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Immunocyte infiltration and cytotoxicity play critical roles in both inflammation and
immunotherapy. However, current cancer immunotherapy screening methods overlook
the capacity of the T cells to penetrate the tumor stroma, thereby significantly limiting
the development of effective treatments for solid tumors. Here, we present an auto-
mated high-throughput microfluidic platform for simultaneous tracking of the dynam-
ics of T cell infiltration and cytotoxicity within the 3D tumor cultures with a tunable
stromal makeup. By recourse to a clinical tumor-infiltrating lymphocyte (TIL) score
analyzer, which is based on a clinical data-driven deep learning method, our platform
can evaluate the efficacy of each treatment based on the scoring of T cell infiltration pat-
terns. By screening a drug library using this technology, we identified an epigenetic
drug (lysine-specific histone demethylase 1 inhibitor, LSD1i) that effectively promoted
T cell tumor infiltration and enhanced treatment efficacy in combination with an
immune checkpoint inhibitor (anti-PD1) in vivo. We demonstrated an automated sys-
tem and strategy for screening immunocyte-solid tumor interactions, enabling the dis-
covery of immuno- and combination therapies.
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An effective immune system is critically important for fighting against cancer. How-
ever, immune evasion is one of the key hallmarks of cancer. During tumor develop-
ment, lymphocytes infiltrate the tumor and inhibit its progression. Meanwhile, tumors
evolve to evade such immune surveillance by downregulating antigen presentation,
secreting extracellular matrix (ECM) to physically limit lymphocyte infiltration as well
as chemokine/cytokines to repel lymphocytes. (1) High densities of tumor-infiltrating
lymphocytes (TILs) correlate with improved prognosis in many cancer types, including
breast, colorectal, ovarian, skin, and pancreatic cancers (2–4). In addition to TIL den-
sity, clinical evidence shows that the type, infiltration depth, clustering index, and acti-
vation status of TILs inside solid tumors are closely associated with disease progression
and treatment outcomes (5). Recent advances in cancer immunotherapy, such as
immune checkpoint inhibitors (ICIs) that remove the “brakes” on T cell–mediated
antitumor immunity (6), point to potentially better outcomes in solid tumor treat-
ment. However, the responses of cancer patients to treatment protocols that entail ICI
drugs vary greatly, with overall response rates ranging from <10% to ∼40% for solid
tumors (7). The ineffectiveness of ICI therapy can be largely attributed to limited TIL
infiltration (8). However, TIL infiltration behavior has not been thoroughly investi-
gated and exploited for cancer immunotherapy discovery. Thus, methods based on TIL
behavior may become important tools for the discovery of effective immunotherapies
and/or combination therapies that not only improve T cell cytotoxicity but also simul-
taneously promote T cell tumor infiltration.
To date, efforts to discover cancer immunotherapies have been performed mainly

using in vitro two-dimensional (2D) cell cultures and/or in vivo animal models. How-
ever, these models have some distinct limitations. The 2D cultures fail to recapitulate
key physiological aspects of tumors, such as the tumors’ stromal physical barrier and
hypoxic cores (9). Animal models are limited by their scalability and are time-
consuming and labor intensive (10). The 2D culture-based screening assays often rely
on easily obtainable readouts, such as cytotoxicity, activation status, and cytokine pro-
files of T cells, while ignoring the more complex dynamics of T cell tumor infiltration
behavior. In contrast, 3D tumor cultures, such as organoids/spheroids, can be
constructed to include key physiological aspects of an in vivo tumor, including tumor
genotypes and phenotypes, cell–cell contacts, ECM barriers, and hypoxic cores (11, 12),
thereby benefitting from their potential for elucidating dynamic immunocyte–tumor
interactions (13). For example, a large number of colon tumor organoids cultured in a
thick basement membrane matrix such as Matrigel were used to isolate tumor-reactive
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T cells based on the cytotoxicity and proliferation of T cells
(14). However, challenges in 3D tumor culturing, such as
difficulties in generating scalable, uniformly sized, and standard-
ized organoids/spheroids, as well as obstruction of free immuno-
cyte infiltration and interaction by thick ECM embedding, have
limited utility for high-throughput T cell behavior–based pheno-
typic screening (15). Furthermore, manual acquisition and analysis
of the vast amount of data generated from 3D cultures pose bar-
riers to establishing efficient and scalable high-throughput screens.
Recently, automated data analysis approaches based on deep learn-
ing methods have improved the consistency and accuracy of ana-
lyzing TIL scores in pathological slides (16–18). Despite their
promise, deep learning methods have not yet been used for TIL
pattern analysis in in vitro models. Thus, the development of
high-throughput, standardized, and automated technologies incor-
porating deep learning for automated TIL behavior analysis would
pave the way for further advances in immunotherapy screening.
Here, we report a high-throughput, automated system for

