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Abstract

Cephalometric analysis relies on accurate detection of craniomaxillofacial (CMF) landmarks from 

cone-beam computed tomography (CBCT) images. However, due to the complexity of CMF bony 

structures, it is difficult to localize landmarks efficiently and accurately. In this paper, we propose 

a deep learning framework to tackle this challenge by jointly digitalizing 105 CMF landmarks on 

CBCT images. By explicitly learning the local geometrical relationships between the landmarks, 

our approach extends Mask R-CNN for end-to-end prediction of landmark locations. Specifically, 

we first apply a detection network on a down-sampled 3D image to leverage global contextual 

information to predict the approximate locations of the landmarks. We subsequently leverage local 

information provided by higher-resolution image patches to refine the landmark locations. On 

patients with varying non-syndromic jaw deformities, our method achieves an average detection 

accuracy of 1.38±0.95 mm, outperforming a related state-of-the-art method.
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I. INTRODUCTION

CRANIOMAXILLOFACIAL (CMF) surgery repositions displaced bones and reconstructs 

deformed or missing skeletons [1]. For accurate surgical planning, the deformity of CMF 

anatomy is quantitatively analyzed via cephalometric analysis based on bony landmarks 

detected using cone-beam computed tomography (CBCT) scans. An automatic system 

described in [1] utilizes the detected landmarks to analyze deformity, and creates a 3D 

prediction of the patient’s surgical outcomes. More than 100 anatomical landmarks need 

to be manually localized (digitized) by surgeons or experienced technicians [1]. This is a 

time-consuming process, thus automated landmark digitization methods are highly desirable 

to speed up surgical planning.

Automated landmark detection has been comprehensively studied in the computer 

vision community [2]–[4]. Application of these methods to medical images requires the 

following considerations: 1) Natural and medical images differ significantly in appearance, 

dimensionality, and scale, and 2) Network training using medical image volumes is limited 
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by memory capacity and sample size. Over the years, traditional machine learning-based 

algorithms have been used for locations of landmarks in medical images [5]–[7]. They 

typically extract handcrafted features to train a classification or regression model, which 

often results in suboptimal detection performance due to the inconsistency between feature 

extraction and model construction. More recently, deep learning-based methods have been 

proposed for localizing anatomical landmarks [8]–[11]. The performance of these methods 

is limited by small training datasets and large computational consumption when trained 

with whole images in an end-to-end manner. Implementing networks with high-resolution 

image patches can potentially avoid this problem. However, global anatomical information is 

neglected, consequently leading to miss-detections.

Existing learning-based methods typically ignore inter-landmark dependency. The relative 

locations of CMF landmarks are relatively stable; therefore effectively modeling the inner 

landmark dependency can reduce misdetections, especially for landmarks located on bony 

structures with similar appearances.

In this work, a deep learning method is proposed for the automated localization of 

CMF landmarks on CBCT images (Fig. 1). Specifically, we first use the down-sampled 

CBCT images to train an initial shallow network, which leverages the global anatomical 

information to coarsely predict the location of each landmark. Then, around the rough 

locations, we crop a set of image patches from medium- and higher-resolution images 

to train another two detection networks, which leverage the local appearance for further 

refinement. The proposed detection network in each step is an extension of the state-of-the-

art Mask Region-based Convolutional Neural Network (Mask R-CNN) [12]. In addition, we 

learn local landmark dependencies as an auxiliary task to provide additional guidance for the 

accurate localization.

A preliminary version of this work has been reported in [13]. New contributions in this 

paper are as follows: 1) A new region proposal network is introduced to simplify the training 

procedure and stabilize detection results; 2) A more stable inner-landmark dependency 

model is proposed to boost the performance on patients with defects; 3) The proposed 

method is evaluated on more patients with severe deformities and is compared with 

several state-of-the-art methods; 4) Eeffectiveness of the proposed Multi-RPN and landmark 

dependency model is evaluated. Experimental results on real patient data show that the 

average detection error of 105 landmarks is 1.38 ± 0.95 mm, which can be achieved with 

less than 4 minutes of computation time. Both the accuracy and efficiency of our method 

meet the clinical requirements of surgical planning to correct for CMF deformities.

II. RELATED WORK

A. Anatomical Landmark Detection

Learning-based methods have been extensively applied for anatomical landmark localization 

in medical images. Generally, these methods can be based on traditional machine learning 

or deep learning. For methods based on traditional machine learning, handcrafted features 

[14]–[17] are typically extracted from local image patches to train a patch-wise classifier 

[18], [19], [21]–[23] to identify whether the central voxel is close to a landmark. For 
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example, Mahapatra et al. [22] first predict a set of potential landmarks using morphological 

operations and graph cut segmentation [24], and then identify the landmarks via a random 

forest model [25]. State-of-the-art methods based on machine learning are summarized in 

[26] and [27].

