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Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium and 4Division of Endocrinology, Erasmus
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ABSTRACT

A sensible control of hormone secretion from pan-
creatic islets requires concerted inter-cellular com-
munications, but a comprehensive picture of the
whole islet interactome is presently missing. Single-
cell transcriptomics allows to overcome this and we
used here a single-cell dataset from type 2 diabetic
(T2D) and non-diabetic (ND) donors to leverage islet
interaction networks. The single-cell dataset con-
tains 3046 cells classified in 7 cell types. The inter-
actions across cell types in T2D and ND were ob-
tained and resulting networks analysed to identify
high-centrality genes and altered interactions in T2D.
The T2D interactome displayed a higher number of
interactions (10 787) than ND (9707); 1289 interac-
tions involved beta cells (1147 in ND). High-centrality
genes included EGFR, FGFR1 and FGFR2, important
for cell survival and proliferation. In conclusion, this
analysis represents the first in silico model of the hu-
man islet interactome, enabling the identification of
signatures potentially relevant for T2D pathophysiol-
ogy.

INTRODUCTION

Islets of Langerhans are cell clusters located in the pan-
creas that play a key role in balancing body intermedi-
ate metabolism. In human adults the number of islets
ranges 0.5–4 million, and islet size may vary from 30 to
40 up to 400–500 �m in diameter (1,2). The endocrine cells
(mostly beta, alpha and delta cells, but also PP and ghrelin-
producing cells) account for the vast majority of the islet
cells (3,4), but these highly heterogeneous micro-organs
also contain non-endocrine cells. Altogether, these cellular

‘ecosystems’ engage in complex communication networks
able to affect the function of the endocrine cells (5–7). Thus,
beta cell function is modulated not only by nutrient concen-
trations, but also by the action of other islet hormones, in
particular glucagon and somatostatin (8).

The effects of such intercellular communications high-
light the importance that the whole islet ‘system’ has on the
properties of its individual components. However, compre-
hensive descriptions of the intra-islet cross-talk, including,
in particular, ligand–receptor interactions, and how these
may be perturbed in type 2 diabetes (T2D) are still miss-
ing. This can also be due to the heterogeneous nature of
pancreatic islets, which complicates the characterization of
individual cell types by high-throughput methods such as
transcriptomics and proteomics.

The advancements of single-cell technology filled this
gap, allowing to define the transcriptomic features of the
human islet cell types and how these are affected by T2D
(9–11). CellPhoneDB (12), a recent inclusion among the re-
sources available to analyse such data, is a public reposi-
tory of intercellular interactions, involving either ligand–
receptor pairs or more complex interactions i.e. those in
which both partners are receptors (such as interactions be-
tween membrane proteins) or involving complexes. For the
sake of simplicity, we will refer to these different interac-
tion classes with the term ligand–receptor interactions. The
database is provided with scripts allowing to map single-cell
expression data, enabling to derive the complete set of in-
teractions occurring between all pairwise combinations of
cell types, which will be referred to as the interactome. The
methods implemented in CellPhoneDB include a statisti-
cal analysis method based on empirical shuffling to com-
pute which ligand–receptor interactions display significant
cell-type specificity. Such an approach has been previously
used to generate an atlas of interactions occurring at the
maternal–fetal interface during early pregnancy (13), to

*To whom correspondence should be addressed. Tel: +39 050 995 110; Email: piero.marchetti@med.unipi.it

C© The Author(s) 2022. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

https://orcid.org/0000-0002-4769-8667
https://orcid.org/0000-0002-5112-1692


2 NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 4

characterize interactions between cancer and immune cells
(14), and to investigate the immune mechanisms associated
with severe COVID-19 infections (15).

In this work, we applied the CellPhoneDB framework to
analyse a single-cell dataset integrating different studies pre-
viously published (16). By separately considering cells from
non-diabetic (ND) and T2D donors, we assembled two dif-
ferent interaction networks (interactomes) in order to de-
scribe the interactions occurring in health (ND) and disease
(T2D). We then described these perturbations, focusing on
cell types and genes of pathophysiological relevance.