T cell behavior (e.g., tumor infiltration)–based immunotherapy
discovery. This constitutes a unique demonstration of cancer
immunotherapy screening that can simultaneously interrogate
both T cell infiltration behavior and cytotoxicity. Through a rela-
tively simple yet effective pillar-lattice-array design, our platform
provides scalable, standardized, and tunable “core/tumor-shell/
stroma” spheroids for robust drug discovery applications. In addi-
tion, we demonstrate a strategy using a deep learning algorithm
to instruct drug prioritization from real-world features and clini-
cal and pathological datasets. As a proof of concept, we used our
intelligent microfluidic system to screen a library of 141 small-
molecule epigenetic modulators as potential drug candidates.
Among these epigenetic modulators, we have identified a lead
compound, GSK-LSD1, which effectively promotes T cell infil-
tration, and consequently promotes deep tumor cytotoxicity once
combined with anti-programmed cell death protein 1 (PD1)
treatment. Furthermore, we validated the efficacy of this com-
pound in a B16F10 mouse model in vivo.

Results

Integration of Automated Screening System. Our intelligent
microfluidic screening system incorporates two components (Fig.
1A). (1) A microfluidic immune-tumor interaction platform:
Through the introduction of pillar-lattice-arrays into well plates,
our platform comprises 7,680 uniformly sized heterotypic tumor
spheroids per well plate. Each spheroid consists of a uniform
tumor core and stromal outer layer, representing the essential fea-
tures of a primary tumor. Both the size of the core and the thick-
ness of the outer layer are tunable. With the Matrigel-free culture
and pillar immobilization of spheroids, our platform enables per-
fusion, free interaction, and time-lapse tracking of immunocyte
dynamic behaviors within a large number of spheroids under dif-
ferent treatment conditions (e.g., 96, 384, or 1,536 conditions per
run, depending on the choice of well plates), mitigating technical
inconsistencies of long-term coculturing and imaging, such as
fusion, size variation, and motility of spheroids. (2) A deep
learning–based TIL score analyzer: To process the vast amount of
T cell behavior data from our microfluidic platform, we incorpo-
rated automated image acquisition and image-based screening.
The deep learning TIL scoring algorithm is trained using clinical
data, including digital pathology images and survival data from
411 tumors from 397 melanoma patients in The Cancer Genome
Atlas (TCGA) database, and our TIL score analyzer then automat-
ically generates the T cell infiltration scores that correspond to
TIL distribution patterns learned from the images of the high-
survival (>3 y) or the low-survival patient group, respectively. We
integrated our microfluidic platform with the deep learning–based
TIL score analyzer to produce an automated screening system to
determine immunocyte behaviors and enable screening for immu-
notherapeutic drugs in a high-throughput and automated manner.