Handcrafted features can be used to learn a regression model that predicts the displacement 

between an input image patch and a target landmark [28], [29]. The landmark location is 

then determined by aggregating the predictions from all image patches (e.g., via majority 

voting). For example, Gao et al. [28] introduced a two-layer regression model, the first layer 

predicts displacement fields for each landmark individually, then context features extracted 

from these fields are used to jointly refine the coarse landmark results. Darko et al. [29] 

predict ambiguous landmarks using a Regression Random Forest (RRF) and then apply 

back-projection to select pixels to train another RRF in combination with a Markov Random 

Field model for locating landmarks with high accuracy.

Deep learning methods, such as convolutional neural networks (CNNs), have been proposed 

to learn task-oriented features for anatomical landmark localization. For example, Payer 

et al. [8] formulate landmark localization as a heatmap regression problem, where a fully 

convolutional network (FCN) [30] is applied to predict the corresponding heatmap for each 

landmark. Payer et al. [32] further refine the results by combining information of local 

appearance and spatial configuration into a single end-to-end trained network for anatomical 

landmark localization. Wang et al. [31] developed a multi-task network for segmentation and 

landmark localization in prenatal ultrasound volumes. An adversarial module is leveraged 

to emphasize the correspondence between segmentation and landmark localization. In [9], 

a cascade of two U-Nets is employed to detect multiple anatomical landmarks, where 

the first FCN predicts the 3D displacements from each voxel to target landmarks, and 

the second FCN combines 3D displacements with input image patches to regress the 

landmark heatmaps. Although this method yields promising results for the prediction of 15 

landmarks, it cannot handle larger-scale landmark localization due to the significant memory 

consumption. Additionally, solely using image patches may lead to misdetections, where the 

global anatomical information from the whole image is ignored. Misdetections frequently 

occur in areas where anatomical structures are not prominent (e.g., temporomandibular 

joints), causing landmarks with similar local appearances to be indistinguishable.

Torosdagli et al. [40] proposed a CNN-based method to detect 9 mandibular landmarks, 

where a FCN is learned to detect sparsely-spaced landmarks in the geodesic space 

from a pre-segmented mandible. A long short-term memory network is subsequently 

learned to detect closed-spaced landmarks. This method relies heavily on the results of 

presegmentation mandible, and the localization accuracy of the closed-spaced landmarks 

are affected by the results of the sparsely-spaced landmarks. To address these issues, 

Relational Reasoning Network (RRN) was proposed in [41] to learn landmark dependency 

for improving accuracy. Specifically, given a few landmarks as input, RRN learns 

the representations of the landmark relations. By utilizing the learned relations, RNN 

subsequently localizes the remaining landmarks. Since only the relationships of the primary 

(known) landmarks are learned, with the relationships of primary-secondary and secondary-
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secondary landmarks not considered, this method relies on the selection of the primary 

landmarks.

B. Object Detection Network

Mask R-CNN [12] is designed for object detection in an end-to-end manner. It first 

generates several region proposals for the target through a region proposal network, then 

jointly outputs the location, category, and segmentation of the target object in a multi-task 

learning framework. Recently, Mask R-CNN has been used for localizing key-points from a 

detected object by modeling each key-point location as a one-hot mask [12]. Similar to most 

existing landmark detection methods, the original Mask R-CNN for general object detection 

treats different targets independently, ignoring their inter-dependency.

In recent years, several RPN-based methods have been proposed for landmark detection. Liu 

et al. [44] directly applied Faster R-CNN for misshapen pelvis landmark detection, where an 

RPN proposes landmark neighborhoods and a fast R-CNN regresses the coordinates of the 

target landmarks. Xu et al. [45] proposed to detect multiple organs from CT images using 

an RPN that generates class-specific proposals for each object. The bounding box of each 

organ was calculated by a multicandidate fusion strategy. However, this method is based on 

the assumption that at least one instance for each organ exists and therefore cannot handle 

missing landmarks.

Deep Reinforcement Learning (DRL) methods have been recently proposed for localizing 

landmarks. In [43], an optimal path from the initial position to the target location is learned 

by maximizing the cumulative rewards. Vlontzos et al. [42] extended this work with a 

multi-agent module to detect multiple landmarks. However, DRL methods are limited to 

localizing a small number of landmarks simultaneously due to GPU limitations.

III. METHODS

For CMF landmark localization in CBCT images, we gradually refine the landmark 

positions predicted by a cascade of multi-task detection networks in a coarse-to-fine manner. 

