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ORIGINAL RESEARCH

Comparing the Relationships of Genetically 
Proxied PCSK9 Inhibition With Mood 
Disorders, Cognition, and Dementia 
Between Men and Women: A Drug-Target 
Mendelian Randomization Study
Andrew S. Bell , BA; Daniel B. Rosoff , AB/ScB; Lucas A. Mavromatis , ScB; Jeesun Jung , PhD; 
Josephin Wagner , MD, MSc; Falk W. Lohoff , MD

BACKGROUND: PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibitors are important therapeutic options for reducing 
cardiovascular disease risk; however, questions remain regarding potential differences in the neuropsychiatric impact of long-
term PCSK9 inhibition between men and women.

METHODS AND RESULTS: Using PCSK9 gene single-nucleotide polymorphisms from European ancestry–based genome-wide 
association studies of low-density lipoprotein cholesterol (N=1 320 016), circulating PCSK9 protein levels (N=10 186), tissue-
specific PCSK9 gene expression, sex-specific genome-wide association studies of anxiety, depression, cognition, insomnia, 
and dementia (ranging from 54 321 to 194 174), we used drug-target inverse variance–weighted Mendelian randomization (MR) 
and complementary MR methods (MR Egger, weighted median, and weighted mode) to investigate potential neuropsychiatric 
consequences of genetically proxied PCSK9 inhibition in men and women. We failed to find evidence surpassing correction 
for multiple comparisons of relationships between genetically proxied PCSK9 inhibition and the risk for the 12 neuropsychiatric 
end points in either men or women. Drug-target analyses were generally well-powered to detect effect estimates at several 
hypothesized thresholds for both combined-sex and sex-specific end points, especially analyses using PCSK9 instruments 
derived from protein and expression quantitative trait loci. Further, MR estimates across complementary MR methods and 
additional models using genetic instruments derived from circulating PCSK9 protein levels and tissue-specific PCSK9 expres-
sion were in alignment, strengthening causal inference.

CONCLUSIONS: Genetically proxied PCSK9 inhibition showed a neutral neuropsychiatric side effect profile with no major sex-
specific differences. Given statistical power considerations, replication with larger samples, as well as data from other an-
cestral populations, are necessary. These findings may have important clinical implications for lipid-lowering drug-prescribing 
practices and side effect monitoring of approved and future PCSK9 therapies.

Key Words: Alzheimer disease ■ cholesterol ■ cognition ■ dementia ■ depression ■ low-density lipoprotein ■ Mendelian 
randomization ■ PCSK9

Hyperlipidemia is a disease marked by a high con-
centration of lipids in the blood and has been known 
for some time to play a role in the pathogenesis of 

diseases of the cardiovascular and neurological sys-
tem, including myocardial infarction, stroke, and sudden 
cardiac death.1–6 While hyperlipidemia includes cases 
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of elevated blood triglycerides, hypercholesterolemia is 
marked by elevated blood low-density lipoprotein cho-
lesterol (LDL-C). Hyperlipidemia and hypercholesterol-
emia are among the leading causes of cardiovascular 
disease, the leading cause of death worldwide, through 
their role in the formation of atherosclerotic plaques.7–11

Pharmacologic modification of atherogenic lipopro-
tein levels by lipid-lowering therapies such as statins12 
and PCSK9 (proprotein convertase subtilisin/kexin type 
9) (monoclonal antibody inhibitors (alirocumab and 
evolocumab)13 are considered effective approaches 
to reducing cardiovascular disease risk.14 New phar-
maceutical approaches to PCSK9 inhibition (PCSK9i)  
are also being developed. Inclisiran, a small inhibitory 
RNA molecule which inhibits PCSK9 via the RNA inter-
ference (RNAi) pathway15 has recently been approved 

by the European Commission and US Food and Drug 
Administration to be used in combination with statins 
and diet to lower LDL-C levels in adults with hypercho-
lesterolemia or atherosclerosis,15–18 and recent pre-
clinical work using CRISPR gene editing to induce a 
PCSK9 knockout genotype reported long-term cho-
lesterol reduction in nonhuman primates.19,20

While short-term clinical trials investigating the 
neuropsychiatric impact of PCSK9 monoclonal an-
tibodies reported no major adverse neuropsychiatric 
events among study participants,13,21–23 there remains 
concern about the potential adverse neuropsychiatric 
impact of PCSK9i therapy, owing in part to potential 
cognitive effects that have been observed in some 
studies of statins,24,25 and in vitro and in vivo studies 
implicating PCSK9 in a range of neural processes.26,27 
For example, PCSK9 has been shown to be involved 
in neuronal differentiation, apoptosis, astrocytes, and 
glial cell activation; neuronal PCSK9 expression has 
been shown to be upregulated in adult brains during 
disease states, including Alzheimer disease (AD), al-
cohol use disorder, ischemic stroke, and mood disor-
ders26–28; and Mendelian randomization (MR) analyses 
have suggested that genetically proxied long-term 
PCSK9i is associated with increased risk for depres-
sion in individuals of European ancestry.29

