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Abstract

Smoothing splines have been used pervasively in nonparametric regressions. However, the 

computational burden of smoothing splines is significant when the sample size n is large. When 

the number of predictors d ≥ 2 , the computational cost for smoothing splines is at the order of 

O(n3) using the standard approach. Many methods have been developed to approximate smoothing 

spline estimators by using q basis functions instead of n ones, resulting in a computational cost 

of the order O(nq2). These methods are called the basis selection methods. Despite algorithmic 

benefits, most of the basis selection methods require the assumption that the sample is uniformly-

distributed on a hyper-cube. These methods may have deteriorating performance when such an 

assumption is not met. To overcome the obstacle, we develop an efficient algorithm that is 

adaptive to the unknown probability density function of the predictors. Theoretically, we show the 

proposed estimator has the same convergence rate as the full-basis estimator when q is roughly 

at the order of O[n2d/{(pr+1)(d +2)}] , where p ∈[1, 2] and r ≈ 4 are some constants depend on 

the type of the spline. Numerical studies on various synthetic datasets demonstrate the superior 

performance of the proposed estimator in comparison with mainstream competitors.
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1 Introduction

Smoothing spline estimators have been used pervasively in nonparametric regression models

yi = η xi + ϵi i = 1, …n, (1)

where yi ∈ ℝ is the response, xi ∈ ℝdis the predictor, η is the unknown function to be 

estimated, and ϵi i = 1
n  are i.i.d. normal random errors with zero mean and unknown 

variance σ2 (Wahba, 1990; Wang, 2011; Gu, 2013; Zhang et al., 2018a). Despite their 

impressive performance, smoothing splines suffer from a huge computational burden when 
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the sample size n is large. Although univariate smoothing splines can be computed in O(n) 

time (Reinsch, 1967), in general cases when the number of predictors d ≥ 2 , the classical 

method for calculating smoothing splines requires computing the inverse of a n × n matrix. 

The standard algorithm for calculating matrix inversion requires O(n3) computational time. 

To reduce such a huge computational cost, existing methods approximate smoothing spline 

estimators by using q ≪ n basis functions instead of n ones. These methods are called the 

basis selection methods, which can reduce the computational cost to O(nq2). Notice that 

one can further refine the order O(n3) and O(nq2) to o(n3) and o(nq2), respectively, using 

Strassen algorithm, Coppersmith–Winograd algorithm or Optimized CW-like algorithms 

(Bernstein, 2009; Golub and Van Loan, 2013). These algorithms are beyond the scope of this 

paper.

Various basis selection methods have been proposed. Luo and Wahba (1997) and Zhang et 

al. (2004) selected the basis functions through variable selection techniques. Hastie (1996) 

and Ruppert (2002) considered pseudosplines, also called P-splines, which utilize q fixed 

basis functions to approximate splines. Such fixed basis functions are also called knots and 

differ from the construction of the basis functions in smoothing splines. He et al. (2001); 

Sklar et al. (2013), and Yuan et al. (2013) considered the cases that the regression function 

has non-homogeneous smoothness across the design space. They developed data-driven 

methods to select basis functions or knots, such that the selected ones are adaptive to 

non-homogeneous smoothness of the regression function.

There also exist other strategies that aim to approximate splines or other nonparametric 

regression estimators in a computationally efficient manner through parallel computing. 

Zhang et al. (2013) and Zhang et al. (2015) studied the divide-and-conquer kernel ridge 

regression (dacKRR), and showed that it achieves minimax optimal convergence rates under 

relatively mild conditions. Wood et al. (2017) accelerated the fitting of penalized regression 

spline based generalized additive models. They showed that their method could run reliably 

and efficiently on a desktop workstation for d up to 104 and n up to 108. Xu and Wang 

(2018) and Xu et al. (2019) considered the problem of how to estimate the tuning parameter 

effectively for dacKRR. They proposed a variant of the generalized cross-validation for 

dacKRR, and showed that their proposed technique is computationally scalable for massive 

datasets and is asymptotically optimal under mild conditions. Shang and Cheng (2017) 

analyzed the theoretical properties of one-dimensional smoothing splines under the divide-

and-conquer setting. Liu et al. (2018) and Liu et al. (2020) studied the theoretical properties 

of dacKRR respecting the number of machines. They showed that there exists a specific 

bound for the number of machines in order to let the dacKRR estimators to achieve 

statistical minimax. (Shang et al., 2019) developed scalable Bayesian inference procedures 

for a general class of nonparametric regression models using distributed learning. In 

practice, it is possible to combine the aforementioned parallel-based strategies with the 

proposed method for more computational savings.

One fundamental question for basis selection methods is how to determine the size of q, 

which balances the trade-off between the computation time and the prediction accuracy. 

