V. thouarsii did not go through any additional 
WGD.

Comparison of Orthologous Genes

A maximum-likelihood phylogenetic tree of the 11 studied 
species was constructed from 680 single-copy orthogroups 
obtained from OrthoFinder. Lineage-specific (fig. 1F, blue) 
and ancestral (fig. 1F, grey) gene family evolution was de-
termined using Cafe5. Even though a similar number of 
genes was annotated in V. Thouarsii genome compared 
with other Apocynaceae, V. thouarsii showed the highest 
decrease in orthogroups (2,140) among all investigated 
MIA-producing plants. Such a difference may result from 
putative variations in the copy-number of several genes 
For instance, 404 V. thouarsii genes were annotated as pu-
tative cytochrome P450 while 225 cytochrome P450 are 
annotated in Catharanthus roseus genome (Franke et al. 
2019). Among the 2,140 decreased orthogroups, 1,608 
orthogroups completely disappeared in V. thouarsii includ-
ing 952 existing in the three studied Apocynaceae 
(supplementary table S5, Supplementary Material online). 
These losses could be linked to the high proportion of TE 
in V. thouarsii compared with other Apocynaceae, in agree-
ment with their key roles in genome evolution (Catlin and 
Josephs, 2022). Indeed, several studies conducted in plants 
(Tang et al. 2012; Bariah et al. 2020; Boatwright et al. 2021) 
and animals (Pantzartzi et al. 2018; Bourgeois et al. 2020) 
have highlighted the impact of TE on the loss of functional 
genes. Such dynamics could also explain the differences in 

Table 1 
Genome assembly metrics

Species Family Assembly size (Mb) No. of scaff.a N50 (Mb) Protein -coding genes BUSCO C [S; D]; F; Mb Ref.

A. thaliana Bras. 119.67 7 23.46 27,564 99.6 [98.8; 0.8]; 0.1; 0.3 [1]
C. gigantea Apo. 157.28 1,536 0.81 18,197 93.0 [91.6; 1.4]; 1.7; 5.3 [2]
C. acuminata Corn. 414.95 775 18.28 27,940 98.2 [90.5; 2.2]; 0.5; 1.3 [3]
C. roseus Apo. 541.13 2,090 2.58 34,363 97.0 [95.5; 1.5]; 1.3; 1.7 [4]
G. sempervirens Gel. 244.39 3,352 0.41 22,617 96.5 [95.1; 1.4]; 0.9; 2.6 [4]
M. speciosa Rub. 1,122.52 40,370 1.02 55,746 91.2 [37.7; 53.5]; 5.0; 3.8 [5]
O. pumila Rub. 440.32 13 40.57 91,162 96.9 [93.7; 3.2]; 0.9; 2.2 [6]
P. somniferum Pap. 2,715.53 34,381 204.47 62,934 94.8 [9.2; 85.6]; 1.2; 4.0 [7]
S. lycopersicum Solan. 782.52 13 65.27 34,075 98.5 [97.6; 0.9]; 0.6; 0.9 [8]
V. minor Apo. 679.10 296 5.97 29,624 96.9 [60.3; 36.6]; 1.1; 2.0 [9]
V. thouarsii Apo. 1,351.26 3,406 3.04 33,300 97.1 [94.9; 2.2]; 0.9; 2.0 This study

anumber of scaffolds; bBUSCO scores (genome mode) % Complete [% Complete and single-copy; % Complete and Duplicated]; % Fragmented; % Missing (n = 2,326). 
A. thaliana: Arabidopsis thaliana, C. gigantea: Calotropis gigantea, C. acuminata: Camptotheca acuminata, C. roseus: Catharanthus roseus, G. sempervirens: Gelsemium 

sempervirens, M. speciosa: Mytragyna speciosa, O. pumila: Ophiorrhiza pumila, P. somniferum: Papaver somniferum, S. lycopersicum: Solanum lycopersicum, V. minor: Vinca 
minor, V. thouarsii: Voacanga thoaursii. 

Bras.: Brassicaceae, Apo: Apocynaceae, Corn.: Cornales, Gel.: Gelsemiaceae, Rub.: Rubiaceae Pap.: Papaveraceae, Solan.: Solanaceae. 
[1] Lamesh et al. 2012; [2] Hoopes et al. 2018; [3] Kang et al. 2021; [4] Franke et al. 2019; [5] Brose et al. 2021; [6] Rai et al. 2021; [7] Guo et al. 2018; [8] Hosmani et al. 2019; 

[9] Stander et al. 2022.
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MIAs from Voacanga species compared with other 
MIA-producing plants.