The proposed network is an extension of the standard Mask R-CNN by including the 

explicit modeling of landmark dependencies as guidance to assist the joint prediction of 

landmark locations. Fig. 2 shows the architecture of our detection network. First, given a 

CBCT image and a set of anchors, a Multi-Region Proposal Network (Multi-RPN) generates 

several location proposals for each landmark. Non-Maximum Suppression (NMS) is applied 

to reduce redundant proposals. Then, a recognition network predicts the landmark location 

from each location proposal under multi-task supervision. Finally, another NMS with a 

different threshold is performed to further refine detection.

A. Multi-Region Proposal Network

The multi-region proposal network (Multi-RPN) generates several proposals for landmark 

positions (Fig. 3). The backbone consists of four residual blocks [33]. A set of anchors 

with different sizes are defined on each voxel of the produced feature maps to generate 

proposal boxes for landmarks. For each anchor, the features of voxels located in the anchor 

region are gathered and reshaped to a feature vector, which is then mapped by a Full 
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Connected (FC) layer for two tasks: 1) a multi-classification (cls) task, where the output 

c = 0, 1, 2, …, C . c = 0 indicates that this anchor contains no landmarks (negative). C is 

the number of the predefined anatomical regions. This task assign each anchor with the 

label of anatomical region; and 2) a regression (reg) task that predicts offsets for regressing 

the coordinates of positive proposal regions. Specifically, the output p is a 6-dimensional 

vector including the offset of the center coordinates (3-dimensional), and the offset of the 

anchor size (3-dimensional). NMS is applied to keep P proposals by removing the redundant 

proposals in association with each landmark. The loss for Multi-RPN is

LRPN ci , pi = 1
A ∑

i = 0

A
Lcls

RPN ci, ci∗

+ λ
A ∑

i = 0

A
Lreg

RPN pi, pi∗ .
(1)

We use three ratios 0.5, 1.0, and 1.5, and three scales 48, 64, and 80 to generate anchors, 

so that each anchor has 27 different sizes. The ratios and scales are chosen empirically. A 
= 27 × W × H × D is the number of anchors, where W ×H ×D is the size of each feature 

map produced by the backbone. The classification term Lcls
RPN is a cross-entropy loss, where 

ci is the probability of the i-th anchor being an positive proposal, and ci∗ is the corresponding 

ground truth. The regression term Lreg
RPN is an l1-norm loss [35], where pi is a 6-dimensional 

vector representing the parameterized coordinates (displacements of the center and ratios of 

the sizes), and pi∗ is the respective ground truth. The classification and regression tasks are 

balanced by λ. The settings of Multi-RPN are provided in Table I.

B. Recognition Network

The architecture of the recognition network (RN) for localizing N landmarks is shown 

in Fig. 3. According to the proposals generated by Multi-RPN, the Region of Interest 

Align (ROIAlign) [12] operation crops patches from the feature maps produced by the 

backbone, and resizes them to a common size of 14×14×14. Each cropped patch is reshaped 

and mapped by a FC layer. The output of FC layer is then fed into a classification task 

(cls_rn) and a regression task (reg_rn), respectively. cls_rn predicts the landmark label 

crn = 0, 1, 2, …N  for the proposal box, where N is the number of the landmarks. crn = 

0 indicates that the landmark does not exist. reg_rn outputs the displacement vector prn 

indicating the offset from the proposal box center to the ground-truth box center. In addition, 

the cropped feature patches are fed into a lightweight FCN to predict the bony masks l, 
capturing the structural information of the bones around a landmark. The ground truth of the 

predicted bony mask l∗ is generated by performing RoIAlign operation on the whole bony 

mask according to the location of the proposal. The FCN contains four 3×3×3 conv + ReLU 

layers followed by an upsampling layer. The loss function is
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LRN cirn , pirn , li = 1
P ∑

i = 0

P
Lcls

RN cirn, cirn
∗

+Lreg
RN pirn, pirn

∗ + Lseg
RN li, li∗ ,

(2)

where crn∗
, prn∗

, l∗ are the ground truth for crn, prn, and l, respectively. We employ cross-

entropy losses for Lcls
RN and Lseg

RN, and the l1-norm loss for Lreg
RN.