Formation of Scalable Tumor-Stroma Spheroid Array. We fabri-
cated scalable uniformly sized 3D core/tumor-shell/stroma sphe-
roids (Fig. 1B and SI Appendix, Fig. S1A) in the pillar-lattice-arrays

Fig. 1. Integration of automated screening platform. (A) Schematics of the automated screening platform for cancer immunotherapy screening, consisting
of (i) a microfluidic immune-tumor interaction platform for high-throughput tracking of T cell dynamic behaviors and (ii) a deep learning–based TIL score
analyzer for image processing and scoring T cell infiltration patterns that correspond to TIL patterns found in the images of high-survival (>3 y) or low-
survival patient groups. (B) Scalable microfluidic fabrication of core/tumor-shell/stroma spheroids (tumor core: blue, CAF; shell: yellow). (C) Spheroid growth
within pillar-lattice-arrays (arrow indicating CAF seeding after tumor core formation), and size distribution of tumor-stroma spheroids at day 4 of spheroid
formation. (Scale bar in B: 500 μm.)
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within a well plate using a two-step cell-seeding procedure.
Initially, tumor cell suspensions (labeled with membrane DiO
green dye, pseudocolored as blue) were seeded into the pillar-
lattice-arrays to self-assemble into tumor spheroid “cores” within
12 h. The spheroid formation was driven by the geometry of the
hydrophobic pillar lattices, which repel the cells. After 1 d of cul-
ture, cancer-associated fibroblasts (CAFs, labeled with membrane
Dil red dye) isolated from orthotopic primary tumors were
seeded on top of the tumor “cores” to form heterotypic sphe-
roids. A large number of spheroids (7,680) per plate can be
formed within pillar-lattice-arrays within one well; they reached
their maximum diameter on day 3 and were arrested at uniform
sizes (160 ± 9.3 μm) by the pillar-lattice-array design (Fig. 1C).
These immobilized uniform-sized spheroids maintained high via-
bility over prolonged culture (SI Appendix, Fig. S1B). This
method avoids the risks of spheroids merging or moving in the
well during medium changes, which is a common problem with
other spheroid fabrication and culture methods, thus highlight-
ing the advantage of our design for high-throughput screening
applications. Notably, the 3D core/tumor-shell/stroma spheroids
were fabricated to recapitulate tumor immunosuppressive archi-
tectures and microenvironments in that CAFs secrete ECM to
physically restrict T cell infiltration and secrete chemokines to
repel T cells (19). We also demonstrated the fine-tuning of
dimension and composition of heterotypic spheroids by controlling
the ratio and initial seeding density of tumor cells and CAFs (SI
Appendix, Fig. S1C). In addition, we confirmed that tumor-stroma
spheroids proliferate faster compared to regular tumor spheroids
(SI Appendix, Fig. S1D), indicating that the CAFs retained their
in vivo function to promote tumor cell proliferation.

Tracking Dynamic T Cell Behavior within 3D Cultures. Through
time-lapse imaging, our microfluidic platform tracks the dynamic

interactions of T cells with tumor-stroma spheroids at a single-
cell resolution while facilitating high throughput. To visualize
tumor antigen-specific T cell interactions with the tumors, we
subjected the tumor core consisting of ovalbumin (OVA257–264)
presenting tumor cells with a shell of CAFs to OVA antigen-
specific T cells (OT-I cells). Using our microfluidic platform and
fluorescence-labeled cells (T cells labeled with blue CMAC cell
tracker dye, tumor cells labeled with DiO green dye, CAFs
labeled with DiL red dye, and dead cells detected via the SYTOX
deep-red dye), we observed and quantified the dynamic migration
and killing behaviors of T cells within the tumor spheroids. We
defined the infiltration depth (or killing depth) of a T cell as the
radial distance between the T cell and the tumor spheroid surface
(Fig. 2A). We investigated the impact of antigen (OVA) presenta-
tion on tumor cores consisting of UN-KC6141 cells, as well as
the stromal layer of shells/CAFs, on the dynamics of immune-
tumor interactions (Fig. 2 B and C and SI Appendix, Discussion
S1). We found that the CAF shells inhibited both T cell infiltra-
tion and cytotoxicity (details in SI Appendix, Fig. S2), and that
the presentation of OVA antigen of tumor cores enhanced T cell
cytotoxicity (details in SI Appendix, Fig. S3). By using this engi-
neering platform and cell system, we simultaneously tracked the
dynamic processes of the tumor infiltration and cytotoxicity of an
individual T cell. We further observed that a T cell swarmed
toward a tumor spheroid at high speed, infiltrated the spheroid
with a slower speed, performed killing of a tumor cell, and then
continued to move at elevated speed to locate the next target
tumor cell (Fig. 2 D and E and Movie S1). Moreover, by
comparing the behaviors of cytotoxic and noncytotoxic T cells
(n = 30), we found that the cytotoxic T cells had lower median
speeds as well as fewer straight tracks compared to noncytotoxic
T cells (SI Appendix, Fig. S1E), which are consistent with other
reports in in vivo models (20).