Conclusions
Here, we described the genome of the wild frangipani, 
Voacanga thouarsii, which will be a valuable resource for 
future evolutionary and functional studies. Our genomic 
analysis showed that despite some similarities (e.g., 
similar gene content, absence of post-γ whole-genome du-
plication), V. thouarsii genome displays specific genomic 
features such as a higher TE content and a bigger size com-
pared with other Apocynaceae. This new Apocynaceae 
genome thereby paves the way for a better understanding 
of MIA biosynthesis as well as the identification of new and/ 
or more efficient MIA biosynthetic enzymes that can be 
used in the developing yeast cell factories producing MIAs 
(Guirimand et al. 2021; Kulagina et al. 2021; Zhang et al. 
2022).

Materials and Methods

Sample Collection, DNA Extraction and Sequencing

Voacanga thouarsii seeds were obtained from Boutique 
Végétale (https://boutique-vegetale.com/). Seeds were 
soaked for 16 h before sowing. Plant were greenhouse- 
grown for three months before sampling. DNA was ex-
tracted from V. thouarsii leaves using Qiagen Plant 
DNeasy kit (Qiagen, Hilden, Germany) following the manu-
facturer’s instructions. Illumina sequencing library were 
built using the Nextera Flex kit (Illumina, San Diego, USA) 
by Future Genomics Technologies (Leiden, The 
Netherlands) and subsequently sequenced in paired-end 
mode (2 × 150 bp) using Illumina NovaSeq 6,000 technol-
ogy. Future Genomics Technologies (Leiden, The 
Netherland) constructed ONT library using ONT 1D ligation 
sequencing kit (Oxford Nanopore Technologies Ltd, 
Oxford, United-Kingdom) subsequently sequenced on 
Nanopore PromethION flowcell (Oxford Nanopore 
Technologies Ltd, Oxford, United-Kingdom) with the guppy 
version 4.0.11 high-accuracy basecaller. A total of 
281,539,400 reads were obtained from the Illumina 
NovaSeq 6,000 sequencing and 11,390,893 from the 
ONT PromethION sequencing.

RNA Sequencing and Assembly

RNA was extracted from liquid nitrogen flash-frozen roots, 
young and old leaves using NucleoSpin RNA Plant and 
Fungi mini kit (Macherey-Nagel, Düren, Germany) and puri-
fied using RNase-free TURBO DNase set (Thermo Fisher 
Scientific, Illkirch-Graffenstaden, France), both according 
to the suppliers’ instructions. RNA library construction 
and sequencing was performed at FGTech using Illumina 

NovaSeq 6,000 technology. Raw RNA-seq data have been 
deposited under the SRA accession numbers 
SRR19972991, SRR19972992, and SRR19972993. 
Transcriptome was assembled using CLC assembler 
(v.4.4.1) with a word size of 60 and a bubble size of 250.

De Novo Genome Assembly, Gene Model Prediction and 
Gene Functional Annotation

The V. thouarsii genome assembly and gene model predic-
tion were performed by Future Genomics Technologies 
(Leiden, The Netherlands). Adapters were removed using 
porechop (Wick et al. 2017). ONT reads were first as-
sembled into contig using Flye assembler (v.2.8.2, 
Kolmogorov et al. 2019) with the following options: –min- 
overlap 10,000 -i 2. Redundant contigs were removed 
using purge_haplotigs (v.1.1.0) followed by two rounds 
of polishing with Illumina paired-end reads using pilon 
(v.1.23, Walker et al. 2014). Gene modeling was performed 
using MAKER2 pipeline (v.3.01.02, Holt and Yandell, 2011) 
using CLC assembled transcriptome as evidence. Putative 
function for each gene model was then assigned via a com-
bination of similarity search (BLASTX of predicted transcript 
and BLASTP of TransDecoder (v.5.5.0, Haas et al. 2013) pre-
dicted ORFs against the UniProt database) and hmmscan 
(v.3.1b2, Finn et al. 2011) against the PFAM database 
(https://pfam.xfam.org/).