As new PCSK9i therapeutics become approved for 
clinical use, it is important to examine and understand 
their long-term efficacy and side effect profiles in pop-
ulations representative of the patients who will use the 
therapeutics, including any potential differences be-
tween those of men and women.29,30 Neuropsychiatric 
disorder prevalence and risk profiles are known to dif-
fer between men and women.31,32 Women are twice 
as likely as men to be diagnosed with depression,31 
are more likely to present with most major subtypes of 
depression, and report greater symptom severity.33–36 
Given sex-related differences in mood disorders and 
dementia risk, it is important to investigate any poten-
tial sex-specific effects of PCSK9i, and while previous 
short-term clinical trials and genetics-based studies 
have failed to find evidence of large-scale neuropsy-
chiatric effects related to PCSK9i,37–40 any potential 
differences in risk between men and women have not 
been investigated. Although randomized controlled 
trials (RCTs) remain the gold standard for assessing 
causal relationships between risk factors and disease 
outcomes,41,42 an RCT investigating the long-term and 
potential sex-specific impact of PCSK9i on neuropsy-
chiatric disorders would be challenging because of 
the recency of PCSK9i approval, and consequently 
long-term neuropsychiatric data from RCTs are not yet 
available. In addition, despite improved sex equity in 
RCTs over the past 20 years, there remains sex bias 
within clinical trials that may not capture important dif-
ferences between men and women.30

CLINICAL PERSPECTIVE

What Is New?
•	 PCSK9 (proprotein convertase subtilisin/kexin 

type 9) inhibitors exhibit a safe neuropsychiatric 
outcome profile, which is not significantly differ-
ent in male and female samples.

What Are the Clinical Implications?
•	 Genetic evidence suggests that PCSK9 inhibi-

tors do not pose a significant risk for adverse 
cognitive outcomes reported in some studies 
of statins, and concern regarding cognitive side 
effects contributing to underuse of PCSK9 in-
hibitors may be unfounded.

Nonstandard Abbreviations and Acronyms

CRISPR	 clustered regularly interspaced short 
palindromic repeats

eQTL	 expression quantitative trait loci
GLGC	 Global Lipids Genetics Consortium
GTEx	 Genotype-Tissue Expression
InSIDE	 Instrument Strength Independent of 

Direct Effect
IV	 instrumental variable
IVW	 inverse variance–weighted
MR	 Mendelian randomization
PCSK9	 proprotein convertase subtilisin/kexin 

type 9
PCSK9i	 proprotein convertase subtilisin/kexin 

type 9 inhibitor
pQTL	 protein quantitative trait loci
TPM	 transcripts per million
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Therefore, the present study sought to determine 
whether there is genetic evidence of a sex-specific im-
pact of PCSK9i therapy on mood disorders, cognition, 
or dementia. We employed drug-target MR, a recent 
extension of MR using single-nucleotide polymor-
phisms (SNPs) associated with druggable gene targets 
(ie, SNPs within or near the PCSK9 gene locus),43 to 
genetically proxy and evaluate the lifelong impact on 
outcomes of interest caused by pharmacological mod-
ulation of the gene target (ie, inhibition of PCSK9),43 and 
summary-level genome-wide association study (GWAS) 
data in men, women, and in combined-sex samples. In 
addition to instrumenting genetically proxied PCSK9i 
in LDL-C levels (the primary physiological response to 
pharmacological PCSK9i), we also leveraged recently 
released GWAS data on circulating PCSK9 protein lev-
els and cerebral cortex– and liver-specific PCSK9 gene 
expression data in order to better genetically model the 
mechanisms of action for the anti-PCSK9 monoclonal 
antibodies44 and inclisiran,15 respectively.

METHODS
Code Availability
Code is available from the authors upon reasonable 
request. The current study used the TwoSampleMR 
R package (https://mrcieu.github.io/TwoSa​mpleM​R/). 
Figures 1 and 2 were created using BioRe​nder.com. 
The mRnd Shiny App used for power calculations is 
available at https://shiny.cnsge​nomics.com/mRnd/.

iData Availability
All exposure instruments required to replicate the 
analyses are located in the Supplemental Tables. The 
current study used publicly available GWAS summary 
statistics. The neuropsychiatric endpoint data for men, 
women, and combined-sex samples are available 
from the Neale Lab repository (http://www.neale​lab.is/
uk-biobank). The Global Lipids Genetics Consortium 
(GLGC) LDL-C data are available from the GLGC 
downloads page (http://csg.sph.umich.edu/wille​r/publi​
c/glgc-lipid​s2021/). GWAS results of circulating PCSK9 
protein levels are available at https://zenodo.org/recor​
d/5643551. Genotype-Tissue Expression (GTEx) ex-
pression quantitative trait loci (eQTL) data are available 
from its respective downloads page (https://gtexp​ortal.
org/home/datasets). MetaBrain eQTL data are avail-
able at: https://metab​rain.nl/.

Approval and Data Sources

Figure 1 provides a study overview. The present study 
used publicly available, summary-level genome-wide 
association study (GWAS) data. The data sources 
used (UK Biobank [https://www.ukbio​bank.ac.uk] and 

GLGC [http://lipid​genet​ics.org/]) have existing approv-
als from their respective institutional review boards. 
All participants provided written informed consent. 
Full information and references for data sources can 
be found in Table S1. The current study is reported in 
accordance with the MR STROBE (Strengthening the 
Reporting of Observational Studies in Epidemiology) 
guidelines (Data S1).

