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Abstract

The patch manifold of a natural image has a low dimensional structure and accommodates 

rich structural information. Inspired by the recent work of the low-dimensional manifold 

model (LDMM), we apply the LDMM for regularizing X-ray computed tomography (CT) 

image reconstruction. This proposed method recovers detailed structural information of images, 

significantly enhancing spatial and contrast resolution of CT images. Both numerically simulated 

data and clinically experimental data are used to evaluate the proposed method. The comparative 

studies are also performed over the simultaneous algebraic reconstruction technique (SART) 

incorporated the total variation (TV) regularization to demonstrate the merits of the proposed 

method. Results indicate that the LDMM-based method enables a more accurate image 

reconstruction with high fidelity and contrast resolution.
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1. Introduction.

X-ray computed tomography (CT) is a major imaging modality in medical, security, 

and industrial applications. The filtered back-projection (FBP) is an efficient and robust 

method for x-ray CT image reconstruction [10], but it generates strong noise and artifacts 

in the cases of low-dose or incomplete datasets. Extensive efforts have been made to 
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improve image quality for practical purposes [9, 19, 6]. Iterative methods incorporate prior 

information of images, and offer distinct advantages over the analytic methods in cases of 

noisy and few-view data. The statistical iterative methods model the statistics of photons to 

improve the reconstructed image quality from the low-dose acquisitions [6, 20]. Recently, 

the compressive sensing (CS) approach [3, 4] is applied for the image reconstruction from 

less measurements than that required by the Nyquist-Shannon sampling theorem. Based on 

the CS theory, image reconstruction algorithms were developed for various problems of 

CT image reconstruction to improve image quality and reduce radiation dose, such as total 

variation (TV) regularization [19, 20], prior image constrained compressed sensing (PICCS) 

[5], nonlocal mean (NLM) [1, 9], and dictionary learning (DL) [21]. TV is a typical sparse 

transform for an image, and is a popular regularization form for image reconstruction due 

to its ability to preserve image edges. However, it is effective only for reconstruction of 

piecewise constant images and would over-smoothen textured regions, which may sacrifice 

important details. PICSS could be seen as a generalization of the TV regularization method. 

It incorporates a preliminary reconstructed image into CS reconstruction technique to 

achieve more accurate image reconstruction [5]. NLM exploits a high degree of redundancy 

of an image for de-noising [1]. The similarity is derived from intensity differences between 

neighboring patches of pixels or voxels. A non-linear filter can be used to reduce image 

noise by updating each pixel value with a weighted average of its neighbors according to 

the similarity of involved patches. DL builds adaptive sparse representation elements from a 

training set of images, and utilizes domain knowledge at a deeper level [21]. The dictionary 

tends to capture local image features effectively and helps image denoising and feature 

inference. However, the structural differences between a true image and training images 

could affect the image reconstruction quality.

The idea of the proposed X-ray CT image reconstruction method is inspired by a recent 

method called the low-dimensional manifold model (LDMM) [14, 16]. Using the image 

patches discussed in nonlocal methods [2], the LDMM interprets image patches as a point 

cloud sampled in a low-dimensional manifold embedded in a high dimensional ambient 

space, which provides a new way of regularization by minimizing the dimension of the 

corresponding image patch manifold. This can be explained as a natural extension of the 

idea of low-rank regularization for linear objects to data with more complicated structures 

[7]. Moreover, the authors in [14] elegantly find that the point-wisely defined manifold 

dimension can be computed as a Dirichlet energy of the coordinate functions on the 

manifold, whose corresponding boundary value problem can be further solved by a point 

integral method proposed in [14]. The LDMM performs very well in image imprinting and 

super-resolution. The patch manifold of images is generally a low dimensional structure, 

and accommodates rich structural information [16]. With the LDMM prior knowledge 

on images, this proposed method significantly enhances contrast resolution of image 

reconstruction.

In this paper, LDMM-based regularization method is proposed for CT image reconstruction. 