C. Landmark Dependencies

CMF landmarks in the same local region have relatively consistent spatial relationships 

that can be leveraged to improve localization. Therefore, as shown in Fig. 4 (a)–(d), we 

group the total 105 CMF landmarks according to C = 9 anatomical regions: Midface-Left 

(MF-L), Midface-Central (MF-C), Midface-Right (MF-R), Maxilla (MAX), Maxillary-Teeth 

(MX-T), Mandible-Left (MD-L), Mandible-Right (MDR), Mandible-Central (MD-C), and 

Mandibular-Teeth (MD-T). In [13], to capture local dependencies, the landmarks located 

in the same region are empirically defined as a tree structure, i.e., the landmark at the 

center of the region is defined as the root node, and the others as leaf nodes. A potential 

problem with this approach is that root landmarks can be mis-detected, consequently 

compromising locations of leaf landmarks. It is also common in CMF patients with partial 

defects that the root landmark can be missing. This approach also ignores the geometrical 

relationships between leaf landmarks. To more reliably encode the geometrical structure, 

we include an auxiliary task in the recognition network to model the dependencies between 

each pair of landmarks in the same anatomical area, i.e., reg_ld task that predicts the 

average displacement of the detected landmark to other landmarks in the same region. The 

corresponding loss function LLD is defined as

LLD di = 1
P ∑

i = 1

P
Lreg

LD di, di
∗ , (3)

where di
∗ and di are the ground-truth and predicted displacements for the i-th proposal, 

respectively, P is the number of proposals generated by Multi-RPN. di
∗ is calculated by

di
∗ = 1

Nc − 1
∑
j ≠ i

Nc − 1
dij, (4)

where Nc is the number of landmarks in an anatomical region, dij = δzij, δyij, δxij  is a 

3-dimensional displacement vector, Lreg
LD is defined as the l1-norm. Additional information 

on the recognition network is provided in Table II.
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D. Coarse-to-Fine Framework

We apply a three-stage coarse-to-fine framework to gradually refine the localization results 

on high-resolution CBCT images. The proposed network is integrated in each stage, and 

trained by minimizing the combination of the losses defined in (1), (2), and (3), i.e.,

L = λrLRPN + λrnLRN + λldLLD . (5)

To train the model in the first stage, the original CBCT image (0.4 × 0.4 × 0.4 mm3) is 

down-sampled (1.6 × 1.6 × 1.6 mm3) and padded to have the size of 128 × 128 × 128. In 

the following two stages, the image resolutions are up-sampled to be 0.8 × 0.8 × 0.8 mm3 

and 0.4 × 0.4 × 0.4 mm3, respectively. 100 image patches (64 × 64 × 64) are sampled around 

each predicted landmark and taken as inputs. Since the size of the bounding box used as 

ground truth for each landmark is hard to determine, we use anchors with multi-scale sizes 

of 32 × 32 × 32, 40 × 40 × 40, and 48 × 48 × 48 for each landmark for greater robustness.

E. Network Implementation and Inference

At each stage, our model was trained via the SGD optimizer with an initial learning rate of 

0.01, decaying by 20% after every 5 epochs. The network was trained for 25 epochs (6,000 

iterations in each epoch), taking around 3 days to complete. To balance the training speed 

and the number of proposals, the Multi-RPN was set to produce P = 500 proposal boxes for 

each input. For the first 10 epochs, the training weights in (5) were set to λr = 1.0, λrn = 

0.3 and λld = 0.3. After that, the RPN weight λr was reduce to 0.3, while λrn and λld were 

increased to 1.0 to focus on the training of the recognition network.

During inference, the first stage simultaneously outputs coarse positions of all landmarks. 

Starting from the second stage, only image patches centered at the coarse landmarks were 

sampled and used as inputs for refining, as the results from the first stage are very close to 

the ground truth. The maximum number of proposals were dropped to P = 50. The threshold 

of NMS processing for refining proposal boxes is set to 0.1. The trained model takes less 

than 2 minutes to process a CBCT volume with a size larger than 536 × 536 × 440 for 

detecting 105 landmarks. The network was implemented based on Tensorflow and evaluated 

on a 11 GB GTX 1080Ti GPU and a 64 GB RAM.

IV. EXPERIMENTAL RESULTS

A. Experimental Data

Our method was evaluated qualitatively and quantitatively on 50 patients of CBCT images 

(0.4 × 0.4 × 0.4 mm3 or 0.3×0.3×0.3 mm3 with size larger than 536×536×440) with personal 

information removed via 5-fold cross-validation. The age ranges from 37 to 80. All images 

were acquired from patients with non-syndromic jaw deformities, where 20 patients in our 

CBCT dataset are with CMF defects. Each subject had 105 landmarks (59 on the midface 

and 46 on the mandible) digitized and verified by two experienced CMF surgeons using 

AnatomicAligner [7]. The segmentation of the midface and the mandible was also provided 
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by the same surgeons. The inter-rater agreement value of the landmark annotations was 

approximately 2.5 mm. These manually digitized landmarks serve as the ground truth.