MATERIALS AND METHODS

Single-cell data analysis

A previously published dataset (16) that integrates three
single-cell transcriptomic studies (9–11) was loaded in the
Scanpy framework (17) as a data frame (AnnData). This
data structure stores the expression value of each gene in
the single cells, as well as the metadata annotation of cells
and genes. The cells have been divided in two groups ac-
cording to the ‘Disease’ variable, which indicates if the cor-
responding donor was diabetic or not. For each of the two
groups, the read counts and the metadata reporting the cell
types have been exported as tab-separated files and analysed
with CellPhoneDB 2.1.1 (12) in a Unix environment with
the command line: ‘cellphonedb method statistical analysis
meta.tsv counts.tsv’, where ‘meta.tsv’ and ‘counts.tsv’ cor-
respond to the metadata and the read counts files, respec-
tively.

Data from HPAP (18) was used to perform an orthogonal
validation of the ND interactome. Briefly, transcriptomic
data from two donors (HPAP-054 and HPAP-059) that we
previously studied (19), was analysed with CellPhoneDB,
separately for each donor, using the same command line and
combined in a single interactome (HPAP-ND interactome).

Interactome analysis

The CellPhoneDB output files ‘significant means.txt’ were
analysed in a python environment using the Pandas li-
brary (https://pandas.pydata.org). A detailed description
of the code used to generate the obtained results is avail-
able in a Github repository (https://github.com/EBosi/
IsletInteractome). The resulting data frames, reporting the
interaction pairs between all cell types pairwise combina-
tions, were reshaped from a wide to a long format, adding
two columns indicating the cell source (as-source column)
and the cell target (as-target column). Based on the Cell-
PhoneDB annotation, each interaction was defined as ‘di-
rected’ if one of the partners was a ligand and the other was
a receptor, and ‘undirected’ otherwise. As an example, the
interaction between INS and INSR is directed, whereas the
interaction between ADGRL1 and NRG1 is not. The steps
taken were as follows: first, by using the as-source and as-
target columns from the data frames described above we ob-
tained pivot tables reporting the number of interactions be-
tween as-source (columns) and as-target (rows) cell types.
With these tables we computed Spearman’s Rank Correla-
tion column-wise and row-wise, corresponding to the cor-

relation between as-source and as-target cell types pairs, re-
spectively. Second, we used each data frame to obtain as-
source and as-target interaction profiles for each cell type.
This was done adding two new columns, obtained by merg-
ing the as-source (or as-target) cell types with the interac-
tion id, e.g. merging the as-source cell type ‘ductal cell’ and
the interaction id ‘CPI-SC06873D10F’ would result in the
string ‘ductal cell CPI-SC06873D10F’. These columns were
used to obtain two matrices encoding the presence/absence
of the as-source (or as-target) interactions in the different
cell types with 1/0 values. These matrices have been used to
compute the Spearman’s Rank Correlation between the cell
types.

The sets of interactions were encoded as multi-partite di-
rected graphs. Such a class of graph is defined as a 3-tuple
G = (C,M,E), with the sets C, M, and E being respec-
tively the nodes corresponding to cell types, to molecules
(ligands/receptors), and the set of directed edges connect-
ing the various elements of the graph. The graphs have been
initialized as empty objects, then populated by iterating on
the rows of the interactome data frames and adding the cor-
responding interactions as paths in the graph. A path is a
sequence of edges connecting a source cell to a ligand, a lig-
and to a receptor, and a receptor molecule to a target cell. As
an example, let’s consider the directed interaction between
the cell type A, expressing the ligand X, and the cell type
B, expressing the receptor Y, the corresponding directed
path (the order in which the nodes are visited) would be
then A→X→Y→B. Undirected interactions are included
in the graph by adding two paths with both of the possible
directions, e.g. the undirected interaction between the cell
type A, expressing the molecule X which interact with the
molecule Y expressed in the cell B (A,X,Y,B) corresponds
to the paths A→X→Y→B and B→Y→X→A. The graphs
have been iteratively constructed starting from the interac-
tome dataframes, iterating on the rows and adding a path
for each row. For each edge, a ‘weight’ W was defined to en-
code the total number of occurrences of the corresponding
interactions in the interactome. The two paths of an undi-
rected interaction are counted only once for the purpose
of computing W. The networks were assembled using the
NetworkX library (20), and analysed with the graph algo-
rithms implemented in the library. The computation of cen-
trality measures was performed as following: the degree, in-
degree and out-degree centrality values were computed with
the functions ‘degree centrality’, ‘in degree centrality’ and
‘out degree centrality’; the ‘betweenness centrality’ func-
tion was used to compute betweenness centrality, using
the inverse of the edge weights as a distance measure; the
‘katz centrality numpy’ function was used to compute the
katz centrality, with the edge weights as the weight measure,
and the attenuation factor � as the reciprocal of the abso-
lute value of the largest eigenvalue of the network adjacency
matrix.