The LDMM-based reconstruction method is to maximize the data fidelity and minimize 

the manifold dimensionality, which is performed using the Bregman iteration [15] by 

updating the patch manifold structure iteratively. By a standard variational approach, the 
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regularization model of image reconstruction can be reduced to the Laplace-Beltrami 

equations over a point cloud, which is solved using the point integral method [11].

The rest of the paper is organized as follows. In section 2, we provide a detailed description 

for the CT image reconstruction based on LDMM. A numerical reconstruction algorithm is 

presented based on Bregman iteration. In section 3, we perform the image reconstruction 

using numerical simulation data and the clinical raw projection data to evaluate the proposed 

LDMM-based image reconstruction method. In addition, we also conduct comparative 

studies with popular simultaneous algebraic reconstruction technique (SART) with TV 

method to present the merits of the proposed method. After that, we conclude the paper 

in the last section.

2. Image reconstruction method.

In this section, we first review the statistical model of x-ray CT imaging. After that, we 

discuss the proposed method of CT image reconstruction based on LDMM and its numerical 

algorithm.

2.1. Statistical model for X-ray CT imaging.

In x-ray CT imaging, the number ξ of x-ray photons recorded by a detector element is a 

random variable, which obeys a Poisson distribution [10]:

p ξ = yi = yyi

yi!
exp −yi (1)

The expectation value of x-ray photons along a path ℓ from x-ray source to i-th detector 

element obeys Beer-Lambert law:

yi = biexp −∫
ℓ

μ( r )d ℓ (2)

where bi is the number of x-ray photons detected by i-th detector element in the blank 

scanning (without any object in the beam path), and μ r  is the linear attenuation coefficient 

of the object. To implement the numerical computation, Eq. (2) can be discretized as,

yi = biexp −Aiμ (3)

where μ is a vector composed of pixel values on image of linear attenuation coefficients, 

and Ai is the weighting coefficients of the pixel values on i-th beam path. Since data 

are independent between detectors, the likelihood function for x-ray photons probability 

distribution on detectors is defined by,

P(Y ∣ μ) = ∏
i = 1

N yyi

yi!
exp −yi (4)

where Y = (y1, y2, ⋯, yN)T. According to the Bayesian rule: p(μ|Y)p(Y) = (Y|μ)p(μ), 

the image reconstruction task can be implemented by maximizing a posteriori (MAP) 
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distribution p(μ|Y), which is equivalent to the following minimization problem in term of the 

monotonic property of the natural logarithm [20, 12]:

μ = argmin ∑
i = 1

N
yi − yilog yi + R(μ) (5)

where r(μ) = −ln(p(μ)) is a regularization term expressing the prior knowledge about the 

attenuation image μ , and N is the total number of x-ray beam paths. In the context, we 

propose to use the low-dimension of an image as prior knowledge to conduct the image 

reconstruction, which is discussed in the next section. After inserting Eq. (3) in Eq. (5), 

a second-order approximation is applied to simplify the complicated optimization to a 

quadratic optimization:

μ = argmin ∑
i = 1

N bi
2 Aiμ − yi

2 + R(μ) (6)

2.2. Image reconstruction based on LDMM.

The classical image restoration models mainly focus on local properties of the objective 

image, such as smoothness and jumps. Image features can be further enhanced due to its 

possible repetitive patterns non-locally. The nonlocal based image restoration methods [2] 

extract and match non-local repetitive structures of images using image patches. An essential 

observation of nonlocal methods is that images can be restored by enhancing similar 

patterns which may not lie in nearby regions of the original image domain. Therefore, 

comparing with the direct regularization methods on the image domain, the quality of image 

restoration can be usually improved using nonlocal methods. For instance, nonlocal based 

variational methods [2, 8, 22] and nonlocal based wavelet frame based methods demonstrate 

outstanding image restoration results [17].