In this paper, we focus on the widely-used asymptotic criterion, which aims to determine 

the smallest order of q such that the q-basis estimator converges to the true function η at 
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the same rate as the full-basis estimator. Zhou and Shen (2001) proposed an estimator for 

regression spline using the spatial adaptive basis functions. This method has been applied 

in univariate cases; however, it is not clear whether it can be extended to multivariate 

cases. Xiao et al. (2013) proposed an estimator for P-spline under the scenario that the 

observations are supported on a n1 × n2 grids, and showed that the essential number of 

basis q = n1n2 /4 . One limitation of their estimator is that it can only be applied in the 

cases when the observations are supported on a two-dimensional grid. Gu and Kim (2002) 

and Ma et al. (2015a) developed the uniform basis selection method and the adaptive basis 

selection method, respectively. Both methods require q roughly be of the order O{n2/(pr+1)}, 

where p ∈[1, 2] and r ≈ 4 are some constants depend on the type of the spline. We 

provide a discussion on these two constants in Section 4. Recently, Meng et al. (2020b) 

proposed a more efficient basis selection method that only require q roughly be of the 

order O{n1/(pr+1)}, when d ≤ pr + 1 . Their method aims to select approximately uniformly-

distributed observations by utilizing space-filling designs or low-discrepancy sequences, 

resulting in a faster convergence rate compared with the uniform basis selection method.

Despite algorithmic benefits, the key to the success of most of the existing basis selection 

methods depends on the assumption that the sample is uniformly-distributed in a hyper-

cube or a hyper-rectangular. In practice, most basis selection methods may suffer from 

deteriorating performance when such an assumption is not met. We now demonstrate the 

case that the sample is not uniformly-distributed using a toy example. In this example, we 

generate two thousand data points from a banana-shape distribution on [0,1]2 , and we show 

the heat map of the true response surface y = sin{20(x1 + x2)} in the leftmost panel of Fig. 1. 

The marginal distribution of such banana-shape distribution conditional on x1 is a Gaussian 

distribution; thus, more data points are located in the middle than on the boundary. We 

compare the proposed method, denoted by HBS, with the mainstream competitors, which 

includes the uniform basis selection (Gu and Kim, 2002), the adaptive basis selection (Ma 

et al., 2015a), and the space-filling basis selection (Meng et al., 2020b). We set q = 5 × 
(2000)2/9 ≈ 27 for all basis selection methods, and we mark the selected basis functions as 

black triangles. The right four panels of Fig. 1 show the heat maps of the spline estimates 

of all four basis selection methods, respectively. We observe the uniform basis selection 

method and the adaptive basis selection method perform similarly: both select very few basis 

functions on the boundary. As a result, these two methods fail to capture the periodic pattern 

of the response surface on the boundary. In contrast, the space-filling basis selection method 

selects very few basis functions in the middle, resulting in degenerated performance in such 

an area. These observations suggest that the performance of a basis selection method may 

deteriorate significantly when the sample is not uniformly generated in a hypercube. Finally, 

we observe the proposed method is adaptive to the arbitrary distribution of the sample, 

resulting in the best estimation of the true function, compared with other methods.

In practice, the distribution of the sample is almost always unknown to practitioners. The 

basis selection method hence is highly desirable to be robust to arbitrary distribution of the 

sample. To achieve the goal, it is suggested in Chapter 4 of Gu (2013) to select the basis 

functions corresponding to roughly equally-spaced observations, even when the sample is 

not uniformly-distributed. Analogously, Eilers and Marx (2010) found that equally-spaced 

knots, which can be regarded as the basis functions here, are always preferred in practice. 
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These discoveries are consistent with the common key idea in importance sampling 

techniques, which are widely-used for variance-reduction in numerical integration (Liu, 

1996, 2008). We now briefly introduce such an idea in the following.

Let f be an integrand and g be a probability density function on Ω ⊆ ℝd. To estimate the 

integration Ωf x g x dx, one can simply generate an i.i.d. sample xi i = 1
n  from g, then 

calculate the mean of f xi i = 1
n . Instead, one can also generate an i.i.d. sample from a 

probability density function h, then calculate the mean of f xi g xi /ℎ xi i = 1
n . Kahn and 

Marshall (1953) showed when both f and g are known, the optimal h(x) in terms of variance-

reduction is proportional to | f (x) | g(x) , outside of trivial cases where f x g x dx = 0. 

The intuition is that h(x) needs to have sufficiently large value for the x such that | f (x) 

| g(x) is close to zero. Otherwise, if h(x) is extremely small for such x, the variance of 

Eg f x = f x g x /ℎ x  can be inflated to be arbitrarily large. Consequently, in the cases 

when either f or g is unknown, a safe strategy is to let h be the uniform distribution on Ω; 

thus simply avoids the scenario that h(x) is extremely small for any x ∈Ω.

Inspired by such a strategy in importance sampling techniques, we propose a novel basis 

selection method by selecting the basis functions corresponding to roughly equally-spaced 

observations. To achieve the goal, we develop an efficient algorithm that utilizes the Hilbert 

space-filling curve. The proposed algorithm can be used to select a uniformly-distributed 

subsample without knowing the probability density function of the predictors. Theoretically, 

we show the proposed estimator has the same convergence rate as the full-basis estimator. 

Furthermore, we show the order of q for the proposed method is reduced from roughly 

O(n2/(pr+1)) in the uniform basis selection method to roughly O(n2d/{(pr+1)(d+2)}). To the 

best of our knowledge, in the cases when the sample follows an arbitrary distribution, the 

proposed estimator is the one that requires the smallest order of q. Numerical studies on 

various synthetic datasets demonstrate the superior performance of the proposed estimator in 

comparison with mainstream competitors.

