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Research on maternal-fetal epigenetic programming argues that adverse exposures to
the intrauterine environment can have long-term effects on adult morbidity and mortal-
ity. However, causal research on epigenetic programming in humans at a population
level is rare and is often unable to separate intrauterine effects from conditions in the
postnatal period that may continue to impact child development. In this study, we used
a quasi-natural experiment that leverages state-year variation in economic shocks during
the Great Depression to examine the causal effect of environmental exposures in early
life on late-life accelerated epigenetic aging for 832 participants in the US Health and
Retirement Study (HRS). HRS is the first population-representative study to collect
epigenome-wide DNA methylation data that has the sample size and geographic varia-
tion necessary to exploit quasi-random variation in state environments, which expands
possibilities for causal research in epigenetics. Our findings suggest that exposure to
changing economic conditions in the 1930s had lasting impacts on next-generation
epigenetic aging signatures that were developed to predict mortality risk (GrimAge) and
physiological decline (DunedinPoAm). We show that these effects are localized to the
in utero period specifically as opposed to the preconception, postnatal, childhood, or
early adolescent periods. After evaluating endogenous shifts in mortality and fertility
related to Depression-era birth cohorts, we conclude that these effects likely represent
lower bound estimates of the true impacts of the economic shock on long-term
epigenetic aging.
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Aging is characterized by the gradual accumulation of cellular damage, leading to phys-
iological deterioration, loss of function, and increased vulnerability to death (1). A
growing body of research suggests that the beginnings of human aging occur during
the initial phases of embryogenesis, a paradigm shift in aging research that anchors the
onset of age-related damage accumulation to the prenatal period as opposed to later in
the life course after the completion of development and the onset of reproductive age
(2, 3). The idea that aging later in life could be linked to in utero programming has
important implications for the development of early-life interventions that could post-
pone age-related morbidity and mortality and significantly extend healthy life span (2).
Early-life programming of aging and longevity has its roots in the developmental

origins of health and disease (DOHaD) work of David Barker (4, 5), and in the field
of environmental epigenetics, which linked the molecular basis for this mode of inheri-
tance to epigenetic mechanisms in animal models (6). While age-related deterioration
and damage is reflected in nearly every biological process at the molecular and cellular
level, the dysregulation of these processes is a function of upstream epigenomic changes
that control transcriptional and chromatin networks. In humans, the most well-
researched type of epigenetic modification is DNA methylation (DNAm), which refers
to the addition of a methyl group to a cytosine nucleotide at a cytosine-phosphate-
guanine (CpG) site. DNAm regulates transcription without changing the DNA sequence
by, for example, recruiting proteins involved in gene repression or by inhibiting the bind-
ing of transcriptional machinery to the DNA.
The epigenome plays a critical role during embryogenesis, when the proliferation of

cellular diversity and transcriptional networks are calibrated by epigenetic processes
that are reproduced in subsequent DNA replication and cell division cycles (7). Because
the rapid pace of fetal development exceeds the rate of development during any other
stage of the life course, developmental plasticity and malleability are high, and experi-
ences during this period may exert lasting effects on gene expression and subsequent
tissue development, known as fetal programming (8). Furthermore, because tissue
development occurs in a specific sequence from conception to maturity, adverse expo-
sures during gestation are more likely to disrupt the timing of organogenesis in a
manner that has long-lasting consequences for the health of the developing fetus (8).
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For example, maternal malnutrition, inflammation, and other
sources of prenatal stress may contribute to fetal growth restric-
tion and preterm birth, with damage to peripheral organs occur-
ring to protect the developing brain (8, 9). Consequently, the
timing of environmental exposures in early life may play a crucial
role in the biological embedding of adverse experiences (10, 11).
Recent quantitative tests linking early-life epigenetic program-