Let μ denote an image containing m × n pixels: μ = {μ(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n} , 

and P i0, j0 (I) denotes an image patch centering at (i0, j0) with size of 2s1s2, namely, 

P i0, j0 (I) = I(i, j) ∣ i0 − s1 ≤ i < i0 + s, j0 − s2 ≤ j < j0 + s2 . An image is decomposed into a 

set of patches. These patches can be overlapping or nonoverlapping. Let P(μ) denote the 

patch transformation which maps any given image I to be the set of image patches. P(μ)
can be also viewed as a point set in ℝd with a dimension of d = 2s1 × s2 . It samples a 

low dimensional manifold ℳ(μ) embedded in ℝd, which is called the patch manifold of μ 

[14, 16]. The patch manifold is low dimensional for many natural images, such as X-ray CT 

images. A patch manifold can be constructed directly from an image using patching size 2s1 

× 2s2. As an example illustrated in the right image of Fig. 1, we construct a patch manifold 

of a CT image using patching size 16 × 16 and color-code its piecewise dimension on the 

image to show the variation of the manifold dimension. More recently, [14] proposes to 

regularize the dimension of the patch manifold ℳ(μ) for image restoration. Inspired by [14], 

we use the dimension of the patch manifold as a regularization term to seek the dimension 

of its patch manifold as small as possible such that detail structure information can be 
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magnified for the CT image reconstruction. Therefore, the optimization model Eq. (6) is 

reformulated for the measurement data fidelity and the manifold dimensional quantification:

μ = argmin
μ

λ
2 ∑

i = 1

N
bi Aiμ − yi

2 + ∫
ℳ

dim(ℳ(μ))(x)dx (7)

where dim(ℳ(μ))(x) denotes the dimension of the patch manifold ℳ(μ) of an image μ at x, a 

point in ℳ(μ) ⊂ ℝd. The patch manifold of a nature image may be a set of several manifolds 

with different dimensions, corresponding to different patterns of the image. In [14], the 

authors elegantly demonstrate that the dimension of the patch manifold for an image μ at 

given patch x can be calculated by the coordinate function,

dim(ℳ(μ))(x) = ∑
i = 1

d
∇ℳαi(x) 2

(8)

where αi is the embedding coordinate function defined by αi(x) = xi for any 

x = x1, x2, ⋯, xd ∈ ℳ ⊂ ℝd. Combining Eqs. (7) and (8), we obtain

arg min
μ, ℳ ⊂ ℝd

λ
2 ∑

i = 1

N
bi Aiμ − yi

2 + ∑
i = 1

d
∇ℳαi(x) L2(ℳ)

2 , s . t . P(μ) ⊂ ℳ (9)

where ℳ is a manifold embedded in ℝd, and P(μ) is the patch set of image μ. Note that 

the dimension formula (8) holds point-wisely for the embedding manifolds. The above 

regularization is actually the L1 norm of the local dimension. The optimization (9) can 

be solved by alternating direction method similar as the one proposed in [14]. In other 

words, given an estimation of the manifold ℳn and an estimation of image μn satisfying 

P μn ⊂ ℳn, the coordinate functions α = {αi} and an updated image μ are computed 

through the following optimization.

argmin
μ, α

λ
2 ∑

i = 1

N
bi Aiμ − yi

2 + ∑
i = 1

d
∇ℳαi(x) L2(ℳ)

2 , s . t . α P μn = P

(μ)
(10)

From the reconstructed coordinates α, the manifold ℳ is further updated by 

ℳn + 1 = α1(x), ⋯, αd(x) ∣ x ∈ ℳn . This process is iterated until convergence of iterative 

procedure. Given the manifold ℳ, the optimization problem (10) can be solved to compute 

the coordinate functions αi(i = 1, 2, …, d) and update the image μ using the Bregman 

iteration [15]. Mathematically, we have:

αn + 1, k + 1 = argmin
α

∑
i = 1

d
∇ℳnαi(x) L2 ℳn

2

+ β α P μn − P μn + 1, k + Qk
F
2

(11a)
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μn + 1, k + 1 = argmin
μ

λ
2 ∑

i = 1

N
bi Aiμ − yi

2 + β αk + 1 P μn − P(μ) + Qk
F
2

(11b)

Qk + 1 = Qk + αn + 1, k + 1 P μn − P μk + 1 (11c)

where α(P(μ)) = α1(P(μ)), ⋯, αd(P(μ)) T . In the Bregman iteration, Eq. (11b) can be 

reduced to a qudratic minimization, which can be solved using the conjugate gradient (CG) 

method to produce the exact solution after a finite number of iterations. The optimization 

(11a) can be solved for each coordinate function αi(i = 1, …, d) separately. Applying the 

standard variation method, Eq. (11a) is equivalent to solving following Laplace-Beltrami 

equation.

−Δℳu(x) + β∑y ∈ Ωδ(x − y)(u(y) − v(y)) = 0, x ∈ ℳ
∂u
∂ n

(x) = 0, x ∈ ∂ℳ
(12)

where ℳ = ℳn, u represents any αi, n  is the out normal of ℳ with the boundary ∂ℳ and 

Ω = P μn . Recently, the point integral method has been proposed to solve Laplace-Beltrami 

equation over a point cloud [3]. The main idea of the point integral method is to apply 

following integral approximation for the differential term in Laplace-Beltrami equation:

∫
ℳ

Δℳu(y)Rt(x, y)dy ≈ − 1
t ∫ℳ

(u(x) − u(y))Rt(x, y)dy + 2∫
∂ℳ

∂u(y)
∂ n

Rt(x, y
)dy

(13)

where Rt(x, y) are kernel functions given as follows,

Rt(x, y) = Ctexp − x − y 2

4t (14)

where Ct is a normalizing factor. Using the integral approximation (13), following integral 

equation can be obtained to approximate the Laplace-Beltrami equation,

∫
M

(u(x) − u(y))Rt(x, y)dy + tβ ∑
y ∈ Ω

Rt(x, y)(u(y) − u(y)) = 0 (15)

The integral equation (15) can be further discretized into a matrix equation over the point set 

using quadrature rule [14]:

(L + βW )U = βW V
L = D − W

(16)

where β = tNβ
ℳ , W = (Rt(xi, xj))i, j=1, …, N is the weight matrix, D = diag ∑jwij 1, ⋯, N  and 

V = P μk − Qk. Thus, the optimization (11a) can be solved based on the matrix equation 
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(16). The detailed formulation and alternating minimization steps for solving Eq. (10) are 

described in the flowchart for Algorithm 1.

3. Numerical experiments.

In the section, we test the proposed LDMM-based reconstruction method with numerical 

simulation and real experimental datasets obtained on a GE clinical CT scanner. We 

constructed a patch manifold of an image with a patch size of 1616 by shifting 8 pixels. 

In addition, we also perform the comparative studies with the state of the art method, the 

simultaneous algebraic reconstruction technique (SART) with a total variation (TV) [18], to 

demonstrate the merits of the proposed method. All numerical computations in this section 

are implemented by MATLAB in a PC with 16G RAM and 2.8GHz CPU.

3.1. Simulation data.

A phantom was adapted from a CT slice to evaluate the proposed algorithms. Data 

acquisitions are simulated with polychromatic x-ray source operated at 120 kVp/5mAs 

dose for the x-ray imaging. The radius of the scanning trajectory was 53.852cm. The 

source-to-detector distance was 94.6746 cm. 540 projections are uniformly acquired over 

a 360-degree angular range. 765 detector elements are equiangular distributed on each 

projection view. The phantom is discretized into a 512 × 512 matrix. We choose the 

regularization parameters as λ = 0.3 and β = 0.15. The x-ray imaging process was 

simulated to generate projection data according to the x-ray propagation forward model, 