Although we mainly focus on smoothing splines in this paper, it is possible that the proposed 

method could also accelerate the estimation of other nonparametric regression estimators, 

includes the thin plate regression splines, kernel ridge regression and etc (Geer and van de 

Geer, 2000; Wood, 2003; Györfi et al., 2006; Wasserman, 2006; Hastie et al., 2009; Yang et 

al., 2017). Some simulation results are provided in Supplementary Material to support this 

claim.

The rest of the paper is organized as follows. We review smoothing splines and basis 

selection methods in Section 2. In Section 3, we first introduce the Hilbert curve and 

some of its properties. We then introduce our basis selection method utilizing the Hilbert 

curve. In Section 4, we present theoretical properties of the proposed method. We evaluate 

the empirical performance of the proposed method via extensive simulation studies and a 

real-world data analysis in Section 5 and Section 6, respectively. Section 7 includes some 

discussion of the paper. Proofs of the theorems are collected in Supplementary Material.
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2. Preliminaries

2.1 Background of Smoothing Splines

To estimate the unknown function η in Model (1), a common strategy is to minimize the 

penalized least squares criterion (Wahba, 1990; Wang et al., 2011; Gu, 2013; Wang et al., 

2013),

1
n i = 1

n
yi − η xi

2 + λJ η , (2)

Where J (·) is a squared semi-norm, and J (η) is called the roughness penalty. The λ here 

is the smoothing parameter, which balances the trade-off between the goodness-of-fit of the 

model and the roughness of the function η. Such λ can be selected based on the generalized 

cross-validation (GCV) criterion (Wahba and Craven, 1978). Xu and Wang (2018) and Xu et 

al. (2019) generalized the GCV criterion to the setting of distributed learning. Recently, Sun 

et al. (2021) proposed a more efficient approach for accelerating the calculation of λ.

In this paper, we focus on minimizing the objective function (2) in a reproducing kernel 

Hilbert space, resulting in a smoothing spline estimate for η. Let ℋ = η:J η < ∞  be a 

reproducing kernel Hilbert space and NJ = η:J η = 0  be the null space of J(η). Let NJ

be a m-dimensional linear subspace of ℋ and ξi i = 1
m  be a set of basis for NJ. Moreover, 

let ℋJ to denote the orthogonal complement of NJ in ℋ such that ℋ = NJ ⊕ ℋJ. It 

can be shown that ℋJ is a still a reproducing kernel Hilbert space, and we use RJ(·,·) 

to denote the reproducing kernel of ℋJ. Let Y = (y1 ,…, yn)T be the response vector, 

S ∈ ℝn × m be a matrix where the (i, j)-th element equals ξj (xi), and R ∈ ℝn × n be a 

matrix where the (i, j)-th element equals RJ (xi , xj) . According to the representer theorem 

(Wahba, 1990), the minimizer of the objective function (2) in the space ℋ takes the form 

η x = k = 1
m αkξk x + i = 1

n βiRJ xi, x . Let α = (α1,…,αm)T and β = (β1,…,βn)T be the 

coefficient vectors. With trivial modification, it can be shown that finding the minimizer of 

the objective function (2) is equivalent to solving

α, β = argmin
α ∈ ℝm, β ∈ ℝn

1
n Y−Sα − Rβ T Y−Sα − Rβ + λβTRβ . (3)

Although the solution of the minimization problem (3) has a closed form (Gu and Kim, 

2002; Ma et al., 2015a), the computational cost for calculating the solution is of the order 

O(n3) , in a general case where n ≫ m and d ≥ 2 .

2.2 Basis Selection Methods

To alleviate the computation burden for smoothing splines, various basis selection methods 

have been developed. These methods are of similar nature to the subsampling methods, 

which are widely used in large-scale data analysis (Mahoney, 2011; Drineas et al., 2012; Ma 
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et al., 2015b; Ma and Sun, 2015; Meng et al., 2017; Zhang et al., 2018b; Ai et al., 2021b; 

Xie et al., 2019; Ma et al., 2020; Yu et al., 2020; Ai et al., 2021a; Meng et al., 2020a; Zhong 

et al., 2021). We refer to Li and Meng (2020) for a recent review.

The standard basis selection method works as follows. One first use subsampling 

techniques to select a subsample xi∗ i = 1
q  from the observed sample xi i = 1

n . The 

selected subsample is then used to construct the so-called effective model space 

ℋE = NJ ⊕ span RJ xi∗, ⋅ , i = 1, …, q . Finally, the objective function (2) is minimized 

in the effective model space ℋE, and the solution thus can be written as 

ηE x = k = 1
m αkξk x + i = 1

q βiRJ xi∗, x . Analogous to Equation (3), the coefficients 

αE = (α1,…,αm)
T and βE = (β1,…,βq)T can be obtained through solving

αE, βE = argmin
αE ∈ ℝm, βE ∈ ℝq

1
n Y−SαE − R∗βE

T Y−SαE − R∗βE

+ λβE
TR ∗ ∗ βE,

(4)

where R∗ ∈ ℝn × q is a matrix where the (i, j)-th element equals RJ xi, xj∗  and R ∗ ∗ ∈ ℝq × q

is a matrix where the (i, j)-th element equals RJ xi∗, xj∗ . In general cases where m ≪ q ≪ 

n, solving the optimization problem (4) requiring only O(nq2) computation time, which is a 

significant reduction compared with O(n3).