ming with trajectories of aging (12, 13) have been bolstered by
discoveries in epigenetic profiling and machine learning technol-
ogies that facilitated the development of epigenetic aging meas-
ures or epigenetic clocks that can accurately track biological aging
in utero and across the life course (14–26). Epigenetic clocks are
calculated by taking the genome-wide weighted average of
DNAm levels at CpG sites that are highly associated with either
chronological age (first generation clocks) or phenotypic hall-
marks of aging (second generation clocks). Epigenetic clocks
accurately predict chronological age (14, 22–24, 27, 28), and
numerous studies have linked deviations between DNAm age
and chronological age, i.e., epigenetic age acceleration (EAA),
with age-related diseases and mortality (29–40), suggesting EAA
measures may serve as molecular biomarkers of aging that reflect
both resilience and vulnerability during the aging process. More
recently, pace of aging measures have been developed using the
change in 18 age-associated biomarkers in the same cohort of
individuals over time, as opposed to cross-sectional measure-
ments in different individuals (21, 41). Second generation clocks
and pace of aging measures have shown more consistent associa-
tions with socioeconomic disparities across the life course and are
more predictive of morbidity and mortality than first generation
clocks that were developed to predict chronological age (42–45).
Epigenetic aging measures tend to outperform other biomarkers
of aging in predicting lifespans (19, 20, 46), and their correla-
tions with age-related conditions makes them useful in a variety
of contexts, including anti-aging interventions (18).
However, despite these advances in molecular aging research,

existing causal evidence on the long-term impacts of early-life
epigenetic programming in humans at a population level is rare.
In addition, few studies have looked at the impact of environ-
mental exposures at different time points in childhood to identify
sensitive periods in development in which environmental insults
could have their greatest impact on long-term epigenetic signa-
tures. Causal research to date on fetal epigenetic programming
is limited to a small handful of natural experiments, including
the Dutch Hunger Winter Families Study (47–49), Project Ice
Storm (50–53), and research on Holocaust survivors (54), that
examined the impact of maternal nutrition or stress on DNAm
changes in preselected CpG regions that regulate specific genes.
These findings suggested that adverse maternal environments
early in human gestation could result in persistent changes in
epigenetic information in adulthood, particularly with respect to
the regulation of metabolic, immune, or neurological pathways.
In this study, we use a quasi-natural experiment that lever-

ages state-year variation in economic conditions during the
Great Depression to examine the causal effect of environmental
exposures during the prenatal period on late-life epigenetic
aging signatures for participants in the US Health and Retire-
ment Study (HRS). This approach compares individuals whose
in utero development overlapped relatively worse economic
conditions with peers born in the same year and state whose in
utero development overlapped relatively better economic condi-
tions because they were born at different times of the year. For
example, an individual born in February of 1933 would have
been more exposed prenatally to economic conditions in 1932
compared to an individual born in November of 1933 in the

same state. Additionally, by linking state-year macroeconomic
data on wages, employment, and consumption to the first 16
years of HRS participants’ lives, we were able to condition on
economic exposures during the preconception, postnatal, and
childhood periods to assess the relative impact of exposure tim-
ing at different developmental stages on accelerated aging. HRS
is the first population-representative study in the United States
to collect CpG-level data that has the sample size and geo-
graphic variation necessary to exploit quasi-random variation in
economic conditions across states and over time, which expands
possibilities for causal research in epigenetics.

We focus on the Great Depression for several reasons. First
and foremost is the magnitude of the exposure. The Great
Depression was the most devastating macroeconomic recession
in US history: from 1929 to 1933, real output contracted by
more than 25%, prices fell by 33%, and the unemployment
rate increased from 3.2 to 25%, reaching the highest levels ever
documented in the United States (55). The extreme nature of
the economic shock was a unique failure of the industrial econ-
omy that had devastating effects on individuals’ financial and
overall well-being (55, 56). Second, at the time, there were few
social welfare programs to ameliorate the widespread economic
devastation families experienced. The science of prenatal care
was in its infancy, and women lacked access to prenatal vita-
mins or other nutritional supplements that are now considered
vital for fetal development, further exacerbating nutritional
deprivation and stressful living conditions for expectant moth-
ers and their children. Third, with respect to study design,
because the HRS initially surveyed over 12,000 individuals
who were born between 1931 and 1941 when the study began
in 1992, we can examine epigenetic aging patterns in a rela-
tively large, population-representative sample of surviving cohort
members who had their blood drawn in 2016 (n = 832).