RESULTS

Defining the human islet interactomes

The human islet single-cell dataset used in this work fea-
tures a total of 3046 cells, expressing 27 931 genes (16). The
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cells, obtained and sequenced in previous studies (9–11),
have been obtained from 52 donors, 19 of which were T2D
and 33 ND. The metadata annotation reports a total of 7
cell types (alpha, beta, delta, PP, acinar, ductal and stellate
cells), 1611 cells from T2D donors and 1435 cells from ND.
The ND and T2D cells were separately analysed with Cell-
PhoneDB, resulting in two sets of interactions between the
seven cell types (Interactomes), represented as multi-partite
directed graphs (Figure 1).

The ND interactome (Supplementary Table S1) embeds
the human islet inter-cellular interactions likely occurring
under non-pathological conditions: there were a total of
9707 interactions occurring between all the pairwise com-
binations of the cell types (n = 49) (Figure 2A), involv-
ing a total number of 355 genes. Of these, 101 and 155
genes encode ligands and receptors, respectively. A to-
tal of 109 genes are associated with more complex, undi-
rected interactions involving two receptors (e.g. interac-
tions between two membrane proteins) or multimeric com-
plexes. A correlation analysis between the cell types per-
formed considering the number of interactions in which
they are sources (as-source, Figure 2B) revealed that en-
docrine cell types (alpha, beta, delta and PP cells) have sim-
ilar interaction profiles as compared with non-endocrine
cells, whereas these latter show more variegated interac-
tion profiles (Supplementary Table S2): ductal and aci-
nar cells are more similar each other, while the stellate
cells have their own distinct profile. The same analysis
performed on the interactions in which the cell types are
targets (as-target, Figure 2C) delivered completely differ-
ent results, as the distinction between endocrine and non-
endocrine cells is lost: beta and ductal cells display simi-
lar as-target interaction profiles, acinar cells have a profile
comparable to that of alpha and PP cells, and stellate cells
feature more similarity with acinar cells (Supplementary
Table S2).

A more granular analysis of the similarities between cell
type connections was performed considering, for each cell
type, the combination of all 9707 possible interactions with
all cell types, both as-source and as-target. Such profiles, en-
coding presence/absence values (Figure 2D), were used to
compute how similar the cell types are to each other (Sup-
plementary Table S2, Figure 2E and F): the cell types clus-
tered in three groups which are (i) endocrine cells, (ii) aci-
nar and ductal cells and (iii) stellate cells. Notably, the clus-
ters were consistent for both as-source and as-target pro-
files. A closer look at the relationships between endocrine
cell types revealed beta cells to be most similar to delta cells,
as indicated by the as-source profiles, with a Jaccard Simi-
larity (JS) of 0.62, followed by PP (JS = 0.59) and alpha
cells (JS = 0.47). In other words, since the as-source inter-
actions of a cell reflect the interactions in which the cell par-
ticipates as the signal sender, the beta and delta cells use
similar methods to interact with related targets. Consider-
ing the similarities of as-target profiles instead, the cells that
are more similar to beta cells are alpha cells (JS = 0.47), fol-
lowed by PP (JS = 0.43) and delta cells (JS = 0.40). Together
with the points discussed above, this suggests that beta and
alpha cells are receiving similar signals from islet, stellate,
ductal, and acinar cells.

Network analysis

By representing the ND interactome as a multi-partite
graph, we were able to apply algorithms from graph theory
to gain insights into the importance of genes. Such a net-
work presents 301 nodes and 2272 edges (983 between cell
types and ligands, 289 between ligands and receptors, and
1000 between receptors and cell types). Each edge is associ-
ated with a weight, quantifying how many times the corre-
sponding connection was found in the cell interactome. As
an example, the ligand insulin (INS), produced by beta cells,
significantly interacts with the insulin receptor (INSR) of all
seven cell types. Therefore, the edge connecting beta cells
with INS will have a weight 7 (as there are seven connec-
tions), as well as the edge connecting INS and INSR. The
edges connecting INSR with cell targets will have weight 1.
The collections of nodes, edges, and the relative attributes
(i.e. weights, identification codes, descriptions) are provided
as GEXF files for further investigations (Supplementary
File 1–2). The relative importance of ligands and receptors
is reflected by different centrality measures: computation
of various centrality measures allows to infer the relative
importance of ligands and receptors, and of corresponding
genes encoding these molecules.