Fig. 2. Tracking dynamics of T cell tumor infiltration and cytotoxicity. (A) Schematics of dynamic interactions between T cells and a tumor-stroma spheroid. T cell infil-
tration depth is defined as the radial distance from the cell to the spheroid surface, and infiltration (or killing) depth is positive (or negative) once the T cell has infil-
trated into (or is outside) the spheroid. (B) Dependence of T cell infiltration on the antigen presentation of the tumor core (Antigen (+)) and the presence of a
stroma/CAF shell (CAF(+)). All of the lines are plotted with a 68% confidence interval (CI). (C) Dependence of T cell killing depth and capability (n: killed cell number) on
the antigen presentation of tumor core (Antigen (+)) and the stroma/CAF shell (CAF(+)). (D) Time-lapse images and their extractions of the simultaneous infiltration and
killing dynamics of an individual T cell within a tumor-stroma spheroid (from Movie S1). The white (or magenta) arrow and circle indicate the T cell (or dead tumor cells),
negative values of infiltration depth (Id) indicate T cells outside of spheroids, and positive values indicate T cells inside of spheroids. (E) Quantification of infiltration
depth and speed of the same T cell (in D) over time. The green and red dashed lines indicate the infiltration and killing events of this T cell. (Scale bar in D: 50 μm.)
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Training the Deep Learning–Based TIL Score Analyzer Using a
Clinical Database. To process the data from very large numbers
of images tracking T cell behaviors on many spheroids immobi-
lized in our microfluidic platform, we developed a deep learning–
based TIL score analyzer (Fig. 3A and SI Appendix, Fig. S4 and
Discussion S2) that consists of an image processer, a deep learn-
ing algorithm, and a classifier. We integrated an image processer
that extracted TIL maps by digitalizing hematoxylin and eosin
(H&E) images of solid tumors (411 images from TCGA data-
base) into a bicolor map in red (lymphocytes) and blue (tumors)
(21). Next, we trained the deep learning–based TIL score ana-
lyzer to score TIL infiltration based on clinical patient survival
data (Fig. 3A). The analyzer used a deep convolutional neural
network to extract the features of TILs from training bicolor
maps and associated them with discrete patient survival time.
Then, the analyzer could assign a TIL score of “0” or “1” by
using a 3-y patient survival classifier with an area under the
receiver operating characteristic curve of 0.8051 (SI Appendix,
Fig. S4C). The TIL score correlates with the TIL number, infil-
tration depth, and clustering index such as the Ball-Hall or
Banfield-Raftery indexes (21), and shows a better correlation
with patient survival as compared with single TIL metrics (SI
Appendix, Fig. S5). Using the well-trained analyzer, we evaluated
the TIL scores of a particular drug X as TIL score (drug X). We
defined the TIL score (drug X) by dividing TIL images into
high- and low-infiltration groups by binning the cases based on
predicted TIL score quartiles. Each screening result of “drug X”
was given a TIL scorei of “0” or “1.” To generate the final TIL
score (drug X), 10 T cell tumor infiltration images were ran-
domly selected, and the final TIL score (drug X) was calculated
by averaging these scorei (Fig. 3B). This automated strategy ena-
bles us to evaluate the efficacy of each drug in a large library in
an automated, objective, and scalable manner.