Our findings suggest that exposure to economic conditions
during the Great Depression had lasting impacts on epigenetic
aging signatures, and that these effects were salient in both
magnitude and statistical significance for in utero exposures
only, strongly suggesting the existence of sensitive periods of
development. Results are specific to next-generation epigenetic
aging measures, including GrimAge EAA and the Dunedin-
PoAm (Dunedin(P)ace(o)f(A)ging(m)ethylation) measure, both
of which incorporate more complex phenotypes into DNAm
algorithms that are trained on clinical outcomes and mortality
risk (GrimAge) or on the rate of change in system-integrity bio-
markers (DunedinPoAm). A one SD (SD) decrease in wages
during the 1930s, which is equal to roughly half of the overall
decline in wages experienced during the Great Depression,
resulted in ∼0.4 SD increase in accelerated epigenetic aging
when participants were between the ages of 75 and 84. Results
are consistent but attenuated after adjusting estimates for mor-
tality selection using an inverse probability weighted (IPW) esti-
mator (57), suggesting individuals that survived to older ages
appear to be positively selected. Finally, we show that compared
to other aging and health phenotypes, accelerated GrimAge and
DunedinPoAm signatures are more sensitive indicators of both
early-life exposure to economic conditions and subsequent mortal-
ity, which suggests epigenetic aging measures may contain addi-
tional valuable information that could further our understanding
of the causes of social disparities in aging and health span.

Results

To conduct our analyses, we linked individual-level epigenetic
aging measures from the HRS that were profiled in 2016 with
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macroeconomic data at the state- and year-of-birth level (SI
Appendix, Section 1 and Table S1provides more details on the
epigenetic aging measures used in this study). Annual state-
level data that document the dynamics of the macroeconomy
in the 1920s and 1930s are rare. Our preferred exposure mea-
sure is a wage index from the Bureau of Economic Analysis
(BEA) because it includes both farm and nonfarm wages, which
better approximates the economic conditions of families with
young children in urban and rural areas (58). In addition, the
data are available from 1929 to 1956, which allows us to test
the impact of wage fluctuations prenatally through adolescence
for individuals born in the 1930s. Fig. 1 documents the varia-
tion in the wage index across states relative to 1929 that we

exploit in our analysis. Relevant summary statistics for the sam-
ple are reported in SI Appendix, Table S2.

Table 1 presents results from our baseline specification,
which showcases the impact of state-level wages in utero on six
epigenetic aging measures constructed from DNAm data pro-
filed when HRS participants born in the 1930s were between
the ages of 75 and 84. Comparison across multiple epigenetic
aging measures is important for the interpretation of our results
because each algorithm was developed using different assump-
tions that capture different aspects of the biological aging process.
As evidence of this, corresponding age-adjusted EAA measures
are not highly correlated in the HRS sample (r = 0.069 to
0.605), although we do see stronger correlations among first
generation clocks (r = 0.435 to 0.605) and next generation
GrimAge and DunedinPoAm measures (r = 0.551) (SI
Appendix, Fig. S1) (59). This correlative structure is reflected in
Table 1, which indicates that declines in wages during the Great
Depression had long-term impacts on GrimAge and Dunedin-
PoAm epigenetic aging signatures specifically as opposed to first
generation measures. A 1 SD decline in the wage index increased
GrimAge EAA by 0.380 SD and decreased the pace or rate of
aging as measured by DunedinPoAm by 0.449 SD (Bonferroni
corrected P value < 0.05). To put the magnitude of these effects
into perspective, a 1 SD decline in wages is equivalent to approx-
imately half of the overall decline in wages that occurred between
1929 and 1933. The magnitude and significance of these results
are robust across empirical specifications (SI Appendix, Table S3).