The degree centrality (K) measures the number of connec-
tions associated to a ligand/receptor (Supplementary Table
S3): higher K values indicate molecules that are involved in
many interactions within the islet, and thus likely to hold
a relative importance for the communication network. The
K distribution (Figure 3A), computed for ligands and re-
ceptors, displays bimodality and an average K of 0.040,
with a standard deviation of 0.019. Decomposing the de-
gree into out- and in-degree (K-out and K-in, respectively)
allowed to track which interacting molecules were more im-
portant in the different aspects of inter-cellular communica-
tions, i.e. which are the ‘forward’ communication of a sig-
nal, or its reception. The K-in and K-out distributions (Fig-
ure 3B and C) display bimodality and an increased skew-
ness (from 1.16 to 3.10 and 4.28, respectively) to the left
side. The ligands/receptors with extreme K values are likely
to represent important actors of the islet communication
network. The genes with the highest K (top 5% quantile)
were 17, whereas the top genes according to K-in and K-
out were 16 and 15, respectively (Supplementary Table S3).
These three distributions yielded mostly consistent results
and included genes of proved relevance in the context of islet
function and diabetes. In particular, the top four genes of
K and K-in encode three receptors associated with islet cell
survival and proliferation (FGFR2, FGFR1 and EGFR)
and one ligand (FAM3C or ILEI); the top 4 genes of K-
out instead were WNT5A, EGFR, FAM3C and FGFR2.
All these genes have been previously demonstrated to play
relevant roles in beta cell pathophysiology (21–24).

Although degree centrality can provide meaningful in-
sights regarding the importance of ligands and receptors,
some crucial features cannot be captured with this index
alone. For instance, ligands and receptors with low de-
gree can still be important for the overall network struc-
ture if they connect regions that would be disjointed oth-
erwise. Therefore, different centrality measures, that are
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Figure 1. A general description for the workflow of the interactome analysis. (A) the single-cell datasets of cells from ND and T2D donors are separately
analysed with CellPhoneDB, leading to two separate tables defining the comprehensive sets of interactions in ND and T2D (the interactomes). (B) The
interactomes have been analysed with two separate approaches. In the first approach (top-right of the panel) the tables are used to perform statistical
analyses at the level of cell types, considering also their role in the interactions, i.e. considering as-source and as-target cells separately. The second approach
(bottom-right) models the interactomes as networks, with each interaction representing a path in the network (bottom-left), to identify relevant network
topology patterns.

betweenness-centrality (BC) and Katz centrality (KC), were
used to identify central players of the interactome that could
have been overlooked by the K analysis. Considering the dis-
tributions of these parameters (Figure 3D and E), the ob-
tained values fit the so-called ‘power-law’, that is, most of
the ligand/receptors have a low betweenness, whereas few
of them exhibit large values. Such property is important, as
it has been repeatedly found in association with complex bi-
ological networks, and it has been linked to the emergence
of robustness (25). Considering the genes that were asso-
ciated with extreme BC values (Supplementary Table S4),
there were 15 genes, with FGFR1 as the one with the high-
est BC, followed by FGFR2, FAM3C and WNT5A, thus
overlapping with extreme genes found with the K metrics.
Regarding the genes with the highest KC, we found slight
differences with the other distributions, such as TNF being
the gene with the second highest centrality value (Supple-
mentary Table S5).

To draw more general conclusions from the comparison
of these metrics, we reported the genes in the top 5 per-
centile in all the distributions, along with those high-scoring
only in specific distributions (Supplementary Table S6).

The union of all the distributions’ right tails encompassed
32 extreme-value genes, of which 5 were shared between
all distributions (EGFR, FAM3C, FGFR1, FGFR2 and
PVRL3) and 14 were unique to some distributions (TN-
FRSF14, MDK, JAG2, EPHA4, FLT4, NOTCH3, CEA-
CAM1, GCG, DSG2, COPA, CEACAM6, MIF, FGF9,
GHRL). A considerable proportion of these genes are as-
sociated with cellular proliferation and survival.