MR Assumptions

MR uses SNPs as instrumental variables (IVs) to iden-
tify associations between the genetic liability for an 
exposure trait and an outcome.43,45,46 MR has 3 main 
assumptions (Figure S1): (1) the IV itself must be associ-
ated with the exposure (the relevance assumption); (2) 
there must not exist any causes of the IV that also af-
fect the outcomes through mechanisms other than the 
exposure of interest (the exchangeability assumption); 
and (3) the IV must not affect the outcome through a 
mechanism independent of the exposure, nor affect 
another trait with a downstream effect on the outcome 
of interest (the exclusion restriction assumption).45,46

The current study used drug-target MR, a re-
cent extension of MR, leveraging variants located 
within the genomic region of a druggable gene (cis-
instrumentation) to evaluate whether modulation of a 
specific drug target (ie, PCSK9) will have an impact 
on the outcomes of interest (ie, neuropsychiatric end 
points).43 This interpretation is different than conven-
tional biomarker MR analyses, which investigates the 
causal impact of the biomarker (eg, circulating LDL-C 
levels) on the outcomes of interest.43 Drug-target MR 
using cis-instruments are less prone to bias because 
of horizontal pleiotropy.43 Nevertheless, we included 
additional MR methods used to assess the sensitiv-
ity of our results to different patterns of violations of 
IV assumptions, which we describe in the Statistical 
Analysis section.

PCSK9 Instruments

To proxy therapeutic inhibition of PCSK9, we included 
several separate genetic models incorporating data 
at the biomarker, protein, and gene expression lev-
els. A brief summary of the PCSK9 instruments used 
in the present study can be found in Table 1; detailed 
instrument descriptions are presented in Table  S2. 
First, because the primary physiological response of 
pharmacological PCSK9 inhibition is lowering circulat-
ing levels of LDL-C,44 as has been done in previous 
MR studies of PCSK9 and other lipid-lowering target 
genes,39,47,48 we extracted SNPs located within 100 kb 
of the PCSK9 gene locus (chromosome 1:55505221–
55 530 525 GRCh37/hg19) associated with LDL-C lev-
els from participants of European ancestry in the 2021 

https://mrcieu.github.io/TwoSampleMR/
http://biorender.com/
https://shiny.cnsgenomics.com/mRnd/
http://www.nealelab.is/uk-biobank
http://www.nealelab.is/uk-biobank
http://csg.sph.umich.edu/willer/public/glgc-lipids2021/
http://csg.sph.umich.edu/willer/public/glgc-lipids2021/
https://zenodo.org/record/5643551
https://zenodo.org/record/5643551
https://gtexportal.org/home/datasets
https://gtexportal.org/home/datasets
https://metabrain.nl/
https://www.ukbiobank.ac.uk
http://lipidgenetics.org/
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GLGC LDL-C European meta-analysis (N≤1 320 016)49 
at conventional genome-wide significance P<5×10−8.49 
We clumped SNPs at linkage disequilibrium R2=0.001, 
leaving 6 independent SNPs comprising the LDL-C–
based PCSK9 instrument. Because only 3 of the 6 
independent PCSK9 variants in the LDL-C instrument 
were found in the PCSK9 protein level data,50 we 
also created a PCSK9–LDL-C instrument comprising 
only variants associated with both LDL-C (P<5×10−8) 
and PCSK9 protein levels (P<5×10−6),50 as a biologi-
cally conservative instrument and sensitivity analysis 
to assess the MR exclusion restriction assumption. 

We included an LDL-C–based PCSK9 instrument with 
3 independent SNPs derived from the earlier 2013 
GLGC GWAS of circulating LDL-C levels (N≤173 082) 
as an additional sensitivity analysis.51 Circulating LDL-C 
levels are reported in SD units.

Next, because instrumentation of PCSK9 in LDL-C 
does not measure changes in PCSK9 levels directly, 
and because current anti-PCSK9 monoclonal anti-
bodies target the PCSK9 protein,44 we supplemented 
the PCSK9 instrument derived from LDL-C data with 
SNPs associated with circulating PCSK9 protein levels 
using protein quantitative loci (pQTL) data from 10 186 

Figure 1.  Overview of study methods and procedures.
All summary-level genetic associations were derived from genome-wide association studies (GWAS) of European ancestry. 
Additional information regarding the GWAS data (consortium, study cohort, and author information of the GWAS for the exposure and 
neuropsychiatric outcomes) are located in Table S1. We performed cis-instrumentation of genetically predisposed PCSK9 (proprotein 
convertase subtilisin/kexin type 9) inhibition in several complementary data sets. First, single-nucleotide polymorphisms (SNPs) ±100 
kilobases of the PCSK9 gene locus were extracted from the Global Lipids Genetics Consortium (GLGC) 2021 meta-analysis on 
circulating low-density lipoprotein (LDL) cholesterol (LDL-C) levels surpassing conventional genome-wide significance (P<5×10−8). 
We also proxied PCSK9 inhibition using circulating levels of the PCSK9 protein and tissue-specific gene expression of PCSK9 in the 
liver, whole blood, and brain (cortex). These PCSK9 SNPs were then extracted from selected neuropsychiatric end points spanning 
mood disorders, insomnia, dementia, and cognition from UK Biobank data that combined men and women, as well as male-only 
and female-only GWASs. Finally, we performed drug-target Mendelian randomization to evaluate the neuropsychiatric impact of 
genetically predisposed PCSK9 inhibition across men and women (see Methods section). eQTL indicates expression quantitative trait 
loci; GTEx Genotype-Tissue Expression; and LDLR, low-density lipoprotein receptor.
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individuals of European ancestry.50 We extracted and 
clumped SNPs as above, leaving 2 independent SNPs 
within the PCSK9 locus. PCSK9 protein levels were 
measured in normalized protein units.50 Given the liver-
specific mechanism of action of recently approved 
small interfering RNA inhibitor, inclisiran,15 we extracted 
eQTL from GTEx version 852 PCSK9 data–derived liver 
tissue (N=178). We cis-instrumented the liver PCSK9 in-
strument (clumped at linkage disequilibrium R2=0.001), 