Since CT images of normal people have a better resolution than CBCT images, and the 

landmarks are relatively stable, we first use CT images to pre-train a model to better 

capture contextual features and learn local landmark dependency for accelerating the 

network training. In this work, 45 sets of normal spiral CT images [36] with resolution 

0.49×0.49×1.25 mm3 were used for pre-training in a 5-fold cross-validation manner. 

Specifically, the network was trained via the SGD optimizer with an initial learning rate 

of 0.01 for 10 epochs (6,000 iterations in each epoch).

We performed data augmentation on each pair of the input image and the corresponding 

landmark ground truth (coordinates) by the same rotation, translation and scaling. 

Specifically, each subject including the image and its landmark coordinates has a 50% 

possibility to be translated with a displacement in [−20, 20] and scale with a ratio in [0.8, 

1.2] along each axis. In addition, each subject has a 50% possibility to be rotated by an 

angle in − π
12 , π

12 . The augmentation was performed 50 times on each subject to enlarge the 

training set. Histogram matching and Gaussian normalization constant were performed to 

normalize the dateset as a whole.

B. Competing Methods

We quantitatively and qualitatively compared our method with six baseline methods:

• U-Net: A standard U-Net [8] for predicting a heatmap from an image. We 

adopted the same residual blocks that are used in our method to construct the 

contraction path of this network. Considering the limited GPU memory, only 

four residual blocks with the output size of 32, 64, 128, and 256 were used for 

extracting high-level features. The expansion path consists of three convolutional 

blocks, each block consists of two 3×3×3 conv + ReLU activation layers. The 

size of input from coarse stage to refine stage is 128×128×128 (resolution: 0.4 

mm isotropic, whole image), 96×96×96 (resolution: 0.8 mm isotropic, image 

patch) and 64×64×64 (resolution: 0.4 mm isotropic, image patch), respectively.

• DI-U-Net: A dual-input U-Net (same architecture as [8]) that uses both image 

patches and bony segmentations as input.

• JSD: A state-of-the-art deep-learning method that jointly performs bone 

segmentation and landmark digitization [9]. We trained the network for landmark 

localization using the same architecture and paremeter setting as described in 

[9]. During training, the input sizes for the three stages are 128×128×128 whole 

image (resolution: 0.4 mm isotropic), 96×96×96 image patches (resolution: 0.8 

mm isotropic), and 64×64×64 image patches (resolution: 0.4 mm isotropic), 

respectively.

• DQN: We trained this network to detected no more than 4 lanmdarks in each 

anatomical region simultaneously due to GPU limitation. The parameter settings 

are the as described in [42].
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• Method in [40]: This network first localizes some sparsely-located landmarks, 

then detects closely-located landmarks by using a long short-term memory 

(LSTM) network according to the localization results of sparsely-located 

landmarks. To apply this network on our dataset, the 105 landmarks are predicted 

separately by regions. Specifically, due to different landmark numbers in each 

region, we defined 5 landmarks in MD-L, MD-R, MD-T, MX-T and MAX, 3 

landmarks in MF-C, MF-L and MF-R, and 2 landmarks in MD-C as sparsely-

spaced landmarks since they are sparsely located in these regions. The rest 

of the landmarks in each region are defined as closely-spaced landmarks. The 

parameter setting and network architecture are as described in [40].

• RRN in [41]: This network first learns the relationships of each pair of 

input landmarks, then takes the learned relationships as input, to regress the 

coordinates of the other landmarks. To compare with this method, in each 

anatomical region, half of the landmarks were annotated as inputs to predict the 

other landmarks. Specifically, only 5 dental landmarks were annotated as inputs 

in MX-T and MD-T due to the large amount of dental landmarks. The parameter 

settings are kept the same as described in [41].

For each method, two models were trained to predict the locations of the landmarks on the 

midface and the mandible separately.

C. Results

The accuracy of landmark localization was evaluated via Mean Squared Error (MSE). The 

overall quantitative results of landmark localization in 9 anatomical areas are summarized in 

Table III. Among the six compared methods, U-Net results in the largest MSE (2.46 mm) in 

all anatomical areas. The reason is two-fold:

• Since no bony segmentation information was involved in training, landmarks 

located close to each other or on smooth surfaces were difficult to distinguish, 

consequently yielding large errors or misdetections (e.g., MF-C/MD-C);

• By fixing the number of output landmarks, U-Net is not able to cope with the 

missing landmarks in patients with defects and attempts to localize landmarks 

that do not actually exist.