Orthogonal validation of the ND interactome

To assess the extent to which the results obtained for the
interactome represent a generalizable system, we produced
another version of the ND interactome with an orthogo-
nal dataset, using single-cell transcriptomics data of human
islets from the HPAP database (18). With this dataset, em-
bedding a total of 1525 cells, we produced an interactome
(ND-HPAP) which was used to test whether the general fea-
tures of the ND interactome could be retrieved.

First, we considered if the cell types with a higher num-
ber of interactions were consistent between the ND and
ND-HPAP interactomes (Supplementary Figure S1). Non-
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Figure 2. The ND interactome. (A) the heatmap reports the number of interactions between cell types, as cell sources and targets. (B, C) the correlation
matrices report the similarity between cell types, in terms of spearman correlation between the number of interactions in which the cell types act as cell
sources (B) or as cell targets (C). The matrices are symmetrical and rows/columns have been clustered according to their similarities. The clustering results
are indicated as dendrograms on the matrix margins. (D) The presence/absence matrices report the presence and absence of the interactions (rows) in
each cell type (columns). (E, F) the correlation matrices report the similarity between cell types, in terms of spearman correlation between the interaction
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endocrine cell types displayed similar behaviour in both
datasets, with stellate and ductal cells having the highest
number of interactions, followed by acinar cells and en-
docrine cell types. Interestingly, PP cells showed a different
trend in the two datasets, i.e. in the ND interactome they
had a higher number of interactions (comparable to those
of acinar cells), whereas in ND-HPAP they had fewer inter-
actions (similarly to endocrine cells). This difference could
be due to the fact that PP cells are less represented in the
HPAP samples (17 PP cells, accounting for 1.1% of the to-
tal) (19), therefore some features of this cell type might have
been lost.

Then, the centrality of genes has been evaluated to ver-
ify if the same high-centrality genes are consistently found
in the two interactomes. Considering all different centrality
metrics, there were a total of 26 central genes, 6 less than
those identified in the ND interactome (Supplementary Ta-
ble S6). Of these, 15 are shared among the two interactomes,
including all the highest centrality genes previously found
(EGFR, FAM3C, FGFR1, FGFR2 and PVRL3) which are
top-ranked also in the ND-HPAP interactome.

The interactome perturbations in T2D

The network analysed so far (ND interactome) has been as-
sembled with the interactions in cells from ND individuals,
thus representing cross-talk normally occurring in the islet.
To understand the extent of the perturbations of such net-
work in T2D, we used cells from T2D donors to compile the
corresponding interaction network (T2D interactome). The
system we obtained comprises an 11% increased number of
interactions with respect to ND, for a total of 10 787 inter-
actions (Supplementary Table S7, Figure 4A). The number
of genes involved in such connections also increased with a
similar proportion (9%), with a total of 386 genes present
in the T2D interactome. To understand if the T2D interac-
tion patterns were similar to that of the ND interactome, we
performed correlation analyses between the cell types (Sup-
plementary Table S8). This enabled to test whether the in-
teraction patterns between cell types were affected, and in
particular if the distinction previously observed between en-
docrine, non-endocrine and stellate cells was disrupted. The
analysis was performed considering all possible interactions
between all cell types, encoded in a large presence/absence
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Figure 3. Node centrality measures of the ND interaction network. (A) The histogram reports the distribution of the degree values of the nodes. (B) The
histogram reports the distribution of the in-degree values of the nodes. (C) The histogram reports the distribution of the out-degree values of the nodes. (D)
The histogram reports the distribution of the betweenness-centrality values of the nodes. (E) The histogram reports the distribution of the Katz centrality
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matrix to compute similarities between cell types (Figure
4B, Supplementary Table S8). The correlation analysis iden-
tified three clusters for both as-source and as-target inter-
action profiles, corresponding to endocrine, non-endocrine
and stellate cells (Figure 4C and D). The cluster composi-
tion is highly similar in both series, within a slight difference
in the endocrine cluster.

We then compared the interaction profiles, both as-
source and as-target, of the ND and T2D interactomes (Fig-
ure 5A), to test if cells clustered together according to their
cell type composition or to their interactome source (ND
versus T2D). This analysis resulted in different patterns for
the as-source and as-target profiles (Figure 5B and C): in
the former, we found two main clusters, corresponding to
endocrine vs non-endocrine cell types. Within each clus-
ter, the cells are divided first according to the disease (T2D
versus ND), then according to cell types. For the as-target
profiles, we found a first separation between endocrine and
non-endocrine cell types. While the non-endocrine cluster is
the same as that found for the as-source profiles, endocrine
cells cluster differently, in that the cells do not clearly sep-
arate according to the tested variables (disease, cell types):
alpha cells from ND and T2D donors cluster together, in-

teraction profiles of T2D beta and delta cells, close to each
other, are similar to that of ND beta cells.