Despite algorithmic benefits, most of the existing basis selection methods heavily rely 

on the condition that the sample is uniformly-distributed on a hyper-cube. When such a 

condition is not met, they may suffer from deteriorating performance, as shown in Fig 1. 

Recall that a common strategy in importance sampling techniques is to select a roughly 

uniformly-distributed subsample, which tends to be beneficial for numerical integration. 

Such a strategy motivates us to select the basis functions corresponding to roughly equally-

spaced observations, even when the sample is not uniformly-distributed. Intuitively, such a 

goal can be easily achieved when d = 1, in which cases one can first divide the sample 

space into equally-spaced bins, and then select an equal number of observations within each 

bin. The selected subsample is roughly uniformly-distributed when the number of bins is 

carefully determined. Unfortunately, such a naive strategy is not easily extendable to the 

cases that d ≥ 2 due to the curse-of-dimensionality.

To overcome the barrier, a natural strategy is to find a continuous mapping F :Ω ℝ that 

preserves local structures, where Ω ⊂ ℝd is a bounded design space. In other words, we aim 

to find a mapping F such that, for any xi , xj ∈Ω, i, j ∈{1,…, n}, a small value of || xi = xj || is 

associated with a small value of || F(xi) = F(xj) || , where ||·|| represents the Euclidean norm. 

Loosely speaking, let F xi∗ i = 1
q  be a roughly uniformly-distributed subset selected from 

F xi i = 1
n , the subsample xi∗ i = 1

q  thus tends to be uniformly-distributed in Ω. One family 

of the mappings that approximately achieve this goal is the family of space-filling curves, 

which include the Hilbert curve, the Peano curve, and the Z-order curve (Sagan, 2012). We 
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develop a novel basis selection method utilizing space-filling curves, as detailed in the next 

section.

3 Basis Selection using Space-Filling Curves

3.1 Hilbert Curves

Space-filling curves have long been studied in mathematics and have become important 

computational tools since the 1980s (Bader, 2012). Nowadays, space-filling curves have 

been widely used for computer graphics, approximately nearest neighbor searching, solving 

partial differential equations, and so on (Zumbusch, 2012). We now briefly introduce the 

Hilbert curve, a representative of space-filling curves, and some of its properties that we 

need. The formal definition of the Hilbert curve is relegated to Supplementary Material. 

Other space-filling curves enjoy similar properties, and we refer to Sagan (2012); Zumbusch 

(2012) for more details.

We first introduce a sequence of the so-called Hilbert space-filling curves, denoted by 

Hk k = 1
∞ . Intuitively, for each k, the k-th Hilbert space-filling curve Hk is a bijection 

between a partition of [0,1] and a partition of [0,1]d . In particular, the curve Hk partitions 

both [0,1] and [0,1]d into (2k)d blocks, respectively, and construct a bijection between these 

blocks. Figure 2 illustrates how a partition of [0,1] is mapped to a partition of [0,1]2 using 

H1, H2, and H3, respectively. The Hilbert curve is defined as H x = lim
k ∞

Hk x , which 

becomes a mapping from [0,1] to [0,1]d . It is well-known that the Hilbert curve H enjoys 

the locality-preserving property (Zumbusch, 2012). In particular, for any x, y ∈[0,1], one has

H x − H y ≤ 2 d + 3 x − y 1/d . (5)

Inequality (5) indicates a small value of | x – y | is associated with a small value of || H (x) – 

H (y) || , despite the fact that the converse can’t always be true. Inequality (5) inspired us to 

select approximately equally-spaced observations using the Hilbert curve H. In practice, Hk 

is used as a surrogate of H due to the computational concern.

3.2 Hilbert Basis Selection Method

We develop a novel basis selection method utilizing Hilbert space-filling curves, called the 

Hilbert basis selection method. The proposed method works as follows. We first scale the 

sample xi i = 1
n ∈ ℝd to [0,1]d as a pre-processing step. Recall that the Hilbert space-filling 

curve Hk partitions both [0,1] and [0,1]d into 2kd blocks, denoted by c′j j = 1
2dk

, and cj j = 1
2dk

, 

respectively, and construct a bijection between these blocks. For any data point x ∈[0,1]d , 

we assign x to its corresponding block cj in [0,1]d , j ∈{1,…, 2kd } , then map x to the 

center of the block cj′ = Hk
−1 cj . This is to say, all the data points that belong to the same 

block are mapped to the same point in [0,1] . Next, given a positive integer C, we draw the 

histogram for the mapped data points with C bins. Let C be the number of non-empty bins 

and q be the subsample size. We then randomly select roughly q/C  data points from each 
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non-empty bin. The subsample corresponding to the selected data points is used to construct 

the effective subspace ℋE. Finally, we calculate the smoothing spline estimator ηE in such a 

subspace. The algorithm is summarized below.

Algorithm   1 Hilbert basis selection method

Step 1 . The sample xi i = 1
n is first scaled to 0, 1 d .

Step 2 . Calculate the bijection between c′j j = 1
2dk

and cj j = 1
2dk

using the Hilbert
space‐filling
curve Hk .
Step 3 . For each data point xi, i = 1, …, n, suppose xi belongs to the block cj,

map xi to the center of the block cj′ = Hk
−1 cj .

