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INTRODUCTION

RASopathies are a group of developmental multisystemic disorders caused by germline 

mutations in genes encoding signal transducers and regulatory proteins functionally linked 

to the RAS/mitogen-activated protein kinase (MAPK) pathway. Collectively, these disorders 

have an estimated prevalence of 1 in 1000 to 1 in 25001 among live births.
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According to a large clinical registry,2 RASopathies may represent the underlying diagnosis 

in ~18% of childhood hypertrophic cardiomyopathy (HCM), particularly among infants 

younger than 1 year, where they account for ~42% of the cases.

The disorders constituting the RASopathies include Noonan syndrome (NS), NS 

with multiple lentigines (NSML, previously known as LEOPARD syndrome), 

cardiofaciocutaneous syndrome (CFCS), Mazzanti syndrome (also known as NS-like 

disorder with loose anagen hair), Costello syndrome (CS), type 1 neurofibromatosis, and 

Legius syndrome which are well recognized and clinically characterized3; however, other 

clinically related conditions are emerging.4

Although each RASopathy exhibits a unique clinical phenotype, these syndromes share 

many overlapping characteristics, including growth retardation, craniofacial features, 

cryptorchidism, cognitive deficits, renal malformations, bleeding disorders, variable 

predisposition to certain cancers, and congenital heart disease (CHD).5–8 Diagnosis of a 

RASopathy could be suggested by clinical clues (“red flags”),9 which could raise the 

suspicion of an underlying malformation syndrome and direct the clinician toward a specific 

genetic test (Table 1).

It should be noted that the extent of clinical variability characterizing each RASopathy is 

strictly related to the extent of molecular variability and heterogeneity of these disorders. 

For example, NS, which is the most common disorder among the RASopathies. This disease 

is caused by mutations in more than 10 genes (ie, PTPN11, SOS1, SOS2, NRAS, KRAS, 

MRAS, RRAS2, RIT1, LZTR1, RAF1, MAP2K1), which are preferentially associated with 

certain features, including proper growth and cognition (SOS1, SOS2), high prevalence of 

pulmonary stenosis (PS) (PTPN11), or HCM (eg, RAF1, MRAS, and RIT1).4,10–15 On 

the contrary, other RASopathies are relatively homogeneous, being caused by a narrow 

spectrum of mutations in single genes, as in the case of CS and Mazzanti syndrome, which 

are caused by a bunch of mutations in HRAS and SHOC2, respectively.3

HYPERTROPHIC CARDIOMYOPATHY IN RASopathies

After CHD, HCM is the second most common cardiovascular abnormality observed 

in RASopathies,2,16–22 with worse clinical outcomes when associated with early onset 

presentation.

Compared with sarcomeric forms (S-HCM), HCM in RASopathies (R-HCM) shows 

increased prevalence and severity of left ventricular outflow tract obstruction 

(LVOTO)17,19,20,23 and higher rates of hospitalizations for heart failure or need for septal 

myectomy during childhood.23 R-HCM presents earlier in infancy, with a mean age at 

diagnosis of 6 months, whereas S-HCM mostly presents during adolescence.24 Congestive 

heart failure (CHF) is significantly more common in R-HCM (24% vs 9%)25 and accounts 

for a substantial early mortality. Patients affected by RASopathies are more likely to require 

heart failure hospitalizations or cardiovascular interventions,23 mainly septal myectomies 

and pulmonary valvuloplasties.26–28
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In 5% to 10% of the cases, R-HCM is associated to a severe clinical presentation, 

particularly for infants with signs of heart failure, with a 70% one-year mortality. With 

the exception of these cases, clinical status tends to improve over time, and progression of 

left ventricular hypertrophy (LVH), described in S-HCM, seems uncommon in R-HCM.23,29 

On the contrary, left ventricular reverse remodeling with regression of myocardial wall 

thickness z-scores over time on serial echocardiography has been reported in many clinical 

studies.23,26,28

LVOTO is common among patients with RASopathies, and its prevalence may be due to 

the contribution of other cardiovascular abnormalities such as displacement of papillary 

muscles, anomalous insertion of mitral chordae, or fibrous tissue causing midventricular 

obstruction.7,30,31 Mitral valve disease has been considered a marker of complexity in 

patients with HCM and may carry a negative prognosis, being associated with reintervention 

and mortality.32 In particular, compared with age- and sex-matched healthy controls, the 

length of the anterior leaflet of mitral valve is significantly increased in patients with 

R-HCM30; moreover, anterior displacement of the papillary muscles may cause distortion of 

the subvalvular apparatus.