DI-U-Net improves the accuracy (2.18 mm) over the standard U-Net (p < 0.05), indicating 

the usefulness of segmentation information. The JSD method first predicts a displacement 

map from all voxels to each target landmark. The learned displacement maps are used as 

spatial context information to further regress landmark locations. An average error of 1.92 

mm achieved by JSD suggests that the displacement map provides useful information to 

reduce prediction error. Specifically, the MSE of JSD reduces to 1.53 mm, 1.54 mm, and 

1.56 mm in MF-C, MAX, and MD-C, respectively. However, JSD still results in a 100% FN 

rate since the outputs are regressed heatmaps, without any post-processing on determining 

the existence of each landmark, yielding high MSE in the MF-L/MF-R and MD-L/MD-R.

DQN achieves an average MSE error of 2.05 mm. Besides the fact that training DQN for 

all 105 landmarks is time-consuming, some detected landmarks are not attached to bones 
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because the corresponding agents are trapped in local optima. RRN achieves an average 

MSE of 1.78 mm. It is worth noting that RRN yields a high accuracy in most regions (< 2 

mm), confirming the benefits of learning landmark relationships. However, RRN only learns 

the relationships between a few known landmarks, resulting in low accuracy when handling 

regions with a large amount of landmarks (2.53 mm in MX-T and 2.68 mm in MD-T). The 

method described in [40] achieves an average MSE of 1.86 mm. High errors occur in tooth 

areas due to the same reason as RRN. The accuracy in other regions are lower than RNN 

because errors of sparsely-spaced landmarks affect the detection results of closely-spaced 

landmarks. It can be observed that additional landmarks were detected in the MF-C region 

(Fig. 5).

Our method is more accurate than all compared methods (p < 0.05) with error as low as 

1.38 mm, confirming the benefits of the explicit modeling of landmark dependency. Unlike 

RRN, which only learns partial landmark dependency between a few known landmarks, 

our method learns the relations between each pair of landmarks in every anatomical region, 

making our method more robust to the number of landmarks. Specifically, the MSE achieved 

by our approach is significantly reduced to 1.47 mm, 1.49 mm, and 1.45 mm in MF-C, 

MAX and MD-C, respectively. Besides, in MF-L/MF-R and MD-L/MD-R, our approach 

reduces the MSEs to 1.28 mm, 1.25 mm, 1.43 mm, and 1.58 mm, respectively. These results 

show that our approach can more precisely localize landmarks in the anatomical areas where 

landmarks might be missing. It is also worth noting that our approach achieves an MSE of 

1.86 mm and 1.66 mm in MX-T and MD-T, indicating that it can robustly localize tooth 

landmarks. Our method shows no significant differences within the age range of our dataset. 

Experimental results for all compared methods are shown in Fig. 5.

V. DISCUSSION

A. Landmark Dependency

We compared our approach with the extended Mask R-CNN described in [13]. The 

landmark dependency is represented by a tree structure, where the root node is associated 

with one landmark and the leaf nodes are associated with other landmarks in the anatomical 

regions [13]. We trained the extended Mask R-CNN by using the same parameters as 

described in [13]. The input sizes from the coarse stage to refine stage are 128×128×128 

(resolution: 0.4 mm isotropic, whole image), 64×64×64 (resolution: 0.8 mm isotropic, image 

patch), and 64×64×64 (resolution: 0.4 mm isotropic, image patch). The results for each 

region are summarized in Table III. Specifically, comparison was performed for patients 

with slight deformities, severe deformities, and defects.

We can observe from Table IV that our approach gains significant improvements for the 

three types of deformities. Particularly, for patients with slight and severe deformities, our 

approach reduces the MSE from 1.63 mm/1.65 mm to 1.32 mm/1.35 mm. Since there are 

no missing landmarks in these patients, we did not calculate the FN rate. For patients with 

defects, the improvement is significant. Specifically, the extended Mask R-CNN results in 

high MSE and FN rate if root landmarks are missing. Our approach reduces the MSE from 

2.41 mm to 1.42 mm and lowers the FP/FN rate from 5%/90% to 2%/40%, indicating 

that our model is robust in cases with defects. The improvements can be attributed to two 
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factors: 1) The existence of missing landmarks in the defect region can be detected with the 

Multi-RPN; 2) For the existing landmarks in the same region, the local relations can still be 

calculated with the other remaining landmarks since the landmark dependency is calculated 

as the mean of the displacement vectors from the current landmark to its neighbors. Fig. 6 

shows obvious misdetections.