Contrasting the ND and T2D interactomes we were able
to classify each interaction of cell types in four categories,
namely absent, stable, lost, and gained. An interaction is ab-
sent in a cell type when it is neither present in T2D nor in
ND, whereas the stable interactions are present in both se-
ries. The lost and gained interactions are present, respec-
tively, in ND or in T2D interactomes only. In general, all
cell types displayed a considerable proportion of interac-
tions that were changing from ND to T2D (Table 1). Com-
paring the profiles of changing reactions (Supplementary
Table S9) between cell types revealed consistent results for
as-source and as-target interactions (Figure 5D and E): en-
docrine cells cluster together, with beta and delta cells dis-
playing most similarities; the other two groups are formed
by acinar and ductal cells, and stellate cells.

Focus on the beta cell interactome

Considering the centrality of beta cells for the development
and progression of T2D, we focused on the subset of inter-
actions in which beta cells are involved (beta cell interac-
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Figure 5. Differences between ND and T2D interactome. (A) The presence/absence matrices report the presence and absence of the interactions (rows)
in each cell type (columns) of the ND and T2D interactome. (B, C) The correlation matrices report the similarity between cell types of the ND and
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Table 1. number of changing interactions. The table reports, for each cell type (rows), the number of interactions classified in each category, separately
for as-source and as-target interactions

As-source interactions As-target interactions

Absent Gained Lost Stable Absent Gained Lost Stable

α-cells 1821 319 234 1019 1847 331 296 805
β-cells 1924 322 180 967 1908 294 239 838
δ-cells 1763 438 305 887 1594 397 450 838
Acinar cells 1633 464 316 980 1601 466 238 974
Ductal cells 1267 505 309 1312 1115 542 200 1422
PP cells 1672 463 328 930 1319 491 320 1149
Stellate cells 920 533 292 1648 818 523 221 1717

tome) to gain insights into the direct perturbations of beta
cell interactome.

Looking at the number of interactions, the beta cells dis-
play: 1147 as-source and 1077 as-target interactions in ND;
1289 as-source and 1132 as-target interactions in T2D. A
breakdown of which cell types engage in these interactions
with beta cells, both as-source and as-target, showed that
the higher number of interactions occur with non-endocrine
cells, with stellate and ductal cells displaying the highest

number of interactions (Figure 6A and B). This pattern is
also observed in the T2D interactome (Figure 6C and D).
These interactions have been ranked on the basis of the
Interaction Score (IS), a metric reported by CellPhoneDB
that quantifies the average expression of ligands and recep-
tors. Looking at the distribution of such scores for the beta
cell interactions revealed that both in ND and T2D inter-
actomes most of these connections had a low score (Figure
6E and F). The same behaviour is observed when looking at
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the complete interactome (that is, not limited to the subset
of beta cell interactions).

The beta cell interactions with high score values (HSI,
percentile ≥ 99), 23 and 27 in the ND and T2D beta cell
interactome, respectively, reflect the ‘important’ interac-
tions of beta cells within the islet: among the top interac-
tions in the ND interactome we found INS-INSR, GCG-
GCGR and SST-SSTR. Interestingly, the interactions be-
tween Insulin Degrading Enzyme (IDE), a zinc metallo-
protease that degrades different bioactive peptides, and in-
sulin, amylin and glucagon are all extremely high-scoring.
The HSIs were compared between T2D and ND: consid-
ering the beta cell as-target HSIs, there were 8 interactions
in ND, all also found in T2D, whereas one autocrine in-
teraction between beta cells and beta cells, involving IAPP
and IDE, was present only in T2D. Considering the beta cell
as-source HSIs, there were 17 interactions shared between
ND and T2D, whereas T2D presented four interactions be-
tween IAPP and IDE with alpha, beta, delta and PP cells.
The observed differences were due to the percentile thresh-
old used to define HSI: comparing the IAPP-IDE interac-
tion scores between ND and T2D, there was no significant
difference.