Biventricular hypertrophy may represent a useful clinical clue (“red flag”) for the suspicion 

of R-HCM,33 and its presence may indicate the co-occurrence of right ventricular outflow 

tract obstruction. The prevalence of PS ranges between ~25% and 70% in this subgroup 

of patients: The pulmonary valve is often dysplastic and shows signs of commissural 

fusion.27,34 In particular, PS is severe in ~30% of the cases and moderate in ~10%. Patients 

with mild PS are unlikely to require intervention, and their natural history is similar to that 

of patients without PS.28,35 In contrast, patients with moderate-to-severe PS often require 

percutaneous balloon valvuloplasty, but due to valvular dysplasia, the outcomes may be 

unfavorable, with high rates of reintervention.26,36

Beyond PS, which is observed in up to 65% of the patients, other CHDs commonly 

occur among patients with RASopathies: “Secundum atrial septal defect” (ASD) has 

been observed in ~8% to 30% of the cases,11,26–28,31,37–39 as well as ventricular septal 

defect (VSD) (~5%–10%)19,26,27,31,40 and atrioventricular canal defect (AVCD) (up to 

15% of the cases). The association with AVCD is of pivotal importance: Mitral valve 

abnormalities (such as double orifice and parachute mitral valves) have a significant 

association with AVCD. Moreover, cranial displacement of the aortic valve anulus relative to 

the ventricular apex, which determines the so-called “gooseneck” deformity, may contribute 

to LVOTO.39,41,42 Complete AVCD is uncommon in RASopathies, and morphologic data 

are insufficient to define whether a specific AVC subtype, according to the Rastelli 

classification, is more prevalent.

Left-sided obstructive lesions are rare in RASopathies, although aortic stenosis, coarctation 

of the aorta, and isolated MV stenosis have been reported in the setting of NS.43–45

Coronary artery abnormalities are a relevant finding in RASopathies and may contribute to 

cause myocardial ischemia and worsen the imbalance between myocardial oxygen supply 

and demand. According to a registry,31 aneurysms in coronary arteries have been identified 
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in ~15% of the cases, invariably involving left coronary artery but independently from a 

specific pathogenic variant.46 Long-term outcomes of coronary dilatation are not completely 

understood: As coronary artery aneurysms have been associated to athero-thrombosis, the 

role of antiplatelet drugs in primary prevention of myocardial infarction is debated, and no 

specific recommendation can be made.47

Although HCM, AVCD, and PS have been considered classic cardiovascular defects in the 

setting of RASopathies, recent data coming from a multicenter retrospective study seem to 

report a high prevalence of primary mitral regurgitation (24%, 4%) and aortic insufficiency 

(25%) or structural abnormalities of the ascending aorta, including kinking and aortic root 

dilatation.31

The summary of cardiovascular manifestations, involved genes, and their relative prevalence 

among RASopathies is shown in Table 2. The proposed algorithm for the diagnosis and 

management of R-HCM is shown in Fig. 1.

Hypertrophic Cardiomyopathy in Noonan Syndrome with Multiple Lentigines

HCM is present in ~85% of the patients affected by NSML, among the highest rate 

among RASopathies. LVOTO may be associated to NSML in up to 40% of the cases, 

and biventricular hypertrophy is reported in nearly half of the patients. HCM is often 

diagnosed in early infancy, and the clinical phenotype almost invariably manifests 

before the appearance of the lentigines.19 Interestingly, patients with severe biventricular 

involvement often show high mortality rates, compared with mild asymptomatic cases, 

who have relatively benign clinical outcomes and frequent regression of LVH.27,48 

Electrocardiographic abnormalities and progressive conduction abnormalities often coexist 

with HCM: In particular, a superiorly oriented QRS axis even in the absence of biventricular 

involvement, pseudo-infarction q waves, and prolonged corrected QT interval have been 

observed among NSML patients.19 A possible limitation in the existing study outcomes 

among patients with NSML is that, in some studies, diagnosis is based on clinical criteria 

without genotype corroboration. Of note, differentiating NSML from NS can be challenging, 

particularly in infants, for whom the prevalence of cutaneous manifestations is incomplete, 

and lentigines are not present.24 NSML is caused by a narrow spectrum of dominantly acting 

mutations in PTPN11. Many clinically relevant genotype-phenotype correlations should be 

considered: Patients harboring missense RASopathy variants in BRAF, LZTR1, RAF1, and 