Step 4 . Draw a histogram for the mapped points with C bins;
let C be the number of non‐empty bins .
Step 5 . Randomly select roughly q/C number of data points from each non‐
empty bin;

let xi∗ i = 1
q to denote the selected ones .

Step 6 . Minimize the objective function 2 over the effective subspace
ℋE = NJ ⊕ span RJ xi∗, ⋅ , i = 1, …, q .

Figure 3 gives an illustration of Algorithm 1, in which all data points are shown in Fig. 3(a). 

We set k = d = 2 in Algorithm 1, resulting in 22×2 = 16 blocks in Fig. 3(b), denoted by 

c1,…,c16 , respectively. All the data points are then mapped to the center of cj′s, j = 1,…,16 , 

as shown in Fig. 3(c). Let the subsample size q = 8. We then draw C = 8 bins for the 

histogram in Fig. 3(c), resulting in C = 8 non-empty bins. We then randomly select C /q = 1
data point from each bin. The selected data points are labeled as black triangles in both 

Fig. 3(c) and Fig. 3(d). Note that each bin in Fig. 3(c) is associated with a “meta-block”, 

as illustrated in Fig. 3(d). As a result, when C = q, Algorithm 1 ensures none of the two 

selected data points lie in the same meta-block, and thus the selected subsample tend to be 

equally-spaced.

The choice of k is a key to Algorithm 1, while the performance of Algorithm 1 is not 

sensitive to the choice of k, as long as k is not too small. The reasons are as follows. Recall 

that for dimension d, the curve Hk0 with respect to (w.r.t.) a positive integer k0 partitions 

the interval [0,1] into 2dk0 blocks, denoted by c′j j = 1
2dk0

. One nice property of the Hilbert 

space-filling curve is that, suppose one data point x is mapped into a block using the curve 

Hk0, then for any k ≥ k0 , the curve Hk always map x into the same block, despite the fact 

that its position within the block may vary. Note that Algorithm 1 draws a histogram for the 

mapped data points with C bins and randomly selects several data points from each of the 

non-empty bins. As a result, when C is properly chosen and is fixed, the value of k ≥ k0 does 

not affect such a histogram, and thus does not affect the result of Algorithm 1.
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The computational cost for Algorithm 1 mainly resides in Step 2 and Step 6. It can be shown 

that the computational cost for Step 2 is of the order O(n), which is negligible compared to 

the computational cost for Step 5, which is of the order O(nq2) . In sum, analogous to other 

basis selection methods, the overall computational cost for Algorithm 1 is at the order of 

O(nq2) .

4 Convergence Rates for Function Estimation

Let fx be the probability density function of the predictors defined on Ω. We require Ω to 

be bounded, and without loss of generality, we assume Ω ⊆ 0, 1 d. Let V g = Ωg2fXdx. A 

function f(x) defined on Ω is said to be Lipschitz continuous, if for any x, y ∈Ω, there exist 

a constant M such that | f (x) – f (y) |≤ M || x – y || , where ||·|| is the Euclidean norm. We 

introduce some essential regularity conditions in the following.

• Condition 1. The function V is completely continuous with respect to J;

• Condition 2. For some β > 0 and r > 1, ρv > βvr for sufficiently large ν;

• Condition 3. For all μ and v, var{ϕv (x)ϕµ (x)} ≤ B , where ϕv, ϕµ are the 

eigenfunctions associated with V and J in ℋ, B denotes a positive constant.

• Condition 4. For all μ and v, ϕµ (x)ϕv (x) ∈L2 (Ω) , and is Lipschitz continuous.

• Condition 5. Assume that max qni /n i = 1
C = Op 1 , where ni is the number of 

observations in the ith bin.

• Condition 6. As n → ∞,q1+2/d = O(n) .

Condition 1 implies that there exist a sequence of eigenfunctions ϕv ∈ ℋ and the associated 

sequence of eigenvalues ρv ↑ ∞ satisfying V (ϕv,ϕµ) = δvµ and J (ϕv,ϕµ)) = ρvδvµ, where 

δvµ is the Kronecker delta. The growth rate of ρv is closely related to the convergence rate 

of smoothing spline estimates (Gu, 2013). Condition 1 can be verified under some special 

cases when the eigenfunctions are available in explicit forms. Consider J η = 0
1η″dx, where 

η is a periodic function on [0,1] . The eigenfunctions ϕv s are the sine and cosine functions 

in such a case, and thus Condition 1 holds naturally. We refer to Section 9.1 of Gu (2013) 

for more details on the construction of the eigenfunctions. In general, Conditions 1–3 are 

widely-used in the asymptotic analysis for smoothing spline estimates, and we refer to 

Gu (2013); Ma et al. (2015a) for more technical discussion of these conditions. Condition 

4 is satisfied naturally for various choices of eigenfunctions. Condition 5 naturally holds 

for the regular sampling in [0,1]d . Moreover, Condition 5 prevents some extreme cases 

of the probability density function fx. For example, when the one-dimensional data points 

Hk
−1 xi i = 1

n
 follow the Dirac delta function, one has max qni /n i = 1

C = qn/n = q, which is 

in conflict with Condition 5. Finally, Condition 6 naturally holds when the number of basis q 
is not too large. For example, when d ≥ 2 , Condition 6 holds when q = O(n1/2).