leaving one variant. Finally, we supplemented these 
eQTL analyses with additional PCSK9 instruments 
from PCSK9 data derived from whole blood (N=558), 
and the brain tissue from the MetaBrain analysis 
(N=2640).53 The whole blood eQTL PCSK9 instrument 
had 2 independent SNPs and the eQTL PCSK9 instru-
ment from cortex had 1 independent SNP (Table S2). 
eQTL data are measured in transcripts per million 
(TPM).53,54

Figure 2.  Inverse variance–weighted Mendelian randomization results of genetically proxied PCSK9 (proprotein 
convertase subtilisin/kexin type 9) in circulating low-density lipoprotein cholesterol (LDL-C) and circulating protein levels 
on neuropsychiatric outcomes for men and women.
Estimates for the LDL-C–lowering impact of PCSK9 inhibition are reported as odds ratios (ORs) corresponding to a change in the risk 
for the neuropsychiatric end point per 1-SD reduction of genetically determined circulating LDL-C levels (ie, the primary physiological 
response of pharmacologic PCSK9 inhibition). For the analyses using circulating PCSK9 protein levels, the ORs correspond to a 
change in genetically determined normalized circulating PCSK9 protein levels (ie, the primary physiological target of monoclonal 
PCSK9 inhibitors). Because fluid intelligence is a continuous variable, it was not included in the Forest plot but is discussed in the 
Results section. Full results, including combined-sex results, are presented in Table S4 and Table S5.
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To test the MR relevance assumption and because 
MR analyses may be biased by the inclusion of weak 
instrument SNPs, which may occur when the variants 
comprising the MR instrument explain only a small pro-
portion of the exposure, resulting in reduced statisti-
cal power to reject the null hypothesis,55 we tested the 
strength of each PCSK9 instrument by calculating the 
variance explained by the instrument (ie, the R2) and 
the corresponding F statistics.56 By convention, SNP 
F statistics >10 provide evidence that the instruments 
are unlikely to be subject to weak instrument bias.56 
Every PCSK9 SNP used in this study had estimated 
F statistics exceeding 20 (Table  S2). F statistics for 
PCSK9 SNPs within the 2021 LDL-C data ranged from 
72.52 to 913.71 (average F statistic=484.49). F statis-
tics for pQTL and eQTL PCSK9 instruments were sim-
ilarly strong (minimum, maximum pQTL: 92.24, 207.20; 
whole blood eQTL: 24.47, 58.54; liver eQTL: 26.83). 
These F statistics indicate minimal bias from weak in-
struments in the MR analyses.55

Circulating Lipid Levels

LDL-C levels have been implicated in neuropsychiat-
ric disorders,57–59 and because LDL-C is the primary 
biomarker measured with PCSK9i,44 we also evaluated 
the relationships of LDL-C levels and neuropsychiat-
ric outcomes using a polygenic LDL-C instrument. To 
proxy LDL-C levels, we extracted 400 independent 
(linkage disequilibrium R2 < 0.001) variants associated 
with LDL-C at conventional genome-wide significance, 
irrespective of their genomic position, from the GLGC 
meta-analysis (N≤1 320 016).49 A full list of variants 
used for the polygenic LDL-C instrument is available 

in Table S3. Instrument SNPs had strong F statistics 
(average F statistic, 206.32; range, 29.73–4799.60).

Neuropsychiatric Outcomes From the 
UK Biobank

We obtained summary-level GWAS data from end 
points related to depression, anxiety, cognition, and 
dementia from the UK Biobank for the sex-specific 
analysis (http://www.neale​lab.is/uk-biobank).60 
Additional information for all end points are available 
in Figure 2 and Table S1. These UK Biobank data sets 
were derived from participants of European ancestry 
(ages 40–69 years at the start of data collection). For 
depression and anxiety, we included self-reported de-
pression (men: 7156 cases/159 832 controls; women: 
13 492 cases/180 661 controls); whether the partici-
pant reported ever having depression diagnosed by a 
healthcare professional (men: 8166 cases/43 675 con-
trols; women: 16 921 cases/49 020 controls); whether 
the participant reported ever having self-harmed (men: 
1594/50 262; women: 3505/62 372); whether the par-
ticipant reported ever having a period of extreme ir-
ritability (men: 12 626 cases/37 987 controls; women: 
17 121 cases/46 778 controls); whether the participant 
reported ever having anxiety, nerves, or generalized 
anxiety disorder diagnosed by a professional health-
care worker (men: 5649 cases/46 176 controls; women: 
11 081 cases/54 845 controls); and self-reported anxi-
ety/panic attacks (men: 1813 cases/165 175 controls; 
women: 3148 cases/191 005 controls).