RIT1 show an increased prevalence of LVH compared with carriers of PTPN11 pathogenic 

variants. In addition, some authors have reported worse HF and arrhythmic outcomes in 

a subgroup of patients harboring the missense Gln510Glu allele (PTPN11, exon 13).16 

Interestingly, the molecular spectrum of NSML-causing PTPN11 mutations does not overlap 

the pattern of mutations observed in NS, and the biochemical behavior of these two classes 

of mutations is completely different, with the former impairing the catalytic activity of 

SHP2, the protein encoded by PTPN11, and the latter promoting enhanced activation of the 

phosphatase49–51
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Hypertrophic Cardiomyopathy in Costello Syndrome

Among patients diagnosed with CS, approximately 65% fulfills diagnostic criteria for HCM: 

In this subgroup, the coexistence with CHD is reported in ~40% of the cases, and 60% 

may have LVOTO. Most patients seem to show subaortic septal thickening, although other 

patterns, such as biventricular or concentric hypertrophy, have been reported.52 The natural 

history of HCM in CS is variable, with a documented rate of progression in ~40% of 

the cases. Of note, a significant number of patients with severe HCM underwent septal 

myectomy (25%). Regression of LVH has been reported in 10% of the patients, although 

data reported do not allow the establishment of genotype-phenotype correlations.18,24,52,53 

The comparison between the two commonest alleles for the HRAS gene (pG12S and pG13 

C) with a pathogenic role in CS has shown no significant difference in the prevalence of 

HCM.54 Severe cardiomyopathy, associated with pleural and pericardial effusion as well 

as lung abnormalities has been observed in carriers of G12 C and G12D alleles.55 Atrial 

tachyarrhythmias are seen in more than 50% of the patients affected by CS, particularly 

non-reentrant atrial tachycardia and multifocal or ectopic atrial tachycardia.56 The natural 

history of atrial arrhythmias is usually benign in CS, with spontaneous regression within the 

first year of life and responsiveness to medical therapy, whereas ventricular arrhythmias are 

rare. Later-onset atrial fibrillation and atrial flutter have been reported, but their prognostic 

significance is unknown.57

Hypertrophic Cardiomyopathy in Cardiofaciocutaneous Syndrome

CFCS is caused by dominantly acting mutations in BRAF, MAP2K1, and MAP2K2. 

Nearly 75% of children with CFC have cardiovascular involvement, mainly PS, which 

can be diagnosed in 45% of the cases. HCM can be identified in ~40% of patients 

during infancy,6 with a variable phenotype, sometimes rapidly progressive and resulting 

in heart transplantation or death and, in other cases, with a mild phenotypic expression.6 

Of note, the prevalence of HCM is not significantly different among patients who carry 

BRAF pathogenic variant mutation compared with carriers of MEK1 or MEK2 alleles.58,59 

The most common coexisting forms of CHD are ASD (8%–18%) and VSD (11%–

22%).60,61 Although uncommon in CFCS, arrhythmias can include ventricular preexcitation, 

atrioventricular block, or supraventricular tachycardia.59

Hypertrophic Cardiomyopathy in Noonan Syndrome and Clinically Related Disorders

Among RASopathies, HCM seems less common in NS, with a reported prevalence of ~20% 

among affected individuals. Interestingly patients with Mazzanti syndrome and harboring 

a recurrent missense substitution in SHOC2 seem to have a slightly higher prevalence of 

HCM (25%).62 Three independent studies reported that germline variants in CBL underlie 

a clinical syndrome with many overlapping features with NS, although HCM seems not 

to be associated to this condition.63–65 Among children with NS and HCM, asymmetrical 

septal hypertrophy is the most common presentation (75.6%), whereas apical involvement 

is rare.66 A 12-lead electrocardiogram can show extreme right heart deviation (“north west 

axis”), reflecting biventricular involvement.33 Genotype characterization can offer useful 

diagnostic clues in the management of NS-associated HCM. In particular, among patients 
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harboring PTPN11 variants, the prevalence of HCM is low, whereas individuals affected by 