Screening of Epigenetic Drugs. After the establishment of the
method, we test-ran our intelligent microfluidic screening sys-
tem in a proof-of-concept application by screening a library of

drugs with epigenetic activities. It is known that epigenetic drugs
can promote antigen presentation, reverse T cell exhaustion, or
augment inflammation-related genes through the activation of
endogenous retrovirus–mediated pathways (22). We chose a com-
mercially available library of 141 epigenetic modulators against
common targets, such as histone deacetylase, DNA methyltrans-
ferase, histone methyltransferase, and bromodomain and extra-
terminal repeat. Since these small molecules may have cytotoxic
activities (e.g., anti-proliferation, direct killing) and/or immuno-
modulating effects (e.g., altering T cell cytotoxicity, T cell infiltra-
tion), we performed the screening using our screening system in
two steps: (1) drug cytotoxicity screening: Using our automated
system, a total of 135,360 tumor-stroma spheroids (from mela-
noma B16F10 or pancreatic UN-KC6141 cell lines) were formed
in our microfluidic platform in 48 h (480 spheroids/6 replicate
wells per condition). After treating each epigenetic modulator at
a screening concentration of 5 μM, we excluded any single
agent that causes >20% cytotoxicity/antiproliferative activity,
and finally chose a total number of 50 noncytotoxic agents for
B16F10 spheroids and 48 noncytotoxic agents for UN-KC6141
spheroids for further immunotherapeutic screening (SI Appendix,
Fig. S6). (2) Immunotherapy screening: Initially, using our engi-
neering platform, 23,520 tumor-stroma spheroids (melanoma:
B16F10-CAF; pancreatic UN-KC6141-CAF) were formed in
48 h and treated with the noncytotoxic epigenetic agents at a
screening concentration of 5 μM for 24 h. After removal of
the epigenetic agents, the tumor spheroids were subjected to
fluorescence-labeled T cells (OT-I cells), following tracking of
T cell infiltration and cytotoxicity within the tumor spheroids
for 12 h. A total of 980 sets of z stack time-lapse images were
collected after screening the full epigenetic drug library. Our
screening system generated TIL scores for all of the drugs (Fig.
4A and SI Appendix, Fig. S7). The drug GSK-LSD1, a small-
molecule inhibitor of LSD1, reached a TIL score of 0.6, which
is significantly higher than that of positive control anti-PD1
treatment (0.3), untreated blank control (0.1), and antigen nega-
tive control (0.0) (Fig. 4A and SI Appendix, Fig. S4D). This

Fig. 3. Scoring based on deep learning and clinical data. (A) Schematics of training a deep learning–based TIL score analyzer using 411 patient tumor H&E
images with correlated patient survival information from the TCGA database. (B) Schematics show the screening of a library of 141 small-molecule epige-
netic modulators. Our automated system tracks the T cell tumor infiltration images for each drug, extracts the T cell map, assigns TIL scorei (e.g., 0, 1) for
each image, and generates a final TIL score for drug X by averaging multiple TIL scorei from the drug treatment images.

4 of 7 https://doi.org/10.1073/pnas.2214569119 pnas.org

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2214569119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2214569119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2214569119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2214569119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2214569119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2214569119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2214569119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2214569119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2214569119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2214569119/-/DCSupplemental


finding echoes previous studies that used animal models with
genetic knockout of LSD1, in which the recruitment and activa-
tion of T cells are promoted (23).