the polychromatic Beer-Lambert law. The projection datasets were corrupted by Poisson 

noise to simulate real x-ray imaging experiments. We performed the image reconstruction 

using the proposed LDMM-based image reconstruction and the simultaneous algebraic 

reconstruction technique (SART) with a total variation (TV), respectively. Results show that 

the LDMM-based method is able to produce more accurate image reconstruction with high 

fidelity and detailed features than the SART+TV method that would over-smoothen textural 

pattern in reconstructed image. We calculated the peak-to-noise ratio (PSNR) and structural 

similarity (SSIM) for the reconstructed image, and obtained PSNR of 52.42 and SSIM of 

0.9940 for the LDMM-based reconstruction, and PSNR of 39.53 and SSIM of 0.9911 for 

the SART+TV method. Fig. 2 shows a comparison between the reconstructed images and 

the ground truth. Fig. 3 presents the comparison of profiles along the horizotal and vertical 

midlines in the phantom and reconstructed images.

3.2 Low dose data.

A realistic phantom adapted from a human CT slice is used to evaluate the proposed 

algorithms. We use an computer-assisted tomography simulation (CatSim) software [13], 
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which was developed by GE Global Research Center, to simulate x-ray imaging for the 

phantom. CatSim incorporates polychromaticity, realistic quantum and electronic noise 

models, finite focal spot size and shape, finite detector cell size, and detector cross-talk 

for the simulation of real x-ray imaging. All acquisitions are simulated with polychromatic 

x-ray source operated at 120 kVp and 0.2mSv dose for the low dose x-ray imaging. The 

radius of the scanning trajectory is 54.1cm. Source-to-detector distance is 94.9cm. 888 

detector elements are equiangular distributed on each projection view. 984 projections are 

uniformly acquired over a 360-degree angular range, generating the sinogram, as shown in 

Fig. 6. The phantom is discretized into a 512 × 512 matrix. We choose the regularization 

parameters as λ = 0.3 and β = 0.3. We performed the image reconstruction respectively 

using the proposed LDMM-based image reconstruction and SART +TV, which achieve 

PSNR of 18.72 and SSIM of 0.79 for the LDMM-based reconstruction method, and PSNR 

of 18.69 and SSIM of 0.74 for the SART+TV method. Results show that the LDMM-based 

image reconstruction method had a better contrast resolution of the reconstructed image than 

the SART+TV method, as shown in Fig. 5.

3.3 Clinical data.

A clinical CT raw projection dataset obtained from GE Healthcare was used to evaluate 

the LDMM-based image reconstruction method. After appropriate preprocessing for the 

projection data, we obtained a set of fanbeam sinogram, as shown in Fig. 6. In the x-ray 

imaging, the field of view (FOV) is of a 25 cm radius, and the radius of the scanning 

trajectory is 54.1cm. Source-to-detector distance is 94.9cm. 984 projections are uniformly 

acquired over a 360-degree angular range. 888 detector elements with 1.024mm pitch were 

equiangular distributed on a projection view. The image matrix was of 512 × 512 pixels. 

We choose the regularization parameters as λ = 0.2 and β = 0.5. We conducted the image 

reconstruction from the sinogram using the proposed LDMM-based reconstruction method. 

For comparison, the FBP method and the SART with TV regularization were applied as 

well to perform the image reconstruction from same projection dataset. Results show that the 

LDMM-based image reconstruction out-performs the other two reconstruction methods, as 

shown in Fig. 7. The LDMM-based method well preserves structural information especially 

texture features of the reconstructed image. The SART with TV iteration method was 

suitable to reconstruct high contrast images, whereas it would over-smoothen textured 

regions in medical images, resulting in the loss of details. FBP keeps the structural 

information, but it produced noisy image.