NS with causal variants in RAF1 and RIT1 are more likely to develop HCM.24

PATHOPHYSIOLOGY OF HYPERTROPHIC CARDIOMYOPATHY IN 

RASopathies

Different signaling pathways seem to be involved in the molecular pathogenesis of HCM 

in RASopathies. Almost 50% of the cases of NS are caused by missense gain-of-function 

mutations in PTPN11, which typically cluster around the phosphotyrosine phosphatase 

domains of SHP2, causing constitutive activation of the protein.67 Interestingly, HCM is 

underrepresented in patients harboring missense changes in PTPN11 or SOS1, whereas it is 

overrepresented is RAF1-mutated NS, where it seems to be allele-specific.14,68 A distinct 

class of variants in PTPN11 was associated to NSML, which carries a higher lifetime 

risk of HCM.49 While NS-causing variants may promote upregulation of RAS/MAPK 

cascade, alleles involved in NSML should be considered as dominant negative mutants 

promoting enhanced signal flow through the PI3K-AKT-mTOR pathway. In a murine model 

of NS bearing the p.L613 V mutation in the Raf1 gene, increased RAS/MAPK signaling 

was observed both in fibroblasts and in neonatal cardiomyocytes. Consistent with that 

observation, treatment with an MEK inhibitor seemed to induce positive reverse remodeling 

in Raf1L613V mice.69 Treatment with trametinib, an MEK inhibitor, has been associated 

to reversal of LVH and LVOTO in two cases of RIT1-mutated NS within 4 months after 

initiation of the therapy. Remodeling was associated with a favorable clinical response and 

a catch-up in somatic growth, which may be attributable to recovery from severe HF.70 

In contrast, a mouse model of NSML bearing the p.Y279 C mutation in the Ptpn11 gene 

showed impaired ligand-evoked ERK phosphorylation and increased signal flow through 

the PI3K-AKT-mTOR pathway. Treatment with rapamycin, an mTOR inhibitor, rescued the 

cardiac phenotype in Ptpn11Y279C mice.71 In the last years, everolimus was used to prevent 

CHF in patients with severe HCM, but regression of LVH was not documented.48

PROGNOSTIC IMPLICATIONS OF HYPERTROPHIC CARDIOMYOPATHY IN 

RASopathies

The diagnosis of HCM significantly affects the outcome in patients affected by NS: Long-

term studies have demonstrated that severity of cardiovascular involvement is associated 

with a lower survival rate, with higher risk of death in patients younger than 2 years and 

adolescents. Specific risk factors for early mortality include evidence of HF during the first 

6 months of life, low cardiac output, significant diastolic disfunction, and several cardiac 

interventions.7,25

Taken together, the outcomes of children affected by R-HCM seem to reflect a distinct 

disease course compared with carriers of sarcomere pathogenic variants: Patients with 

R-HCM can be severely affected during the perinatal and infancy periods, are more 

likely to require septal myectomy or pulmonary balloon valvuloplasty, and lack the typical 

progression of LVH during adolescence and young age.23,28
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Histopathologic studies have demonstrated that patients with R-HCM had a similar amount 

of quantified fibrosis compared with nonsyndromic familial HCM caused by sarcomere 

protein mutations. Of note, fibrotic changes are already present in an early phase of disease, 

in contrast to S-HCM, in which myocardial disarray and fibrosis develop over time.23

Apical aneurysms have been described in R-HCM, nonetheless their overall prevalence and 

clinical significance have not been assessed yet.72

HCM is the main cause of sudden cardiac death (SCD) among adolescents and young 

adults.73 Among patients with R-HCM, sustained ventricular tachycardia (VT) is frequent 

and related to the risk of SCD.74–76 Although the overall risk of SCD appears lower than 

that in HCM caused by sarcomere mutations, disease-specific risk factors are currently an 

area of debate.23,28 A previous history of VT or cardiac arrest, unexplained syncope, non-

sustained VT, or massive LVH has been associated with higher risk of SCD and may require 