In Vitro Validation of the Top Drug Candidate and Development
of Combination Therapy. To further investigate the efficacy of
GSK-LSD1 alone and in combination therapy, we simulta-
neously tracked the infiltration and cytotoxicity of T cells. We
analyzed a total of 19,032 T cell tracks from 40 tumor sphe-
roids treated with GSK-LSD1, anti-PD1, or a combination of
GSK-LSD1 and anti-PD1 (Fig. 4B and Movie S2). Analysis of
a total of 1,261 infiltrated T cells showed that (1) GSK-LSD1
alone and the combination treatments resulted in significantly
enhanced infiltration depths and higher numbers of infiltrating
T cells compared to the untreated control and the anti-PD1
treatment (Fig. 4 C and D), and (2) The anti-PD1 treatment
increased the ratio of cytotoxic T cells compared to the untreated
control and the GSK-LSD1 treatment (Fig. 4E. The combina-
tion treatment resulted in the highest proportion of cytotoxic
T cells. In conclusion, the combination treatment provided the
greatest infiltration depth, number of infiltrating T cells, and
number of cytotoxic T cells. Thus, the GSK-LSD1 treatment
enhanced T cell infiltration and promoted both deep infiltration
and cytotoxicity in combination with anti-PD1 treatment.

In Vivo Validation of the Top Drug Candidates. To validate our
in vitro results, we tested our top candidate drug in vivo in the
B16F10 syngeneic tumor model (Fig. 5A). We examined the
antitumor effect of GSK-LSD1 treatment alone and in combina-
tion with anti-PD1. A moderate tumor growth inhibition was
seen in the GSK-LSD1 treatment group. Moreover, when GSK-
LSD1 treatment was applied in combination with anti-PD1

treatment, a greater tumor growth inhibition was observed, with
two of eight mice having tumors completely regressed (Fig. 5B).
Upon closer examination, a significantly higher number of
CD8+ T cell infiltrated into GSK-LSD1-treated tumors com-
pared to tumors of control or anti-PD1-treated mice, as analyzed
by immunofluorescence staining (Fig. 5C) and flow cytometry
(Fig. 5 D and E and SI Appendix, Fig. S8). Our results are con-
sistent with previous reports using LSD1 knockout mice or
LSD1 inhibitor treatment in melanoma and breast cancer mod-
els (23, 24). Our in vivo test further validated our in vitro screen-
ing results. Thus, we demonstrated that our automated screening
system can identify valid T cell tumor infiltration–promoting
agents that translate into in vivo results.

Discussion

Immune infiltration and cytotoxicity in solid tissues are essential
for immune surveillance, inflammation, autoimmune disease,
and immunotherapy. However, current in vitro models and
methods are largely lacking in high-throughput tracking and
analysis of dynamic behaviors of immunocytes within 3D tissues.
To address these shortcomings, we developed an automated
screening system that generates scalable uniform-sized core/
tumor-shell/stroma spheroid arrays, enables free perfusion of
immune cells, and achieves automated tracking and analysis of
immune cell–tissue interaction dynamics. As a proof-of-concept
application for cancer immunotherapy drug screening, our sys-
tem was used to screen a library of epigenetic modulators in a
high-throughput and automated manner. We identified and
in vivo validated an epigenetic drug (GSK-LSD1) that effectively
promotes T cell tumor infiltration and enhances T cell infiltra-
tion and cytotoxicity in combination with anti-PD1 treatment.