Although overall beta cells display more interactions with
non-endocrine than endocrine cell types, the beta cell high-
scoring as-target interactions displayed a significant enrich-
ment of endocrine cells compared with the other interac-
tions, whereas the as-source interactions did not display any
significant enrichment for both ND and T2D beta cell in-
teractomes.

Finally, we analysed the interactions changing (from ND
to T2D) in beta cells to find genes with functional implica-
tions. There were 566 gained interactions (Supplementary
Table S10), 297 of which as-source and 269 as-target. The
lost interactions were 389, with 165 as-source and 224 as-
target interactions. The interaction score was used to rank
interactions, allowing to focus the search of interactions
related to beta cell function in the top ranks. Consistent
with previous results, the score distribution of these inter-
actions had a power-law behavior, i.e. there was a low num-
ber of changing interactions with a high score (Supplemen-
tary Figure S2). Looking at the interactions with extremely
high scores (95th percentile and above) there were 59 high-
score changing interactions, 32 of which were gained (18
as-source, 14 as-target) and 27 lost (15 as-source and 12
as-target). Interestingly, the gained and lost interactions ex-
hibited an opposing trend regarding cell type partners: of
the 32 gained interactions, the majority (19) involved non-
endocrine cell types, whereas most (17) of the 27 lost in-
teractions involved endocrine cells, the majority of which
(12) were delta cells. Finally, we found highly ranked inter-
actions that were previously associated with beta cell func-
tion: the highest-score lost interaction involved the ligand
RPS19, produced by delta cells, and the beta cell receptor
of the C5 protein, C5aR1, which was demonstrated to en-
hance glucose-stimulated insulin secretion and protect from
apoptosis (26). Most of the lost as-source interactions oc-
curred between beta and delta cells (9), 8 of which involved
FGFR1 and 1 EGFR, probably with implications for delta
cell survival.

DISCUSSION

The present study is the first attempt to chart the global
landscape of islet intercellular interactions, with a focus on
alterations in T2D. Importantly, the presently used meth-
ods can be applied to investigate other conditions, such as
T1D or islets exposed to novel therapeutic agents. The ap-
proach can also be expanded by the inclusion of methods
already used to gain insight into inter-cellular interactions
(27,28) to obtain a more accurate description of the inter-
actome and to facilitate the validation of results obtained
with single-cell transcriptomics. The provided results repre-
sent a novel platform to generate hypotheses and to drive
the design of future experiments focusing on interactions of
interest for both islet function and dysfunction. Additional
information regarding a specific interaction can be obtained
from the CellPhoneDB database (12), which provides cross-
links with a number of databases to facilitate biological in-
sights at the molecular and cellular levels.

Analysing the patterns of cell type connectivity, we found
that the endocrine/non-endocrine classification is recapitu-
lated by interaction patterns, as beta cells display most sim-
ilarities with delta cells when acting as signal senders (as-
source) and with alpha cells when acting as signal recipi-
ents (as-target). On the other side of the spectrum, alpha
cells showed a unique pattern of interactions compared with
other endocrine and non-endocrine cell types and, interest-
ingly, appear as the cell type with the highest number of in-
teractions. Indeed, it was described that pancreatic islets can
contain specific sub-populations of non-endocrine cells, in-
cluding the so-called islet stellate cells (24), that can inter-
act with endocrine cells and affect their function. Increas-
ing evidence associates stellate cells with islet fibrosis (29–
32), pancreatitis and T2D progression (33). The intercellu-
lar interactions that were the aim of our study are relevant in
this context, as the mechanisms linking stellate cells to amy-
loid deposits actually encompass intercellular signaling via
the renin-angiotensin system (31,34). The interactome can
therefore be useful to focus on specific cell types aiming at
validation or discovery of interactions to be associated with
pathologies.

We also modeled interactions using network-based meth-
ods to derive insights into emerging properties of ligands
and receptors, aiming in particular at identifying which
molecular actors were most important for overall network
connectivity. Considering the genes with the highest cen-
trality values (percentile > = 95%), 5 were found across
all metrics tested: EGFR, FAM3C, FGFR1, FGFR2 and
PVRL3. Of these, EGFR, FGFR1 and FGFR2 encode
growth factor receptors that were previously associated with
islet development and survival (35,36). Accordingly, inac-
tivation of these genes in animal models resulted in de-
creased beta cell mass and diabetes (22,37,38). Although
the other two genes were not previously described in islet
biology, they may have pathophysiological relevance: the
protein encoded by FAM3C, also known as ILEI, has a
protective role in Alzheimer’s disease by destabilizing the
amyloid-� precursor (39), facilitates cancer progression by
favoring epithelial-mesenchymal transition (40), and is in-
volved in glucose and lipid homeostasis in liver (41). Re-
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garding PVRL3, also known as NECTIN3, there is little
information: this gene encodes a ligand that interacts with
TIGIT to suppress T-cell activity (42), but we found no ob-
vious connection with T2D.