4. Discussions and conclusion.

The major contribution in this paper is to propose an image reconstruction method aided 

by the regularization of a low dimensional manifold model (LDMM). The patch manifold 

of a natural image is generally with a low dimensional structure, and accommodates rich 

structural information. LDMM regularization method well recovers structural information 

of images, and promises substantially to increase spatial and contrast resolution of the 

image reconstruction. The comparison between the proposed method and the representative 

the SART with TV methods has been performed to illustrate the merits of the LDMM-

based reconstruction approach. The raw datasets from a clinical CT scanner have been 
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used to evaluate the performance of the image reconstruction methods. Results show that 

the regularization method of low dimensional manifold is an efficient and robust image 

reconstruction technique, and well preserves image edges and structural details of the 

reconstructed image comparing to the state of the art SART with TV image reconstruction. 

The iterative algorithm also incorporates prior knowledge, and account for photon statistics 

at a low dose level. Major computational cost is matrix-vector multiplication operations 

in the LDMM-based image reconstruction. Because matrix-vector multiplication is well 

computed parallel, the computational speed of the proposed iterative method can be 

significantly improved by parallel programming. This LDMM-based image reconstruction 

approach is very promising for medical imaging and other applications.

Acknowledgments

W. Cong, G. Wang and Q. Yang’s work is partially supported by the National Institutes of Health Grant NIH/NIBIB 
R01 EB016977 and U01 EB017140. R. Lai’s work is partially supported by the National Science Foundation NSF 
DMS-1522645 and an NSF CAREER Award DMS-1752934.

REFERENCES

[1]. Brox T, Kleinschmidt O and Cremers D, Efficient nonlocal means for denoising of textural 
patterns, IEEE Transactions on Image Processing, 17 (2008), 1083–1092. [PubMed: 18586617] 

[2]. Buades A, Coll B and Morel J-M, A non-local algorithm for image denoising, In Computer Vision 
and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 2, 
pages 60–65. IEEE, 2005.

[3]. Candès EJ, Romberg J and Tao T, Robust uncertainty principles: Exact signal reconstruction from 
highly incomplete frequency information, IEEE Transactions on Information Theory, 52 (2006), 
489–509.

[4]. Candes EJ, Romberg JK and Tao T, Stable signal recovery from incomplete and inaccurate 
measurements, Communications on Pure and Applied Mathematics: A Journal Issued by the 
Courant Institute of Mathematical Sciences, 59 (2006), 1207–1223.

[5]. Chen G-H, Tang J and Leng S, Prior image constrained compressed sensing (piccs): a method 
to accurately reconstruct dynamic ct images from highly undersampled projection data sets, 
Medical Physics, 35 (2008), 660–663. [PubMed: 18383687] 

[6]. Elbakri IA and Fessler JA, Statistical image reconstruction for polyenergetic x-ray computed 
tomography, IEEE Transactions on Medical Imaging, 21 (2002), 89–99. [PubMed: 11929108] 

[7]. Gao H, Yu H, Osher S and Wang G, Multi-energy ct based on a prior rank, intensity and sparsity 
model (prism), Inverse Problems, 27 (2011), 115012, 22pp. [PubMed: 22223929] 

[8]. Gilboa G and Osher S, Nonlocal operators with applications to image processing, Multiscale 
Modeling & Simulation, 7 (2008), 1005–1028.

[9]. Ha S and Mueller K, Low dose ct image restoration using a database of image patches, Physics in 
Medicine & Biology, 60 (2015), 869–882. [PubMed: 25565336] 

[10]. Kak AC and Slaney M, Principles of Computerized Tomographic Imaging, IEEE press New 
York, 1988.

[11]. Li Z, Shi Z and Sun J, Point integral method for solving poisson-type equations on manifolds 
from point clouds with convergence guarantees, Communications in Computational Physics, 22 
(2017), 228–258.