Fig. 4. Deep learning–guided screening of an epigenetic drug library. (A) Screening results from the library. The heatmap shows TIL scores of control condi-
tions and drug conditions. Representative images of the distribution of T cells (red dots) inside the spheroids (blue background) under different drug treat-
ments. (B) Extraction of cell position and trajectory from time-lapse images of T cell infiltration and cytotoxicity within heterotypic tumor spheroids under four
treatment conditions (untreated control, anti-PD1, GSK-LSD1, and combination treatment [combo]) (from Movie S2). (C) T cell infiltration depth over time under
four treatment conditions. All of the lines are plotted with a 68% CI. (D) The average percentage of infiltrated T cells of total T cells. T cells deep within tumor
spheroids (infiltration depth >20 μm) are considered to be deep infiltrating T cells and illustrated with filled colors. (E) Average killing T cell percentage of the
total T cell population. Killing events located deep within tumor spheroids are labeled with filled colors. Statistical analysis: ANOVA. (Scale bar in B, 30 μm.)
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Scalable, Standardized 3D Cultures That Represent Key
Physiological Features. Compared with 2D in vitro cultures,
3D cultures can recapitulate key physiological and pathological
aspects of primary tumors, including tumor architecture, micro-
environment, and drug response vulnerabilities (25). Recently,
patient-derived organotypic cultures and tumor spheroids/orga-
noids/clusters were established to model cancer immunity and
test treatments, highlighting the uniqueness of these 3D models
in preserving the genomic and/or phenotypic features of clinical
tumors (26–28). However, current patient-derived 3D cultures
suffer from a high heterogeneity in cell composition, cell archi-
tecture, and size and shape of the cell mass, limiting their appli-
cations for high-throughput screening and robust testing. Attempts
have been made to develop methods for the standardization of
organoid fabrication and minimization of interorganoid heteroge-
neity (29). Thus, it is critical to generate scalable standardized
3D cultures that represent key physiological features. In this
work, considering tumor stroma as one of the main barriers to
immune invasion, we developed a pillar-lattice-array–based micro-
fluidic platform to fabricate uniformly sized core/tumor-shell/
stroma spheroids on the scale of 105 spheroids with tunable size,
structure, and composition. We believe that our microfluidic plat-
form and core-shell spheroid fabrication strategy can also be used
for scalable, standardized 3D cultures with other key physiological
features, such as endothelium and immune components.

Automated Culturing and Imaging of 3D Cultures. High-
throughput screening platforms based on 2D culture with auto-
mated robotic handling for culturing cells and with imaging or
readout systems for analysis have been developed. An auto-
mated system has also been published for culturing and main-
taining 3D organoid cultures (29). However, challenges remain
for tracking the dynamics of drug response or immune interac-
tions of 3D cultures, partly caused by changes that occur during
long-term cultures, such as uneven growth, random fusion,
movement, rotation, and necrotic cores. To overcome these
problems, we integrated a transparent thin polydimethylsiloxane
(PDMS) layer of engineered pillar lattices into commonly used
well plates for the generation and immobilization of a large
number of uniform-sized spheroids. After the incorporation of

automated in situ time-lapse imaging and image processing
approaches, our platform allows the real-time tracking of 100
spheroids as well as dynamic infiltration and cytotoxic behaviors
of T cells from over 7,000 immobilized tumor spheroids under
30 treatment conditions (SI Appendix, Discussion S3), resulting in
1,040 sets of T cell–tumor interaction images. Further efforts will
be needed to integrate robotic medium/drug-handling approaches
with our automated microfluidic platform for a fully automated
high-throughput screening system.

Machine Learning–Based Analysis of the Vast Amount of
Screening Data. Recently, TIL infiltration patterns in patient
tumor slides were shown to predict patient survival (5). How-
ever, the current evaluation of TIL infiltration mainly relies on
a visual inspection and manual qualitative or quantitative analy-
sis by experienced pathologists. Machine learning methods have
been used to address the challenges in imaging processing and
feature extraction of TIL maps from a vast amount of clinical
data, avoiding the inconsistency and bias stemming from
human interpretations (16–18). Moreover, simple metrics such
as TIL number, infiltration depth, and clustering have been
explored individually as predictors of patient survival or immu-
notherapy outcome, but have not been unified as a comprehen-
sive single “TIL score.” Here, using such clinical TIL map and
survival data from the TCGA database, we demonstrated that a
machine learning method generated an integrated TIL score
that better correlates with patient survival time based on the
feature pattern of the TIL map, achieving an excellent median
c index of 0.674 and a higher correlation (a coefficient of
0.231) than current methods based on any selected individual
parameter, such as TIL clustering index or density (SI Appendix,
Fig. S8). Since the distribution of CD8+ T cells highly corre-
lated to that of TILs (21, 30), we used this algorithm and an
effect threshold to score for the effect of drugs based on the T
cell tumor infiltration images. We believe that the incorporation
of machine learning methods is crucial for developing auto-
mated, nonbiased, high-throughput screening of TIL infiltration.
In addition, TIL infiltration could vary based on disease indica-
tion, metastatic sites, genetic background, and prior treatments.
Thus, we envision this strategy and algorithm could be adapted,