To determine the extent to which these effects were driven by
in utero exposures, we estimated a model that conditioned on
exposures from the preconception period through age 16. Fig. 2
plots the age-specific exposure coefficients from this specification
for GrimAge EAA and DunedinPoAm. Coefficients are signifi-
cant for the in utero period only and are similar in magnitude
and significance to our baseline results. Importantly, we do not
see any evidence of differential trends prior to conception, which
is given by the null effect of the wage index 2 to 3 years prior to
birth, providing support for the identification strategy.

The salience of exposures during the in utero period is also
evident when we use other available state-level data on macro-
economic conditions, including employment and car sales (SI
Appendix, Tables S4 and S5). Employment data reflect labor
market fluctuations in manufacturing and nonmanufacturing
industries (60) and data on car sales proxy household consump-
tion (61). SI Appendix, Figs. S2 and S3 depict state-year varia-
tion relative to 1929 for the employment and car sales indices.
Since these data were not available after 1940, the models are
estimated in a subset of individuals with three years of exposure
data before birth and two years after birth (n = 588). Findings
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Fig. 1. Variation in the wage index across states, 1929 to 1940. The figure
shows fluctuations in nominal, unadjusted farm and nonfarm wages and
salaries relative to 1929. Data were obtained from the Bureau of Economic
Analysis (BEA) in index form (SAINC7H Wages and Salaries by Industry
[Historical] 1929 to 1957).

Table 1. Effect of wage index declines in utero on EAA and pace of aging measures

Horvath EAA SkinBlood EAA Hannum EAA PhenoAge EAA GrimAge EAA Dunedin- PoAm

Wage index declines in utero �0.0868 0.0635 0.0617 0.0248 0.3804† 0.4489†
(0.1607) (0.2112) (0.1960) (0.1593) (0.1056) (0.1428)

Observations 832 832 832 832 832 832
R2 0.152 0.125 0.167 0.156 0.250 0.119

Note: The table reports effect sizes from analyses of the association between the wage index and six measures of epigenetic aging. Results are reported in SD units of the aging
measure per SD unit of the wage index in utero, interpretable as Pearson’s r. The signs on the effect sizes have been flipped so that values correspond to a SD decline in the wage
index. The wage index was transformed to real wages using the consumer price index. Robust standard errors clustered at the state of birth level are in parentheses. A cross (†)
indicates a significant P value after Bonferroni correction for 6 independent tests at a family-wise error rate of 0.05 (P < 0.0083). All models control for sex, race, maternal education,
year-of-birth (YOB) fixed effects (FE), state-of-birth FE, region of birth-specific linear time trends (LTT), and state-level controls interacted with YOB LTT, including the 1928 infant
mortality rate, the 1929 maternal mortality rate, and whether a state’s share of farmland was in the 75th percentile nationally in 1930. The model also includes YOB FE interacted with
an indicator for whether state employment in manufacturing was in the 75th percentile nationally in 1929. Models were estimated using linear regression with weights provided by the
HRS for the Venous Blood Study (VBS) sample.
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are comparable to results with the wage index. Thus, our find-
ings are not specific to wages but appear to reflect a more con-
sistent pattern between adverse economic conditions in utero
and accelerated biological aging.

Sensitivity Analysis. Because DNAm was profiled in whole
blood, DNAm measures of aging may reflect differences in the
white blood cell (WBC) composition of samples from which
the DNA were extracted. Since the relative composition of
WBCs changes with age, we tested the sensitivity of our analy-
sis to this variation by adjusting for the percentage of WBCs
present and their interactions with year of birth fixed effects (SI
Appendix, Table S6). Adjusting for WBC composition reduced,
but did not fully mediate, the magnitude and significance
of our results, suggesting our findings may be driven more by
extrinsic epigenetic age acceleration (EEAA) as opposed to
intrinsic epigenetic age acceleration (IEAA). The EEAA termi-
nology has been used to refer to the observation that clocks
trained in whole blood may be more reflective of immune sys-
tem aging or age-related changes in leukocyte composition that
have been more closely linked to metabolic health and environ-
mental stressors, whereas multitissue clocks like the Horvath
clock that adjust for cell composition are more reflective of
cell-intrinsic aging (62, 63).
Additionally, results do not appear to be driven by outliers, or

individuals in the top and bottom 1% of the GrimAge EAA and
DunedinPoAm distributions (SI Appendix, Table S7). Finally,
because DNAm is in part regulated by genetic polymorphisms,
we confirmed that our results are robust to confounding from
population stratification in a subsample of European ancestry
individuals by adjusting for the first 10 principal components
of the genetic data and their interaction with the treatment (SI
Appendix, Table S8).