[12]. De Man B, Nuyts J, Dupont P, Marchal G and Suetens P, An iterative maximum-likelihood 
polychromatic algorithm for ct, IEEE Transactions on Medical Imaging, 20 (2001), 999–1008. 
[PubMed: 11686446] 

[13]. De Man B, Basu S, Chandra N, Dunham B, Edic P, Iatrou M, McOlash S, Sainath P, Shaughnessy 
C, Tower B, et al., Catsim: a new computer assisted tomography simulation environment, In 

Cong et al. Page 9

Inverse Probl Imaging (Springfield). Author manuscript; available in PMC 2022 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Medical Imaging 2007: Physics of Medical Imaging, volume 6510, page 65102G. International 
Society for Optics and Photonics, 2007.

[14]. Osher S, Shi Z and Zhu W, Low dimensional manifold model for image processing, SIAM 
Journal on Imaging Sciences, 10 (2017), 1669–1690.

[15]. Osher S, Burger M, Goldfarb D, Xu J and Yin W, An iterative regularization method for total 
variation-based image restoration, Multiscale Modeling & Simulation, 4 (2005), 460–489.

[16]. Peyré G, Manifold models for signals and images, Computer Vision and Image Understanding, 
113 (2009), 249–260.

[17]. Quan Y, Ji H and Shen Z, Data-driven multi-scale non-local wavelet frame construction and 
image recovery, Journal of Scientific Computing, 63 (2015), 307–329.

[18]. Ritschl L, Bergner F, Fleischmann C and Kachelrieß M, Improved total variation-based ct image 
reconstruction applied to clinical data, Physics in Medicine & Biology, 56 (2011), 1545–1561. 
[PubMed: 21325707] 

[19]. Sidky EY, Duchin Y, Pan X and Ullberg C, A constrained, total-variation minimization algorithm 
for low-intensity x-ray ct, Medical Physics, 38 (2011), S117–S125. [PubMed: 21978112] 

[20]. Tang J, Nett BE and Chen G-H, Performance comparison between total variation (tv)-based 
compressed sensing and statistical iterative reconstruction algorithms, Physics in Medicine & 
Biology, 54 (2009), 5781–5804. [PubMed: 19741274] 

[21]. Xu Q, Yu H, Mou X, Zhang L, Hsieh J and Wang G, Low-dose x-ray ct reconstruction via 
dictionary learning, IEEE Transactions on Medical Imaging, 31 (2012), 1682–1697. [PubMed: 
22542666] 

[22]. Zhang X and Chan TF, Wavelet inpainting by nonlocal total variation, Inverse problems and 
Imaging, 4 (2010), 191–210.

Cong et al. Page 10

Inverse Probl Imaging (Springfield). Author manuscript; available in PMC 2022 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The patch manifold of a CT image (left) and the corresponding dimension function of the 

patch manifold with patch size 16 × 16 (right).
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Figure 2. 
Comparison of image reconstruction. (a) Ground truth CT images, (b) the reconstructed 

image using the LDMM-based method, and (c) the reconstructed image using SART with 

TV.
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Figure 3. 
Profiles of reconstructed image. (a) The profiles along the vertical midlines in the 

phantom and image reconstructed by LDMM-based reconstruction method, (b) the profiles 

along the horizontal midlines in the phantom and image reconstructed by LDMM-based 

reconstruction method. (c) The profiles along the vertical midlines in the phantom and image 

reconstructed by SART+TV reconstruction method, and (d) the profiles along the horizontal 

vertical midlines in the phantom and image reconstructed by SART+TV reconstruction 

method.
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Figure 4. 
The sinogram simulated from CatSim.
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Figure 5. 
Comparison of CT reconstruction. (a) Ground truth CT images, (b) the reconstructed image 

using the LDMM-based image reconstruction method, and (c) the reconstructed image using 

SART with TV.
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Figure 6. 
The sinogram measured from a clinical x-ray CT scanner.
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Figure 7. 
Comparison of CT image reconstructions from clinical CT raw data. (a) The reconstructed 

image using the LDMM-based method, (b) the reconstructed image using SART with TV, 

and (c) the reconstructed image using FPB.
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