Recall that xj∗ j = 1
q  is a subsample selected by the proposed algorithm. Moreover, C and 

C are the number of bins and the number of non-empty bins in Step 4 of Algorithm 
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1, respectively. For brevity, throughout this section, we assume only one data point is 

selected from each non-empty bin; that is, we assume q = C. The extensions to more general 

cases where q/C = O 1  are straightforward. We let nj to denote the number of data points 

within the bin that xj∗ lies in. Consider the estimator j = 1
q nj/n ϕν xj∗ ϕμ xj∗ . Intuitively, 

such an estimator can be regarded as the mean estimator of the stratified sampling. This 

is because, for j = 1, …, q nj/n ϕν xj∗ ϕμ xj∗  can be regarded as the sample mean of the 

jth strata. The following lemma gives the convergence rate of the selected subsample in 

terms of numerical integration. All the proofs throughout this section are relegated to the 

Supplementary Material.

Lemma 4.1. Under Conditions 4–6, for all μ and ν, j = 1
q nj/n ϕν xj∗ ϕμ xj∗  is an 

asymptotically unbiased estimate for Ωϕν x ϕμ x fX x dx. Furthermore, when Ω⊆[0,1]dwe 

have

Ωϕν x ϕμ x fX x dx −
j = 1

q
nj/n ϕν xj∗ ϕμ xj∗

2
= Op q−1 − 2/d .

Lemma 4.1 shows the advantage of xi∗ i = 1
q  over a randomly selected subsample xi

+
i = 1
q

. 

To be specific, for all μ and v, as a direct consequence of Condition 3, which assumes that 

the variance of ϕv (x)ϕµ(x) is finite, we have

E Ωϕν x ϕμ x fX x dx − 1
q j = 1

q
ϕν xj

+ ϕμ xj
+

2
= O q−1 .

Consequently, Lemma 4.1 suggests that one can approximate the integration 

Ωϕν x ϕμ x fX x dx more effectively, by calculating j = 1
q nj/n ϕν xj∗ ϕμ xj∗  instead of 

j = 1
q ϕν xj

+ ϕμ xj
+ /q. Lemma 1 paves the way for our main theorem below.

Theorem 4.1. Suppose iρi
pV η0, ϕi

2 < ∞ for some p ∈[1, 2] . Under Conditions 1–6, as λ 

→ 0 and q1+2/d λ2/r → ∞, we have V + λJ ηE − η0 = Op n−1λ−1/r + λp . In particular, if 

λ ≍ n−r/ pr + 1 , the estimator achieves the optimal convergence rate

V + λJ ηE − η0 = Op n−pr/ pr + 1 .

It is shown in Theorem 9.17 of Gu (2013) that the full-basis smoothing spline estimator η
has the convergence rate V + λJ η − η0 = Op n−pr/ pr + 1 . Theorem 1 thus states that the 

proposed estimator ηE achieves the identical convergence rate as the full-basis estimator. 

In particular, the convergence rate of the full-basis estimator gives a lower bound for all 

the estimators that are based on a subset of the basis functions. According to Gu and Kim 
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(2002); Ma et al. (2015a), and Meng et al. (2020b), all these proposed estimators have the 

sample convergence rate as the full-basis estimator η, under different conditions.

We emphasize that the goal of Theorem 1 is not to demonstrate that the proposed estimator 

enjoys a more superior convergence rate. Instead, Theorem 1 indicates that to achieve such 

a convergence rate, the proposed estimator requires a relatively smaller q, compared with 

other estimators. In particular, both the uniform basis selection method (Gu and Kim, 2002) 

and the adaptive basis selection method (Ma et al., 2015a) require q = O n2/ pr + 1 + δ

for an arbitrary small positive number δ. While for the proposed method, combining the 

condition q1 + 2/dλ2/r ∞ and λ ≍ n−r/ pr + 1  in Theorem 1 yields, an essential choice of 

q should satisfy q = O n2d/ pr + 1 d + 2 + δ , which is a smaller order of O{n2/(pr+1)+δ}. 

Although the estimator proposed in Meng et al. (2020b) only require q = O{n(1+δ)/(pr+1)}, 

their work assume the sample is uniformly generated from a hypercube, and such an 

assumption is not always achievable in practice. In the cases when the sample follows an 

arbitrary distribution, to the best of our knowledge, the proposed estimator is the one that 

requires the smallest order of q.

Consider the parameter p and q in Theorem 1. It is known that q is associated with the type 

of the spline, and p is closely associated with η0. Both parameters have an impact on the 

convergence rate of the proposed estimator. According to Gu (2013), a common strategy is 

to set p ∈[1, 2] and r ∈[4 – δ, 4] for cubic smoothing splines and tensor-product splines, 

in which case the size of q roughly lies in the interval (O(n2d/{9(d+2)}),O(n2d/{5(d+2)})) . We 

refer to Gu (2013) for more technical discussion on how to select p and r in practice.

5 Simulation Results

To show the effectiveness of the proposed smoothing spline estimator, we compare it with 

three mainstream competitors in terms of prediction accuracy. The competitors include the 

uniform basis selection method (Gu and Kim, 2002), the adaptive basis selection method 

(Ma et al., 2015a, 2017), and the space-filling basis selection method (Meng et al., 2020b). 