Impacts of Other Co-Occurring Historical Events. The 1930s
and 1940s were a historically rich period characterized by several
coinciding events. We analyzed our results in the context of the
Dust Bowl, New Deal relief spending, the spread of rural electrifi-
cation, World War II mobilization rates, and variation in extreme
weather conditions to determine the degree to which they may be
influencing our estimates (SI Appendix, Tables S9–S13). Overall,
our results do not appear to be driven by these co-occurring
events, suggesting that economic fluctuations from the Great
Depression had an independent effect on biological aging.

Early-Life Exposure to Economic Shocks and Old-Age Mortal-
ity. Since DNAm was profiled in our sample at older ages, we
conducted additional analyses to understand how mortality selec-
tion may be biasing our estimates. While studies have shown
that economic conditions in early life can affect mortality (64,
65), evidence on the long-term impacts of the Great Depression
on mortality has been mixed (66–69). We re-examined these pat-
terns in the HRS by regressing age-specific survival probabilities
on wage index declines for all respondents born between 1929
and 1940 (n = 7,898). Results reveal a negative and significant
association between worsening economic conditions at birth and
the probability of survival from age 75 onwards (SI Appendix,
Table S14), which overlaps with the age range of our sample in
2016 when epigenetic profiling was conducted. Survival proba-
bilities are also positively linked to higher maternal education
(a key proxy of family resources in childhood) (SI Appendix,
Table S14). Regarding the cause of death, earlier mortality
appears to be driven primarily by metabolic disorders, which
have been linked to intrauterine growth disruptions (SI
Appendix, Table S15) (5, 47–49). Taken together, these results
suggest that our sample is positively selected for survival at
older ages.

To investigate the extent that mortality is biasing our esti-
mates, we used fitted values from regression models of survival as
inverse probability weights to adjust our estimates so they are
more reflective of the HRS sample just prior to mortality selec-
tion (SI Appendix, section 9 provides more details) (57, 70).
Survival was modeled using a probit specification under two
scenarios: 1) survival until age 75 (the age that we first observe
mortality selection in our sample), and 2) survival until 2016
(the year epigenetics were profiled in the HRS). For both scenar-
ios, we present inverse probability weighted (IPW) estimates that
use weights constructed with and without adjustments for mater-
nal education in the survival model (Table 2). After adjusting
for mortality selection using the IPW estimator, results are atten-
uated by ∼9% to 38%, which indicates that conditional on
survival into the HRS, mortality selection appears to be biasing
our estimates downward.

Economic Shocks and Changes in Fertility and Mortality at
Birth. Business cycles can affect fertility due to changes in
income and/or the opportunity cost of time (71, 72). If fertility
responses vary across groups, e.g., if more educated women had
more children because of the shock, this may bias our estimates
downward as children of more advantaged mothers may experi-
ence less extreme nutritional deprivation or stress-related hard-
ships while pregnant. Using data from the 1% representative
sample of the 1940 Census, we examined whether declines in
the wage index are associated with the number of household
births in the 1930s and/or whether this association varies by
social class or other demographic characteristics. Results suggest
that as wages declined, women without a degree or at most a
high school degree had fewer children than college educated