Given the average age of UK Biobank participants, 
there are few cases of AD among UK Biobank partic-
ipants. Therefore, we leveraged the high heritability of 

Table 1.  Summary of PCSK9 Instruments Included in the Current Study

PCSK9 instruments
No. of genetic 
variants (SNPs)

Average sample size 
(minimum, maximum)

Average F statistic 
(minimum, maximum) Total R2

Circulating LDL-C levels

PCSK9 SNPs in LDL-C (GLGC 202149) 6 1 196 479 (1 094 709, 1 228 324) 484.95 (83.35, 913.76) 0.0024

PCSK9 SNPs in LDL-C (GLGC 201351) 3 81 322 (77 417, 86 399) 308.17 (21.66, 762.37) 0.0118

PCSK9 SNPs in LDL-C with variants also 
associated with PCSK9 protein

2 1 229 493 (1 227 744, 1 231 241) 1206.53 (798.60, 1614.53) 0.00196

Circulating PCSK9 protein levels (pQTL)

PCSK9 in whole blood 2 9905 (9623, 10 186) 153.42 (92.24, 207.20) 0.03001

Tissue-specific PCSK9 expression (eQTLs)

PCSK9 in liver 1 178 (NA) 26.83 (NA) 0.1323

PCSK9 in whole blood 3 558 (NA) 44.21 (24.87, 58.54) 0.1374

PCSK9 in cortex 1 2640 (NA) 96.96 (NA) 0.0355

#Genetic variants were the number of PCSK9 (proprotein convertase subtilisin/kexin type 9) single-nucleotide polymorphisms (SNPs) within ±100 kilobases 
of the PCSK9 locus included in the instrument before harmonization with the neuropsychiatric outcome data. Average sample size reports the average 
genome-wide association studies (GWAS) summary statistics sample size for each PCSK9 instrument SNP. Average F statistics for each PCSK9 variant in the 
instrument. Total R2 is the variance explained in the GWAS summary statistics by all of the PCSK9 SNPs for each instrument. PCSK9 quantitative trait loci data 
were obtained from the Pott et al meta-analysis of circulating PCSK9 protein, Genotype-Tissue Expression (GTEx) project portal, and MetaBrain Consortia (links 
provided in Table S2). Additional PCSK9 instrument information is presented in Table S2. eQTL indicates expression quantitative trait loci; GLGC, Global Lipid 
Genetics Consortium; LDL-C, low-density lipoprotein cholesterol; and pQTL, protein expression quantitative trait loci.

http://www.nealelab.is/uk-biobank
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AD, which implies that AD case status for offspring can 
be, to some extent, inferred by parental AD case sta-
tus (ie, offspring of parents with AD may have higher 
genetic risk for AD)60 and used a phenotype-by-proxy 
approach with GWAS data on parental AD among par-
ticipants in the UK Biobank. We used AD status of both 
fathers (men: 6617 cases/135 280 controls; women: 
8405 cases/162 364 controls) and mothers (men: 12 324 
cases/136 664 controls; women: 16 183 cases/165 870 
controls). Finally, we used a continuous measure of 
fluid intelligence (men=54 321; women=62 810). For all 
end points, we analyzed the male, female, and com-
bined GWAS data (Figure 2 and Table S1). We extracted 
PCSK9 and polygenic LDL-C SNPs for each instrument 
from each of the outcome GWAS and then harmonized 
the exposure and outcome data (ie, aligned effect al-
leles, β coefficients). All PCSK9 instrument SNPs were 
found in the outcome GWAS data.

Power Calculations

We performed MR power calculations for the primary 
analyses based on available outcome sample sizes 
and the variance explained (R2) of the PCSK9 and poly-
genic LDL instruments using the mRnd Shiny App.61 
We used an α level of 0.05 and calculated the statisti-
cal power to detect odds ratios (ORs) at 3 separate 
true effect sizes (0.50, 0.80, and 0.90) and considered 
analyses sufficiently powered where calculated power 
exceeded 80%.

Sample Independence

The 2021 GLGC meta-analysis incorporated LDL-C 
from 440 546 UK Biobank participants.49 For neu-
ropsychiatric outcomes included in this study, the 
Neale Lab release of the UK Biobank had samples 
ranging from N=114 422 to N=361 114. Therefore, for 
analyses with the LDL-C instruments, there is an up 
to 27% overlap for these combined-sex analyses. 
However, the maximum overlap for male and female 
analyses is 12.7% and 14.7%, respectively. While 
sample overlap in summary-level GWAS data used 
to estimate genetic associations between exposure 
and outcome 2-sample MR may potentially bias re-
sults,62,63 any bias would likely be minimal,62,63 and it 
has also been shown that 2-sample MR may be safely 
used in single samples when the data are derived from 
large biobanks, such as the UK Biobank.64 We report 
no sample overlap for the 2013 GLGC LDL-C, PCSK9 
pQTL, and GTEx eQTL analyses.