B. Multi-RPN

We performed an ablation study to evaluate the effectiveness of the Multi-RPN in localizing 

landmarks from pre-clustered proposals. We implemented a variant of our approach by 

adopting the standard RPN [13], which only classifies each anchor as negative (no landmark 

exists) or positive (landmark exists). The recognition network of this variant was similar to 

that used in [13] except that the landmark dependency was replaced by ours.

The accuracy of localization results of using the Multi-RPN and the standard RPN for 5-fold 

cross-validation are summarized in Table VI. The variant with standard RPN yields a large 

MSE of 1.65 mm. This is partly due to the misdetections caused by the standard RPN, 

where positive proposals were classified as negative proposals, causing some undetected 

landmarks. The Multi-RPN significantly improves performance and reduces the MSE to 

1.38 mm. Since the recognition network only works on positive proposals, pre-clustering the 

proposals as multiple anatomical regions by the Multi-RPN can help reduce the misdetection 

rate. Notably, the FP rate is reduced by 6%, suggesting improved robustness when using the 

Multi-RPN.

C. Multi-Scale Bounding Boxes

To evaluate the effectiveness of multi-scale bounding boxes, we modified our approach 

to use single-scale bounding boxes for comparison. Specifically, we evaluated different 

bounding box sizes: 64×64×64, 48×48×48, and 40×40×40. Fig. 7 shows that the modified 

method yields a minimum MSE of 1.45 mm with the bounding box size 40×40×40. 

However, a high FP rate of 10% still occurs because some landmarks are not covered by the 

anchors. Our original method reduces the MSE to 1.38 mm, and lowers the FP rate to 2%, 

suggesting that multi-scale bounding boxes improve robustness.

D. Coarse-to-fine strategy

Our work applied a coarse-to-fine strategy to train the network. Table V lists the detection 

results of each anatomical region from each stage. Since the input of our network in the 

coarse stage has been down-sampled to a low resolution (1.6 × 1.6 × 1.6 mm3) due to 

GPU memory limitations, a lot of structural information has been lost, causing an average 

MSE of 2.87 mm, which cannot meet clinical requirements. However, the coarse results can 

approximately predict the location of each landmark, and the miss-detection rate (FN/FP 

rates) have been significantly reduced by landmark dependency learning and the Multi-RPN 

as discussed before. In the second stage, multiple high-resolution image patches with more 

local details of structural information are sampled around each coarse result as inputs to the 

refinement network, yielding a lower MSE of 1.45 mm. During the test, we only consider 

the result of the landmark where the input image patch is sampled from, thus even though 
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the sampled image patch contains multiple landmarks (specially in the tooth region), the 

final results will not be affected.

VI. CONCLUSION

In this work, we have proposed a deep learning method to gradually and jointly localize 

a total of 105 CMF landmarks from CBCT images. Our method achieves start-of-the-art 

performance in the challenging task of localizing CMF landmarks from CBCT images. 

Unlike the original Mask R-CNN, our network explicitly learns landmark dependency to 

enhance localization of landmarks. Our method is robust to deformities in patients and 

improves localization accuracy. The results show that the proposed method outperforms 

state-of-the-art methods quantitatively and qualitatively.

Our method has some potential limitations. First, we treated all landmarks equally and 

assigned to them bounding boxes of the same size. However, the localization of landmarks 

in different areas may require different receptive fields. A large receptive field is needed 

for landmarks located on smooth surfaces and a relatively small receptive field is needed 

for tooth landmarks typically located on tips or valleys. Second, we only considered the 

geometrical relationship between each landmark and its neighbors in the same anatomical 

region, but ignore the relationships between landmarks in different regions. In the future, 

we will investigate encoding the relationships of all landmarks, for example, using graph 

convolutional networks (GCN) [37].
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Fig. 1: 
Our coarse-to-fine framework for CMF landmark localization in CBCT images.
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Fig. 2: 
Our workflow for CMF landmark detection, illustrated for detecting four landmarks in two 

anatomical regions. The Multi-RPN generates several location proposals with anatomical 

region labels (illustrated by two different colors), which are processed by NMS. Then, a 

recognition network detects each landmark from the proposals in the form of a regressed 

bounding box and a corresponding landmark label (illustrated by four different colors). 

Finally, NMS post-processing is applied to further filter out redundant bounding boxes.
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Fig. 3: 
Architecture of the proposed Mask R-CNN for detecting landmarks.
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Fig. 4: 
Predefined anatomical landmark regions with landmarks in the same anatomical region 

marked with the same colors.
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Fig. 5: 
Example landmark localization results.
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Fig. 6: 
Landmark localization for four patients with slight deformity (left), severe deformity 

(middle), and defects (right).
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Fig. 7: 
Detection errors for bounding boxes of different sizes.
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TABLE I:

Specifications of the Multi-RPN.

