Table 4.
Accuracy metrics of train and test datasets for learning model. The optimum γ parameter value of kernel function of SVM was chosen using a grid-search technique based on five-fold cross-validation.
| Dataset 1 | Dataset 2 | Dataset 3 | Dataset 4 | Dataset 5 | Average | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| γ | 0.003 |
0.003 |
0.003 |
0.003 |
0.003 |
- |
||||||
| |
Train |
Test |
Train |
Test |
Train |
Test |
Train |
Test |
Train |
test |
Train |
Test |
| Accuracy (%) | 85.30 | 88.43 | 86.76 | 87.6 | 86.96 | 88.33 | 84.27 | 89.17 | 87.78 | 87.5 | 86.21 | 88.2 |
| Sensitivity (%) | 83.15 | 86.15 | 84.19 | 83.82 | 84.28 | 84.85 | 81.09 | 85.07 | 85.74 | 85.71 | 83.69 | 85.12 |
| Specificity (%) | 88.63 | 91.07 | 90.05 | 92.45 | 90.67 | 92.59 | 89.37 | 94.34 | 90.36 | 89.47 | 89.81 | 91.98 |
| MCC (%) | 71.19 | 77.01 | 73.89 | 75.69 | 74.43 | 77.05 | 69.50 | 78.87 | 75.83 | 75.09 | 72.96 | 76.74 |