Fig. 5. In vivo validation. (A) Tumor inoculation and treatment timeline. Anti-PD1 and GSK-LSD1 were administered intraperitoneally on days 7, 9, 11, 13,
and 15. All of the animals were euthanized on day 24 to harvest tumors. (B) Growth curves and final sizes of tumors in animals of four treatment groups.
(Scale bar, 10 mm.) (C) Representative images of infiltrated CD8+ T cells in the tumor slides of the four treatment groups. (Scale bar, 200 μm.) (D) T cell infil-
tration depth distribution in the tumor slides (n = 5). (E) CD8+ T cell percentage of all tumor cells analyzed by flow cytometry (n = 3).

6 of 7 https://doi.org/10.1073/pnas.2214569119 pnas.org

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2214569119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2214569119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2214569119/-/DCSupplemental


fine-tuned, and trained using unique datasets that are relevant to
the disease indication/demographics that the screened therapeu-
tics are intended to treat.
We developed a prototype of an automated screening system

and demonstrated a proof-of-concept application for screening
immunotherapeutic compounds for treating solid tumors, based
on the characteristics of T cell tumor infiltration identified
through deep learning. This system may find extensive applica-
tions in basic research and translational medicine to treat auto-
immune disorders, neuroinflammatory diseases, compromised
immune responses, and the like.

Materials and Methods

Device Fabrication. The pillar-lattice-array devices were fabricated by using the
standard soft lithography and PDMS fabrication procedure as described in the SI
Appendix, SI Methods and Materials.

Cell Cultures. The mouse melanoma cell line B16F10 was purchased from the
American Type Culture Collection. The mouse pancreatic tumor cell line
UN-KC6141 was a kind gift from Dr. Surinder K. Batra (University of Nebraska).
CAFs were isolated from orthotopic tumors. The OT-I CD8+ T cells were isolated
from OT-I mice spleen. All of the procedures were approved by the Indiana Uni-
versity Institutional Animal Care and Use Committee. The cell isolation and cul-
ture followed standard procedures as detailed in the SI Appendix, SI Materials
and Methods.

On-Chip Investigation. The hybrid tumor-CAF spheroids were formed using
the fabricated devices. The on-chip T cell infiltration of tumor spheroids was
tracked and recorded by a Leica SP8 confocal microscope or Olympus OSR spin-
ning disk confocal microscope, and raw images captured were exported as TIFF
image stacks in ImageJ. The detailed on-chip investigation of T cell tumor infil-
tration as described in the SI Appendix, SI Materials and Methods.

TIL Score Analyzer. The TIL scoring deep learning system was developed to
score TIL infiltration based on clinical pathology data and patient survival data

(https://gdc.cancer.gov/). The network architecture, training, prediction, and valida-
tion of this system were detailed in the SI Appendix, SI Materials and Methods.

Screening of Epigenetic Drugs. An epigenetic drug library (Cayman Chemi-
cals, Epigenetics Screening Library, cat. no. 11076) was used to test the intelli-
gent screening system. The TIL score for each drug was determined by using the
system. The details of the drug screening process were described in the SI
Appendix, SI Materials and Methods.

Validation of Candidate Drug. The antitumor activity of screened top drug
candidates was tested in vivo using a syngeneic mouse tumor model. The details
of in vivo validation were described in the SI Appendix, SI Materials and Methods.

Data, Materials, and Software Availability. All of the study data are
included in the article and/or supporting information.
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