Statistical Analysis

We performed all analysis in R version 4.0.2 using the 
TwoSampleMR R package.41 For instruments with 2+ 
SNPs (ie, PCSK9 variants in LDL-C, PCSK9 pQTL, 

PCSK9 eQTL in whole blood, and the polygenic 
LDL-C instrument), we used the inverse variance–
weighted (IVW) analyses as the primary MR method. 
For analyses with instruments comprised of a single 
SNP (PCSK9 liver and cortex eQTLs), we used the 
Wald ratio method as the primary method.65 For anal-
yses with >2 SNPs (PCSK9 variants associated with 
LDL-C levels and the polygenic LDL-C analyses), MR 
Egger, weighted median, and weighted mode analy-
ses are presented as sensitivity analyses to assess 
the robustness of the MR IVW results and evaluate the 
exclusion restriction MR assumption. It is assumed 
that MR IVW gives consistent estimates when all ge-
netic variants are valid IVs.41,66 Compared with the 
MR IVW method, MR Egger uses a relaxed assump-
tion rather than the strict MR assumption of no pleiot-
ropy (the Instrument Strength Independent of Direct 
Effect [InSIDE] assumption).66,67 MR Egger extends 
MR IVW by not setting the linear regression intercept 
to zero, allowing the average horizontal pleiotropic 
MR estimate across all SNPs to be unbalanced or 
directional, ie, some variants may be acting on the 
neuropsychiatric outcomes via ≥1 pathways other 
than through the PCSK9 or LDL-C exposures.66,67 
The weighted median method uses the median asso-
ciation of all available instrument SNPs.45 Therefore, 
only half of the SNPs need to be valid instruments, ie, 
variants with no horizontal pleiotropy, no associations 
with confounders, and robust associations with the 
exposure, to return an unbiased MR estimate.68 The 
weighted mode method weights the contribution of 
each instrument SNP to the clustering by the inverse 
variance of its association with each neuropsychiatric 
outcome. Assuming the most common MR instru-
ment is consistent, the overall MR estimate will be 
unbiased, even if all other SNPs within the instrument 
are invalid.45

While weighted median estimates generally are 
nearly as precise as MR IVW estimates, both are sub-
stantially more precise than MR Egger estimates, with 
MR Egger estimates particularly imprecise if all IVs 
have similar exposure effect sizes.68 Complementary 
MR methods help evaluate the sensitivity of the results 
to different patterns of violations of IV assumptions, in-
cluding horizontal pleiotropy,45 and consistency of MR 
estimates across all methods suggests an unbiased 
MR estimate,41,42,45 strengthening causal inference.41 In 
addition, for the PCSK9 target instrumented in LDL-C 
and polygenic LDL-C instrument, we also used the 
MR Egger intercept test,69 Cochran Q heterogeneity 
test,70 MR Lasso test,71 and MR Steiger test56 assess-
ing causal direction between hypothesized circulating 
LDL-C and depression, anxiety, cognition, and demen-
tia outcomes.

Because the primary physiological response of 
pharmacological PCSK9 inhibition is lowered LDL-C 
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levels, we validated our pQTL and eQTL instruments 
by investigating their impact on LDL-C. To simulate 
the pharmacological impact of PCSK9 inhibitors, 
the reported drug-target MR estimates were trans-
formed to correspond to a decrease of LDL-C in units 
of SD, circulating PCSK9 protein levels, and lower 
PCSK9 gene expression. For instruments derived 
from LDL-C levels, this corresponds to a change in 
the likelihood of reporting a positive neuropsychiatric 
end point per a 1-SD decrease in circulating LDL-C 
levels. For the PCSK9 protein and gene expression 
analyses, this instead corresponds to a change in the 
likelihood per a 1-SD change in normalized PCSK9 
protein levels and TPM, respectively. We report 95% 
CIs estimates for the MR analyses. The strength of 
evidence was indexed against the null hypotheses 
(no association) by the exact P value before and after 
correction for multiple testing. To account for multi-
ple testing bias, a Bonferroni correction was used, 
where the adjusted P value threshold was 4.17×10−3 
(0.05/12 end points tested). For any nominally signifi-
cant findings (P<0.05) in the sex-specific end points, 
a post hoc hypothesis test was performed to evalu-
ate whether the MR estimates between the male and 
female end point were significantly different (P value 
<0.05) from each other.

RESULTS
Impact of LDL-C Lowering by PCSK9 on 
Neuropsychiatric Risk
Drug-target MR analyses proxying genetic PCSK9 
inhibition in LDL-C levels failed to find any IVW MR 
estimates among either men or women surpass-
ing Bonferroni correction for multiple comparisons 
(Figure 2). Full results are presented in Table S4 and 
power calculations in Table S5. MR estimates (β) for 
fluid intelligence were 0.0246 (P=0.877) and − 0.0048 
(P=0.644) for men and women, respectively. For 
women, genetically predisposed PCSK9 inhibition was 
associated with a nominally significant increase in the 
risk of self-harm (OR, 1.003; P=0.031). Genetically pre-
disposed PCSK9 inhibition was also associated with 
depression diagnosis (OR, 1.06; P=0.047). MR esti-
mates for men for these end points were null (self-harm 
OR, 0.99; P=0.313; depression OR, 1.023; P=0.343); 
however, the post hoc hypothesis test revealed no sta-
tistically significant difference between the male and 
female estimates (P=0.091) (Table S4).

Results using the PCSK9 instrument derived 
from 2013 GLGC LDL-C data were generally aligned 
(Table  S6); however, associations with self-harm in 
women (OR, 1.025; P=0.155) were not statistically sig-
nificant. Overall, these results were consistent across 
MR methods. MR Egger intercept analysis suggested 

no evidence of horizontal pleiotropy and the Cochran 
Q test did not indicate heterogeneity, which improves 
the causal inference of the MR estimates.45

Further, analysis of circulating LDL-C levels proxied 
by instruments comprised of SNPs throughout the ge-
nome did not yield evidence for any association with 
depression risk in women or men (Table S7). We did 
observe one end point surpassing correction for mul-
tiple comparisons: in the combined-sex analysis, in-
creased LDL-C levels were associated with decreased 
risk for paternal AD risk (OR, 0.995; P=0.0013) but not 
maternal AD (P=0.029).