Assembly Completeness Assessment

Assembly quality was assessed using the stat program from 
BBMap tool (v.38.94, Bushnell, 2014). Complementary 
quality metrics were obtained from merqury (v. 1.3, Rhie 
et al. 2020). Briefly, 20-mers database was constructed 
from Illumina short-reads using count function from meryl 
(v.1.3, Koren et al. 2017). K-mer survival rate was then used 
to estimate base-level consensus quality score (QV). K-mer 
completeness was evaluated considering the fraction of re-
liable k-mers in read database also found in the assembly. 
Genome and gene models completeness were assessed 
by applying Benchmarking Universal Single-Copy 
Orthologs (BUSCO v.5.2.2, Simão et al. 2015) with default 
settings using a plant-specific database of 2,326 single- 
copy orthologs (eudicots_odb10). Gene models statistics 
were obtained using agat_sp_statistics from the AGAT 
package (v.0.8.0, Dainat, 2022).

Transposable Elements Prediction and Annotation

Extensive de novo TE annotator (EDTA v.1.9.5, Ou et al. 
2019) was used to identify and annotate transposable 
element (TE). Sensitive option using RepeatModeler 
(v.2.0.1, Smit and Hubley, 2015) was used to identify re-
maining TEs. Classification consistency was evaluated using 
evaluate option. alluniRefprexp082813 curated database 
was used to perform TE annotation.
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Whole-Genome Duplication Analysis

To infer whole-genome duplication (WGD) events, transcript 
sequences of V. thouarsii, V. minor (Stander et al. 2022), 
Arabidopsis thaliana (Lamesh et al. 2012), Catharanthus ro-
seus (Franke et al. 2019), Mytragyna speciosa (Brose et al. 
2021), Solanum lycopersicum (Hosmani et al. 2019), 
Camptotheca acuminata (Kang et al. 2021), Calotropis gigan-
tea (Hoopes et al. 2018), G. sempervirens (Franke et al. 2019), 
Ophiorrhiza pumila (Rai et al. 2021), and P. somniferum (Guo 
et al. 2018) were input to the DupPipe pipeline (Barker et al. 
2010). For each dataset, discontiguous MegaBLAST (Ma 
et al. 2002, Zhang et al. 2004) was used to identify duplicated 
gene pairs (40% sequence similarity over 300 bp). For each 
gene pair, the open reading frame was infer from the 
NCBI’s plant RefSeq protein database (May 21, 2021) using 
BLASTx (v.2.6.0-1, Camacho et al. 2009). Only the best hit se-
quence was retained (sequence similarity threshold: 30% 
over 150 aa). DNA sequence alignment against its best hit 
homologous protein sequence and its translation was per-
formed using GeneWise (Birney et al. 2004). Resulting amino 
acid sequences for each gene pair were aligned using 
MUSCLE (v.3.6, Edgar, 2004). This alignment further guided 
nucleic acid alignment using RevTrans (v.1.4, Wernersson 
and Perdersen, 2003). Codeml’s F3 × 4 model from PAML 
package (v.4.9, Yang, 1997) was used to calculate substitu-
tions per synonymous site (Ks) and thus determine divergence 
times between gene pairs.

Phylogenetic Tree Reconstruction

Gene families were constructed by comparing the protein 
sequences of V. thouarsii with ten other plant species: 
V. minor (Stander et al. 2022), A. thaliana (Lamesh et al. 
2012), Catharanthus roseus (Franker et al. 2019), M. spe-
ciosa (Brose et al. 2021), S. lycopersicum (Hosmani et al. 
2019), C. acuminata (Kang et al. 2021), Calotropis gigan-
tea (Hoopes et al. 2018), G. sempervirens (Franke et al. 
2019), O. pumila (Rai et al. 2021) and P. somniferum 
(Guo et al. 2018). Protein sequences of less than 30 amino 
acids were removed. For each species, the longest repre-
sentative protein was selected in each CD-HIT (v.4.7; Fu 
et al. 2012) cluster. These sequences were then used as in-
put for OrthoFinder (v.2.5.4; Emms and Kelly, 2019) using 
the following parameters: -S diamond -M msa -A muscle 
-T raxml-ng. 680 single-copy orthogroups were used to 
build a maximum-likelihood phylogenetic tree. 
Orthogroup gain and expansion were determined across 
the phylogenetic tree using Cafe5 (v.4.2.1, Mendes 
et al. 2021).

Transcript Abundance Estimation

Reads were pseudo-aligned onto the predicted transcripts 
and counted using Salmon (v.0.6.0; Patro et al. 2017) using 

-biasCorrect and -vbo options. Abundance estimates were 
established as transcripts per million (TPM) and are pre-
sented in supplementary table S6, Supplementary 
Material online.

Supplementary Material
Supplementary data are available online at Genome Biology 
and Evolution online.
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