All the methods are implemented in R, and all the parameters are set as default.

We measure the performance for each method using the prediction mean squared error 

(MSE), defined as i = 1
n ηE ti − η0 ti 2 /n, where ti i = 1

n  is an independent testing 

dataset generate from the same probability density function as the training sample. Standard 

errors are calculated through a hundred replicates. In each replicate, we generate a synthetic 

training sample with n = 2000 from each of the following four probability density functions, 

and the sample is then scaled to [0,1]d,

• D1: Uniform distribution on [0,1]d;

• D2: A mixture t-distribution (T1,…,Td) , where Ti i = 1
d  are independently 

generated from t(10, −5) / 2 + t(10,5) / 2;

• D3: A multivariate Gaussian distribution N 0, Σ , where Σij = 0.9 i − j ,

i, j = 1, …, d .
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• D4: A banana-shape distribution, which is generated by 

Z1, Z2 +
Z1

2

1.2 , …, Zd +
Z1

2

1.2 , where (Z1, Z2,…Zd) is generated from the standard 

multivariate Gaussian distribution.

We consider four different regression functions, which are analogous to the functions 

considered in (Wood, 2003; Lin and Zhang, 2006):

• F1: A 2-d function sin(10 / (x1 + x2 + 0.15));

• F2: A 2-d function h1 (x1, x2) + h2 (x1, x2) , where σ1 = 0.1, σ2 = 0.2 , and

ℎ1 t1, t2 = 0.75/ πσ1σ2 × exp − t1 − 0.2 2/σ1
2 − t2 − 0.3 2/σ2

2 ,

ℎ2 t1, t2 = 0.75/ πσ1σ2 × exp − t1 − 0.7 2/σ1
2 − t2 − 0.5 2/σ2

2 ;

• F3: A 3-d function sin π x1 + x2 + x3 /3 − x1 − x2
2;

• F4: A 4-d function

x1 + 2x2 − 1 2/2 + sin 10πx3 / 2 − sin 10πx3 /3 +

0.1sin 2πx4 + 0.2cos 4πx4 + 0.3sin 6πx4 2 + 0.4cos 8πx4 3 + 0.5sin 10πx4 2 /4 .

The signal-to-noise ratio, defined as var{η(X)}/ σ2 , is set to be two. We find the results 

show similar patterns with a large range of signal-noise-ratios. We set the number of basis q 
to be {20, 40, 60,80,100} . To combat the curse-of-dimensionality, we fit smoothing spline 

analysis of variance models with all main effects and two-way interactions.

Figure 4 shows the log prediction MSE versus different q under various settings. Each row 

represents a particular data distribution D1–D4, and each column represents a particular 

regression function F1–F4. We use solid lines to denote the proposed Hilbert basis selection 

method (HBS), dash-dotted lines to denote the adaptive basis selection method (ABS), 

dashed lines to denote the space-filling basis selection method (SBS), and dotted lines to 

denote the uniform basis selection method (UBS). The standard error bars are obtained from 

one hundred replicates. The results for the full-basis estimator is omitted here due to its high 

computation cost.

Three significant observations can be made from Fig. 4. We first observe that all the methods 

perform similarly, while the uniform basis selection method performs slightly worse, in 

the first row of Fig. 4, in which cases the observations are uniformly-distributed in a 

hypercube. Such an observation is consistent with the simulation results in Meng et al. 

(2020b), which suggests both the space-filling basis selection method and the adaptive basis 

selection method consistently outperform the uniform basis selection method. Nevertheless, 

in the lower three rows of Fig. 4, we observe the uniform basis selection method yields 
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decent performance occasionally. Such an observation suggests when the predictors do not 

follow the uniform distribution on a hypercube, none of the four basis selection methods 

consistently dominates the others.

Second, the MSE for the proposed estimator decreases faster than the other estimators as 

q increase. This observation is consistent with Theorem 1, which suggests the proposed 

estimator requires smaller q to achieve the identical convergence rate as the full-basis 

estimator.

Third, the proposed estimator may suffer from deteriorating performance when q is too 

small. We attributed such an observation to the fact that, when q is small, the proposed 

method tends to select a large proportion of basis functions corresponding to the data points 

that are close to the boundary. These basis functions may not have adequate benefits in terms 

of prediction. As q increases, the proportion of such basis functions decreases, and thus 

the proposed estimator achieves better performance. It is suggested in Gu (2014) to let q ≥ 

30 for robust prediction in practice. According to such a suggestion and consider the cases 

when q ≥ 30 in Fig 4, we observe the proposed estimator outperforms the competitors in 

most of the settings.

6 Real data example

In petroleum refinery, a debutanizer column is used to separate butane from gasoline. 

Estimating the butane concentration in the bottom product of the debutanizer column is 

essential for improving the performance of the refining process. Of interest is to predict 

the butane concentration using the conditions of debutanizer columns and other related 

information, which are measured by the soft sensors in the petroleum refinery process. We 

consider a dataset with n = 2, 395 and seven predictor variables, includes temperature, 

pressure, flow, and so on 1. More details of this dataset can be found in Fortuna et al. (2007). 