Assessing the Neuropsychiatric Impact of 
PCSK9 QTL Instruments
MR testing validity of the QTL PCSK9 instruments by 
evaluating their causal impact on circulating LDL-C 
levels showed that increased genetically proxied 
PCSK9 inhibition was associated with lowered LDL-C 
(Table S8). Our pQTL and tissue-specific eQTL results 
aligned with the LDL-C–based PCSK9 analyses fail-
ing to find evidence of a neuropsychiatric impact of 
genetically proxied PCSK9 inhibition and, as before, 
we observed nominally significant increased risk for 
self-reported depression in women (Table S9), ie, an 
OR of 1.018 (P=0.038) for reduced circulating PCSK9 
protein (Figure 2), an OR of 1.0094 (P=0.0064) for liver 
PCSK9 expression, and an OR of 1.024 (P=0.036) for 
whole blood PCSK9 expression (Figure 3). Genetically 
proxied circulating PCSK9 protein inhibition was asso-
ciated with an increased risk for depression diagnosis 
in women (OR, 1.062; P=0.016). Post hoc hypothesis 
testing found a statistical difference between men and 
women in self-reported depression for liver PCSK9 
expression (P=0.035) but not for whole blood genetic 
PCSK9 expression (P=0.18) or circulating genetic 
PCSK9 protein (P=0.12).

Power Calculations
Power calculations showed that the eQTL and pQTL 
analyses were generally sufficiently powered (power 
exceeding 80%) to detect the presence of ORs of ≥1.2 
at a type 1 error rate (α level) of 0.05 for the combined-
sex and sex-specific analyses for all neuropsychiatric 
outcomes except for self-reported anxiety/panic at-
tacks (Table  S9). Broadly, PCSK9 instruments using 
eQTL and pQTL data were better powered than the 
PCSK9 instruments derived from circulation LDL data 
because of the increased variance explained by the 
instruments (eg, PCSK9 liver eQTL variants explained 
13.74% of the variance in PCSK9 liver expression 
compared with 0.242% of the variance of LDL-C lev-
els [Table S9]). As expected, the estimated power to 
detect ORs of ≤1.1 was reduced; however, the eQTL- 
and pQTL-based analyses remained well powered for 
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several end points, including irritability, depression, 
cognition, and AD (Table S5).

DISCUSSION
The present study found that the neuropsychiatric im-
pact of genetically proxied inhibition of PCSK9 was 
both generally neutral and similar between men and 
women, adding to the growing body of literature sug-
gesting a safe neuropsychiatric profile for PCSK9 in-
hibitors and other lipid-lowering therapies.13,21–23,38,72,73 
Our results provide an important sex-specific compari-
son of potential neuropsychiatric adverse side effects 
related to genetically proxied PCSK9i, which has not 
been heretofore evaluated despite the call for more 
studies stratifying analyses by sex30 and reported dif-
ferences in prevalence of these disorders between 
men and women.31–36 Overall, these results may help 
mitigate ongoing fears of adverse neuropsychiatric 
side effects related to PCSK9i that have contributed, in 
part, to their underutilization.74

We did observe some associations between genet-
ically proxied PCSK9 inhibition and depression, which 
adds to the growing body of MR literature suggesting 

a causal relationship between depression and cardio-
vascular disease.75–77 Notably, our corresponding null 
estimates on depression risk from polygenic LDL-C in-
struments using variants across the genome suggest 
that the relationship is not mediated by the primary 
physiological response to PCSK9 inhibition. Further, 
while some instruments suggested a nominal statisti-
cal increase in the risk of depression, other instruments 
suggested potential beneficial effects of PCSK9 inhi-
bition (eg, the biologically conservative PCSK9 instru-
ment). Further, causal inference requires triangulating 
study designs,78 and an impact by PCSK9i on depres-
sion has not been observed in RCTs or observational 
data,13,21–23,38,72 suggesting more work is needed to 
further elucidate the direction of these relationships.

The present study made use of the ability of drug 
target MR to estimate the causal relationships between 
a modifiable exposure (PCSK9 levels) and neuropsy-
chiatric outcomes of interest by examining the associ-
ation between exposure-associated genetic variants, 
as IVs, and the outcome of interest. Analyses of partic-
ipant data from short-term RCTs have used data from 
patients on concurrent statin therapy,13,22 potentially 
complicating evaluation of the neuropsychiatric impact 

Figure 3.  Inverse variance–weighted and Wald ratio Mendelian randomization results of genetically proxied lowering of 
tissue-specific PCSK9 (proprotein convertase subtilisin/kexin type 9) gene expression on neuropsychiatric outcomes for 
men and women.
Estimates are reported odds ratios (ORs) and 95% CIs corresponding to a change in the risk for the neuropsychiatric end point for a 
change in genetically determined liver, whole blood, and brain PCSK9 gene expression (measured in transcripts per million [TPM]). 
Full results, including the combined-sex results, are presented in Table S9.
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specifically related to PCSK9i; however, the MR frame-
work can estimate these relationships while minimizing 
the impact of confounding variables,41,42 allowing use 
of population-based observational data to strengthen 
causal inference regarding the long-term neuropsychi-
atric effects of PCSK9i. We also leveraged new data 
sources measuring the genetic component of PCSK9 
gene expression and protein levels in addition to liver-
specific PCSK9 gene expression,50 which, in addition 
to providing multiple PCSK9 instruments to evaluate 
potential neuropsychiatric effects, may also yield im-
portant information regarding specific PCSK9 drug 
classes (ie, approved anti-PCSK9 monoclonal antibod-
ies that target circulating PCSK9 protein levels,44 while 
inclisiran targets liver-specific PCSK9 expression15). 
Further, the use of PCSK9 instruments from gene ex-
pression, protein levels, and biomarkers reduces the 
risk of reverse causation and can provide important 
complementary evidence in drug-target MR studies.43