-1

-.5

0

.5

1

Age
 -3

 to
 -2

In 
Uter

o

Age
 1-

2

Age
 3-

4

Age
 5-

6

Age
 7-

8

Age
 9-

10

Age
 11

-12

Age
 13

-14

Age
 15

-16

GrimAge EAA

-1

-.5

0

.5

1

Age
 -3

 to
 -2

In 
Uter

o

Age
 1-

2

Age
 3-

4

Age
 5-

6

Age
 7-

8

Age
 9-

10

Age
 11

-12

Age
 13

-14

Age
 15

-16

DunedinPoAM

Fig. 2. Effect of wage index declines during the preconception, in utero,
childhood, and adolescent periods on GrimAge epigenetic age acceleration
(EAA) and DunedinPoAm. Note: The figure reports estimated coefficients
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utero, interpretable as Pearson’s r. The signs on the effect sizes have been
flipped so that values correspond to a one SD decline in the wage index.
The wage index was transformed to real wages using the consumer price
index. All models control for sex, race, maternal education, year-of-birth
(YOB) fixed effects (FE), state-of-birth FE, region of birth-specific linear time
trends (LTT), and state-level controls interacted with YOB LTT, including the
1928 infant mortality rate, the 1929 maternal mortality rate, and whether a
state’s share of farmland was in the 75th percentile nationally in 1930. The
model also includes YOB FE interacted with an indicator for whether state
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Models were estimated using linear regression with weights provided by the
HRS for the Venous Blood Study (VBS) sample. Robust 95% confidence inter-
vals. Standard errors are clustered at the state of birth level.
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women, suggesting a small but positive selection on fertility
(SI Appendix, Table S16). Similarly, worsening economic con-
ditions may have affected the probability that a pregnancy was
carried to term, particularly for male fetuses, who are more sus-
ceptible to disease or death than females (73, 74). Data from
the 1940 Census indicate that a 1 SD decline in the wage index
reduced both cohort size and the male-to-female sex ratio of
births by 7% and 12%, respectively (SI Appendix, Table S17),
suggesting antenatal selection may be another key channel
through which our estimates are downwardly biased.

Effects on Other Aging Outcomes and Longevity. Finally, we
tested whether in utero exposure to wages is predictive of other
self-reported or doctor diagnosed measures of aging in our sam-
ple, including frailty, metabolic syndrome, self-reported health
status (SRHS), and the number of chronic disease conditions
(SI Appendix, Table S18). These measures are less precise and,
apart from the number of chronic disease conditions, the mag-
nitude of their effect sizes (per 1 SD decline in the wage index)
are ∼40% to 50% lower relative to GrimAge EAA and Dune-
dinPoAm effect sizes. We then examined the degree to which
these measures are associated with the probability of dying in the
following HRS wave (∼7% of our sample died between 2016 and
2018). GrimAge EAA displays the strongest association in terms
of both magnitude and significance (β = 0.173 SD increase in the
probability of death per 1 SD increase in GrimAge; P < 0.001),
followed by SRHS (β=0.154 SD; P < 0.001), DunedinPoAm
(β=0.101 SD; P < 0.05), and the number of chronic disease
conditions (β=0.077 SD; P < 0.05) (SI Appendix, Table S19).
Thus, GrimAge and DunedinPoAm appear to be more sensitive
indicators of both in utero exposures to the wage index and sub-
sequent longevity than other commonly used measures of aging
and health, suggesting they contain additional information on
the connection between social disparities in early-life environ-
ments and mortality.

Discussion

In a population-representative sample of over 800 individuals
born in the 1930s, we find a significant association between

early-life exposure to economic conditions during the Great
Depression and late-life epigenetic age acceleration as captured
by the GrimAge and DunedinPoAm algorithms. These findings
are robust across empirical specifications that account for addi-
tional state-level controls and region-specific linear time trends,
supporting a causal interpretation. Using the few available sour-
ces of state-level variation in macroeconomic conditions from
the 1930s, we show that these results are not sensitive to how
the economic shock was measured but rather reflect a consistent
pattern across changes in wages, consumption, and employ-
ment. After evaluating endogenous shifts in mortality and fertil-
ity related to Depression-era birth cohorts, we conclude that
these effects likely represent lower bound estimates of the true
impacts. Finally, we shed light on the existence of sensitive
periods, which is increasingly acknowledged but often difficult
to test empirically (10, 11), by demonstrating that these effects
were isolated to the in utero period specifically.