Layer Number of Feature Maps

Input 1

Residual block + maxpooling 32

Residual block + maxpooling 64

Residual block + maxpooling 128

Residual block + maxpooling 128

3×3×3 Convolution 128

FC layer 256

reg task 6×A

cls task (C +1)×A
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TABLE II:

Specifications of the recognition network.

Layer Number of Feature Maps

Input 128

RoI Align Layer 128

FC layer 1024

Cls_rn task N

reg_rn task 6×N

reg_ld task 3×N

3×3×3 Convolution block 64

Transition up N

mask task N

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lang et al. Page 25

TA
B

L
E

 II
I:

T
he

 m
ea

n 
sq

ua
re

d 
er

ro
r 

(m
m

) 
fo

r 
la

nd
m

ar
k 

lo
ca

liz
at

io
n 

us
in

g 
fi

ve
 m

et
ho

ds
 in

 9
 a

na
to

m
ic

al
 r

eg
io

ns
.

M
et

ho
d

M
F

-L
M

F
-C

M
F

-R
M

A
X

M
X

-T
M

D
-L

M
D

-R
M

D
-C

M
D

-T
O

ve
ra

ll

U
-N

et
2.

72
±

1.
35

2.
17

±
1.

25
2.

61
±

1.
28

2.
14

±
1.

36
2.

61
±

1.
35

2.
53

±
1.

68
2.

44
±

1.
72

2.
30

±
1.

21
2.

77
±

1.
64

2.
46

±
1.

42

D
I-

U
-N

et
2.

42
±

1.
32

2.
05

±
1.

27
2.

26
±

1.
25

2.
01

±
1.

37
2.

29
±

1.
17

2.
43

±
1.

58
2.

11
±

1.
49

2.
02

±
1.

05
2.

34
±

1.
33

2.
18

±
1.

31

JS
D

1.
70

±
0.

66
1.

53
±

0.
88

1.
86

±
0.

52
1.

54
±

0.
63

1.
98

±
1.

11
1.

93
±

1.
07

1.
85

±
1.

14
1.

56
±

1.
23

1.
64

±
0.

96
1.

92
±

0.
91

M
as

k 
R

-C
N

N
1.

53
±

0.
46

1.
50

±
0.

98
1.

51
±

0.
56

1.
55

±
0.

79
2.

03
±

1.
12

1.
66

±
1.

11
1.

63
±

1.
16

1.
61

±
1.

26
1.

74
±

0.
76

1.
68

±
1.

02

D
Q

N
1.

89
±

0.
58

2.
10

±
0.

93
2.

23
±

0.
76

2.
07

±
0.

74
2.

31
±

1.
05

1.
97

±
0.

87
2.

18
±

0.
77

1.
78

±
1.

05
1.

93
±

0.
88

2.
05

±
0.

75

R
N

N
1.

46
±

0.
53

1.
67

±
0.

78
1.

42
±

0.
68

1.
59

±
0.

83
2.

53
±

1.
16

1.
52

±
0.

85
1.

67
±

1.
05

1.
49

±
1.

32
2.

68
±

1.
44

1.
78

±
0.

96

M
et

ho
d 

in
 [

40
]

1.
55

±
0.

64
1.

88
±

0.
76

1.
57

±
0.

56
1.

52
±

0.
86

2.
67

±
1.

09
1.

58
±

0.
92

1.
68

±
1.

03
1.

58
±

1.
01

2.
77

±
1.

89
1.

86
±

0.
97

O
ur

 m
et

ho
d

1.
28

±0
.4

4
1.

47
±0

.9
5

1.
25

±0
.4

4
1.

49
±0

.7
6

1.
86

±1
.0

4
1.

43
±1

.0
3

1.
58

±1
.1

5
1.

45
±1

.1
3

1.
66

±0
.7

7
1.

38
±0

.9
5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lang et al. Page 26

TABLE IV:

The mean squared errors (mm), FP rates, and FN rates for landmark detection on patients with three different 

types of deformities.

Condition Method MSE±SD FP rate FN rate

Slight Deformity
Mask RCNN 1.63±1.01 3% N/A

Our method 1.32±1.05 1% N/A

Severe Deformity
Mask RCNN 1.65±1.11 6% N/A

Our method 1.35±1.08 2% N/A

Defect
Mask RCNN 2.41±1.02 5% 90%

Our method 1.42±0.95 2% 40%
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TABLE VI:

Mean squared error (mm) of landmark localization with and without the Multi-RPN.

Method MSE ± SD FP Rate

Standard RPN 1.65±1.02 8%

Multi-RPN 1.38±0.95 2%
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