We note several limitations and important factors 
for interpretation. These results represent the analy-
sis of only summary statistics taken from large, pub-
lic GWAS data sets. As such, no clinical data or data 
from RCTs were included in this analysis. While MR is 
a powerful method for assessing genetic relationships, 
it is not a substitute for RCTs, which remain the gold 
standard for assessing causal biological relationships. 
Additionally, causal inference in MR depends on sev-
eral assumptions that cannot be verified (eg, the ex-
changeability and exclusion restriction assumptions),45 
and while cis-instrument MR is less prone to horizontal 
pleiotropy,43,48 and sensitivity analyses yielded consis-
tent MR estimates across all methods employed in the 
study, the possibility of bias caused by confounding or 
pleiotropy cannot be completely disregarded. Further, 
our cis-instrument made use only of those SNPs in the 
PCSK9 gene associated with LDL-C, and therefore did 
not assess for any effects of PCSK9 inhibition through 
alternative pathways. Additional research in real-world 
settings, including long-term studies of postmarketing 
data, are needed to address the remaining uncertain-
ties regarding PCSK9 inhibition. Relatedly, drug-target 
MR cannot itself proxy any potential off-target effects 
of specific drug classes, such as adverse effects of the 
RNAi delivery system used for treatment with inclisiran. 
Moreover, MR estimates assess preexisting, permanent  
genetic variants with permanent biological effects be-
ginning in early development. In contrast, PCSK9 in-
hibitors are generally prescribed to adults; the temporal 
difference in the effective developmental stage of the 
2 populations represents a limitation of drug-target MR 
methods for completely proxying pharmacological out-
come profiles.41,45 Therefore, we urge caution regarding 
the interpretation of these results for clinical decision-
making, pending replication and further investigation.79 
In addition, the current study outcomes were based on 

self-reported data, including self-reported diagnoses. 
Self-reported outcomes in the behavioral and health-
care literature are subject to response bias, either due 
to underreporting or overreporting,80 which might also 
impact the analyses.

There are additional limitations related to statistical 
power and sample overlap. While power calculations 
suggested the analyses were generally sufficiently 
powered to detect the evidence of the potential neuro-
psychiatric impact of genetically predisposed PCSK9 
inhibition, some analyses using the PCSK9 variants 
instrumented in the LDL-C data, despite strong F sta-
tistics, may be underpowered. Nevertheless, power 
calculations of analyses of these same end points 
using pQTL and eQTL instruments were well-powered, 
which improves the causal inference of the null MR es-
timates. In addition, while there was no sample overlap 
between the 2013 LDL-C, pQTL, and eQTL analyses, 
the 2021 GLGC data included UK Biobank partici-
pants,49 which may bias these estimates.63 Recent 
work has shown that 2-sample MR may safely be used 
in single samples (ie, 100% sample overlap) provided 
the data are derived from large biobanks, such as the 
UK Biobank,64 so any sample overlap bias is likely 
minimal. Finally, because our analyses were limited 
to participants of European ancestry, including out-
comes drawn exclusively from the UK Biobank, which 
has been shown to be more educated and generally 
healthier than the general UK population,81 caution 
is warranted before generalizing our findings to other 
populations; replication is needed in populations of 
other ancestries when such data become available.

CONCLUSIONS
Our drug-target MR analysis of genetically proxied 
PCSK9 inhibition suggests a similar and neutral neu-
ropsychiatric profile for PCSK9i therapy in men and 
women. While it is possible that the lack of statistically 
significant findings for certain end points may be attribut-
able to insufficient power, our findings generally aligned 
across the neuropsychiatric end points using PCSK9 in-
struments derived from gene expression data, circulat-
ing PCSK9 protein levels, and PCSK9 locus-lowering of 
LDL-C. Future studies with larger, more diverse GWAS 
data, and additional long-term and postmarketing re-
search will continue to further our understanding of the 
possible neuropsychiatric impact of PCSK9 inhibition.
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as well assumptions for any additional or sensitivity analysis. 
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6. Statistical methods: main analysis 
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15. Limitations 
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16. Interpretation 
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Compare with results from other relevant studies. 
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original study or studies on which the present article is based. 
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19. Data and data sharing 
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Table S4. SVMR results for PCSK9 in LDL-C on sex-stratified neuropsychiatric outcomes 
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Figure S1. Mendelian Randomization Model and Assumptions  

 

B2 is the genetic association of interest, estimated by B2=B1/ B3. B1 and B3 are the associations 
of the genetic variants with the exposure and the outcome. MR assumes that the genetic variants 
comprising the instrument for the exposure only impact the outcome of interest via the exposure 
and not directly, or via confounders (dotted lines).53   
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