Among the other identified genes, namely CEACAM6,
CEACAM1, SORT1, JAG2, GDNF, GRN, DSG2,
WNT5A, ERBB4, CD209 and HBEGF, some were already
described in relation with islet physiology. HBEGF enables
glucose-stimulated beta cell proliferation in rat models (43),
while signaling by WNT5A stimulates insulin secretion
(44); SORT1 encodes the receptor sortilin that binds with
high affinity to neurotensin (45), a regulator involved with
insulin secretion and beta cell survival (46,47). Besides
playing a role during islet development (36), the ERBB
receptor kinases mediate the action of betacellulin to
promote neogenesis of endocrine cells (48); the GDNF
ligand promotes islet survival in vitro (49). Finally, some
of these genes (FGFR2, CEACAM6, GRN, DSG2) have
been implicated in cancer development (50–53). This latter
finding probably reflects the general importance of these
communication mechanisms for tissue organization as
they all stand at the crossroad between cell proliferation
and death. As these genes are potentially relevant for islet
homeostasis, they could play a role in T2D; for instance
indirect associations have been reported between GRN and
T2D (54–56).

Finally, by comparing the ND and T2D beta cell inter-
actomes we highlighted the impact of disease on interac-
tion patterns. The clustering analysis of interaction pro-
files highlighted how, for the as-source interactions, cells
clustered first according to endocrine/non-endocrine cell
types, then according to the disease variable, and then ac-
cording to cell types, indicating that T2D affected consid-
erably the as-source interactions of all cell types. The as-
target interactome was diversely affected, with some cell
types (alpha cells) having similar interactions in both con-
ditions, whereas for others (delta cells) interaction profiles
were remarkably different. These findings suggest that T2D
diversely affects signal reception (as-target interactions) in
endocrine cells with some, e.g. alpha cells, being less altered
than others, e.g. delta cells.

Regarding the changing interactions in beta cells, we
found the score provided by CellPhoneDB to be a good
proxy for assessing the importance of interactions since
the interactions with the highest ranks recapitulate the ma-
jor mechanisms described for islet cells (57). Therefore, we
ranked changing interactions in T2D using this metric to
highlight changes more likely to have strong implications
for pathophysiology. Among these, the lost interaction with
the highest score, the C5AR1-RPS19 interaction between
delta and beta cells, has been linked with increased insulin
secretion and apoptosis protection in human islets (26).
Other high-ranked interactions not previously associated
with islet function might represent good candidates to be
evaluated in future studies.

In conclusion, this work represents the first attempt to
comprehensively define intercellular interactions within the
human islet. Taking a top-down approach, our study pro-
vides the basis to generate hypotheses to be tested in fu-
ture studies, including the discovery of ligands and recep-
tors that are likely to have important implications for T2D
pathophysiology.

Limitations of the study

Despite its novelty, this study has a number of shortcom-
ings and thus should be seen as a first step towards an in-
creased understanding of the complex network regulating
the islet system. A first limitation, that is intrinsically linked
to systems-wide studies, lies in the fact that our results pro-
vide a comprehensive description of the whole system fea-
tures rather than a detailed understanding of the biological
relevance of the individual components of the system. In
this sense, future bottom-up studies, including specific per-
turbations in the system (e.g. deletion or inactivation of spe-
cific interactions) will prove crucial to validate our results
and assess the roles of the individual interactions for the
islet function. Secondly, although CellPhoneDB represents
one of the most comprehensive databases of intercellular
interactions, it was not specifically designed for pancreatic
islets and it is thus quite possible that some of the specific in-
teractions occurring in the islet are absent in CellPhoneDB.
Therefore, it will be important to replicate this work as soon
as the knowledge of the islet interactomes expands. Finally,
single-cell technologies are continually improving and it is
very likely that future characterizations of the human islet
transcriptome, detecting a larger number of genes will de-
liver a more accurate picture of the interactome.
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