The sample is first scaled to [0,1]7 as a preprocessing step. Figure 5 shows histograms for 

each of the predictors in diagonal panels and scatter plots for each pair of the predictors 

in off-diagonal panels. We observe the sample in this dataset is extremely non-uniformly-

distributed. The basis functions selected by the proposed Hilbert basis selection method and 

the uniform basis selection method are marked as black dots in the lower diagonal panels 

and the upper panels, respectively. Compare with the uniform basis selection method, we 

observe the proposed method selects the basis functions corresponding to the observations 

that are more equally-spaced.

We fitted the cubic tensor product smoothing spline analysis of variance model to the 

dataset, and we considered two different model settings,

• M1: additive model,

yi = ηØ +
j = 1

7
ηj xij + ϵi, i = 1, …, n;

1The dataset can be downloaded from https://home.isr.uc.pt/fasouza/datasets.html
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• M2: by the preliminary model diagnostics (Gu, 2004), we considered the 

following functional ANOVA decomposition,

yi = ηØ +
j = 1

7
ηj xij + η1, 3 xi1, xi3 + η1, 5 xi1, xi5 + η1, 6 xi1, xi6

+ η3, 5 xi3, xi5 + ϵi, i = 1, …, n .

Here, the response yi is the butane concentration of i-th observation, xij is the value of 

the j-th predictor of the i-th observation, ηø is a constant function, ηj j = 1
7  are main 

effect functions, η1,3, η1,5, η1,6, η3,5 are two-way interaction functions of corresponding 

predictors, and ϵi’s are i.i.d. normal errors with zero mean and unknown variance. We 

replicated the experiment one hundred times. To show the effectiveness of the proposed 

estimator, we compared it with the other three mainstream competitors, as mentioned in the 

previous section, in terms of the prediction MSE calculated on a holdout testing set. Figures 

6 shows the log prediction MSE versus different q under two different model settings. 

Vertical bars represent the standard errors obtained from a hundred replicates. The horizontal 

lines represent the performance for the full sample estimator. We observe that the proposed 

estimator, labeled as solid lines, yields the second-best result for the smallest q considered 

here and the best result for other cases. We attribute such an observation to the fact that 

the proposed method selects the basis functions corresponding to roughly equally-spaced 

observations, resulting in a more effective estimation of the underlying regression function.

7. Discussion

In this paper, we proposed a novel basis selection method for smoothing splines 

approximation. Unlike the existing basis selection approaches, which mainly focus on 

the setting that the sample is uniformly distributed on a unit hypercube, the proposed 

method aims to provide an effective estimation that is adaptive to an arbitrary probability 

distribution of the sample. Motivated by importance sampling, we achieved the goal by 

carefully selecting a set of approximately equally-spaced observations, even when the 

sample is not uniformly-distributed. We proposed an efficient algorithm for identifying such 

observations by utilizing the Hilbert space-filling curve. The proposed estimator has the 

same convergence rate as the full-basis estimator when the number of basis q is roughly 

at the order of O[n2d/{(pr+1)(d+2)}] . The superior performance of HBS over mainstream 

competitors was justified by various numerical experiments.

Our work is related to Meng et al. (2020b). In particular, Meng et al. (2020b) utilized 

space-filling design techniques, or low-discrepancy sequences, to identify an approximately 

equally-spaced subsample from “uniformly-distributed” sample, resulting in an efficient 

approximation. Our work extended their work to the non-uniform distribution setting and 

theoretically showed that the basis functions corresponding to an equally-spaced subsample 

still benefits the smoothing splines approximation.

The proposed method has the penitential to be applied to many large-sample applications, 

including but not limited to Gaussian process regression, kernel ridge regression, and low-
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rank approximation of matrices. This work may speed up these techniques with theoretical 

guarantees. Some additional simulation results are provided in Supplementary Material.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The leftmost panel shows the heat map for the true function. The heat maps for the spline 

estimates based on the uniform basis selection method (UBS), the adaptive basis selection 

method (ABS), the space-filling basis selection method (SBS), and the proposed Hilbert 

basis selection method (HBS) are presented in the other panels, respectively. Black triangles 

are the selected basis functions. We observe that the proposed method outperforms the other 

methods in approximating the true function.
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Fig. 2. 
Illustration for the first three stages of the Hilbert’s space filling curves when d = 2. From 

left to right, each panel shows H1, H2, and H3, respectively.
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Fig. 3. 
Illustration for Algorithm 1.
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Fig. 4. 
Simulation under different regression functions (from left to right) and different probability 

density functions for the predictors (from upper to lower). The prediction errors are plotted 

versus different q. Vertical bars represent the standard errors obtained from a hundred 

replicates.
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Fig. 5. 
The diagonal panels show histograms for each of the predictors. The off-diagonal panels 

show the scatter plots corresponding to each pair of the predictors. The bases selected by the 

proposed method and the uniform basis selection method are shown in the lower diagonal 

panels and the upper diagonal panels, respectively. The black dots are the observations 

corresponding to the selected basis functions when q = 40.

Meng et al. Page 22

J Comput Graph Stat. Author manuscript; available in PMC 2023 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
The left panel shows the log prediction MSE versus different q under model setting M1 

for the debutanizer column dataset. The right panel shows the log prediction MSE versus 

different q under model setting M2. The horizontal lines represent the performance for the 

full sample estimator.
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