Implantable cardioverter defibrillator implantation.73 However, the weight of isolated risk 

factors, irrespective of their magnitude (ie, massive LVH), is not clear, and the risk could be 

higher when many risk factors coexist in the same patient. Interestingly, other conventional 

risk factors such as age, family history of SCD, and left atrial z score should be evaluated 

carefully in children, whereas LVOT gradient seems not associated to SCD.77 Recently, two 

scores have been validated for risk stratification in pediatric patients.77,78

MANAGEMENT AND FUTURE PERSPECTIVES

Medical therapy remains the first-line option in patients with R-HCM. Nonvasodilating beta 

blockers should be titrated to the maximum tolerated dose in patients, and diuretic dose 

should be accurately set to reduce congestive status and HF symptoms, while avoiding 

hypovolemia, which could increase LVOTO. When beta blockers are ineffective or not 

tolerated, nonvasodilating calcium channel blockers could be administered in children older 

than 6 months. Of note, there are several reports of severe bradycardia and HF worsening in 

infants with LVOT gradients greater than 100 mm Hg, suggesting that verapamil could be 

harmful in this clinical setting.79,80

In patients who remain symptomatic despite beta-blockers, disopyramide could be a 

therapeutic option to reduce obstruction. Recently, mavacamten has shown to improve 

functional status in S-HCM, nevertheless further studies are needed to assess its role in 

nonsarcomeric variants. Surgical myectomy may be considered in patients who remain 

symptomatic for significant LVOTO despite maximal medical therapy and should be 

performed in specialized centers with high-volume experience.81,82 Orthotopic heart 

transplantation (OHT) is rarely performed in patients with NS,83 although it should 

be considered in patients with severe HF symptoms with evidence of refractoriness to 

medical therapy, intractable ventricular arrhythmias, cardiogenic shock requiring inotropes, 

and in case of severe diastolic dysfunction.84,85 Early multiorgan damage should not be 

considered a contraindication for heart transplantation, but careful evaluation of absolute 

contraindication is required, to exclude the risk of futility in case of moderate or severe end 

organ dysfunction.86 According to the Pediatric Cardiomyopathy Registry,87,88 cumulative 

waitlist mortality was significantly high in infants affected by HCM, suggesting a malignant 
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course of disease and the presence of comorbidities in critically ill infants. Poorer outcomes 

were observed in patients listed for priority in status 1 or younger than 1 year than in older 

children and patients listed in status 2.89 Therefore, OHT should be considered as early as 

possible and before clinical deterioration in patients with R-HCM.

Proof of concept that inhibition of the RAS/MAPK cascade could induce regression of 

LVH and cardiac remodeling in patients affected by RASopathies has been achieved by 

clinical evaluation of trametinib, an MEK inhibitor, in two patients with RIT1-induced NS, 

with significant regression of LVH within 4 months after initiation of treatment.70 On the 

contrary, among children with NSML with germline loss-of-function variation in PTPN11, 

the overactivation in PI3K-AKT-mTOR pathway was partially reversed with the use of 

rapamycin.48,71 The design of therapeutic trials is challenging in patients with RASopathies 

because of the rarity of disease, patient variability in disease progression and regression, 

and the heterogeneity of molecular mechanisms.90 Possible future treatment candidates 

may include farnesil transferase inhibitors, pan-RAF inhibitors, SHP2 inhibitors, and, 

because copper is required for catalytic activity of MEK kinases, chelation with ammonium 

tetrathiomolybdate.
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KEY POINTS

• RASopathies are developmental multisystemic disorders caused by germline 

mutation in genes linked to the RAS/mitogen-activated protein kinase 

pathway.

• Hypertrophic cardiomyopathy is the second most common cardiovascular 

manifestation in RASopathies and exhibits unique features such as the 

coexistence of congenital heart disease and early-onset congestive heart 

failure and accounts for significant mortality rates.

• Diagnosis of a RASopathy could be suggested by clinical clues (“red flags”), 

which could raise the suspicion of an underlying malformation syndrome and 

direct the clinician toward a specific genetic test.
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CLINICS CARE POINTS

• RASopathy should be suspected in infants (<1 year) with new-onset HCM 

and clinical red flags.

• Patients affected by RASopathies are more likely to require HF 

hospitalizations or cardiovascular interventions.

• In 5% to 10% of the cases, R-HCM is associated to a severe clinical 

presentation, particularly for infants with signs of heart failure.

• The prevalence of pulmonary stenosis (PS) ranges between ~25% and 70% in 

this subgroup of patients.

• Other CHDs commonly occur among patients with RASopathies: “secundum 

atrial septal defect”, as well as ventricular septal defect, atrioventricular canal 

defect (AVCD), mitral valve abnormalities, coronary arteries abnormalities, 

and left-sided obstructive lesions.

• In selected cases, rapamycin or MEK1 inhibitors may promote regression of 

left ventricular hypertrophy and should be considered as a therapeutic option.
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Fig. 1. 
Proposed algorithm for the diagnosis and management of RASopathy-associated HCM 

(R-HCM).
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