Table 3.
Accuracy metrics of train and test datasets for memory model. The optimum γ parameter value of kernel function of SVM was chosen using a grid-search technique based on five-fold cross-validation.
Dataset 1 | Dataset 2 | Dataset 3 | Dataset 4 | Dataset 5 | Average | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
γ | 0.001 |
0.003 |
0.001 |
0.003 |
0.001 |
- |
||||||
|
Train |
Test |
Train |
Test |
Train |
Test |
Train |
Test |
Train |
test |
Train |
Test |
Accuracy (%) | 86.77 | 88.24 | 87.15 | 91.6 | 87.92 | 92.44 | 85.27 | 88.14 | 88.60 | 93.39 | 87.14 | 90.76 |
Sensitivity (%) | 86.10 | 88.33 | 85.70 | 93.10 | 86.32 | 94.74 | 83.43 | 86.89 | 87.60 | 93.55 | 85.83 | 91.32 |
Specificity (%) | 88.52 | 88.14 | 89.38 | 90.16 | 89.85 | 90.32 | 88.51 | 89.47 | 89.94 | 93.22 | 89.24 | 90.26 |
MCC (%) | 74.08 | 76.46 | 74.69 | 83.24 | 75.87 | 84.98 | 71.25 | 76.31 | 77.33 | 86.76 | 74.64 | 81.55 |