We did not identify any effects for the Horvath, SkinBlood,
Hannum, or PhenoAge clocks, which is consistent with prior
research that found stronger associations between socioeco-
nomic disadvantage and GrimAge EAA and DunedinPoAm
(42, 45, 75). Because epigenetic aging measures are composite
indicators that are comprised of many different DNAm pat-
terns, a major drawback of their application is a lack of mecha-
nistic understanding of what they are capturing, both in terms
of how environmental processes may be initiating these changes
as well as their connection to disease etiology (76, 77). Of note,
a recent study deconstructed over 5,000 clock CpGs into
twelve distinct submodules that display different biological
underpinnings and vary considerably in their proportion across
clocks (76). GrimAge and DunedinPoAm, which were trained
in whole blood to predict mortality or physiological changes
with aging, share a very similar composition of submodules that
are stronger predictors of mortality and cardiovascular related
outcomes. Likewise, while the Horvath, PhenoAge, SkinBlood, and
Hannum clocks, which were all trained in some manner on chro-
nological age, are also comprised of mortality-associated modules,
they contain additional submodules that have weak or inverse asso-
ciations with mortality (76). This suggests a connection between

Table 2. Effect of wage index declines in utero on GrimAge EAA and DunedinPoAm, IPW estimates

Outcome: GrimAge EAA

Survival to 2016 Survival to age 75

IPW, no maternal
education

IPW, with maternal
education

IPW, no maternal
education

IPW, with maternal
education

Wage index declines in utero 0.2657* 0.2602* 0.3167** 0.3131**
(0.1000) (0.0996) (0.0969) (0.0965)

Outcome: DunedinPoAm

Survival to 2016 Survival to age 75

IPW, no maternal
education

IPW, with maternal
education

IPW, no maternal
education

IPW, with maternal
education

Wage index declines in utero 0.3877** 0.3877** 0.4081** 0.4081**
(0.1224) (0.1224) (0.1428) (0.1428)

Note: The table reports effect sizes from analyses of the association between the wage index and GrimAge EAA and DunedinPoAm using inverse probability weights (n = 832). Estimates
are from separate linear regressions. Results are reported in SD units of the aging measure per SD unit of the wage index in utero, interpretable as Pearson’s r. The signs on the effect
sizes have been flipped so that values correspond to a 1 SD decline in the wage index. The wage index was transformed to real wages using the consumer price index. Weights were
calculated by taking the inverse of fitted values from probit models that adjusted for the wage index in utero, year- of-birth fixed effects (FE), state-of-birth FE, sex, and race. Weights
applied in Columns 2 and 4 were derived from probit models that also accounted for maternal education and its interaction with the wage index, where maternal education was a
dichotomous variable equal to one if the respondent’s mother had no degree or maternal education was missing and zero otherwise. The first two columns report estimates that use
IPW weights to adjust for survival until 2016, and the second two columns use IPW weights to adjust for survival until age 75. Results are from the fully specified model (see Table 1
footnote for model details). Robust standard errors clustered at the state of birth level are in parentheses. *P < 0.05, **P < 0.01.
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our findings and mortality or cardiovascular risk as opposed to
tumorigenesis or other age-related cellular processes that are cap-
tured more strongly by other clocks.
Overall, it is difficult to disentangle whether the connection

between in utero exposures and accelerated biological aging
later in life that we observe is operating from epigenetic altera-
tions induced during early development that result in consis-
tently higher incidence of damage throughout life (i.e., fetal
programming) (4, 5) or epigenetic signs of aging processes that
are accelerated by insults in utero but that continue to develop
across the life course (i.e., the idea of high initial damage load
or the HIDL hypothesis) (2). In both cases, any downstream
consequences of early-life insults will not be readily apparent
until we can observe aging at a phenotypic level when progres-
sive accumulation of damage and loss of physiological integrity
begin to take hold later in life. Thus, although we cannot use
the clocks to disentangle specific mechanistic pathways, we
show that they may be particularly sensitive indicators of early-
life programming and subsequent mortality risk at later ages.
Moreover, this appears to be the case in a subsample of rela-
tively healthier, surviving cohort members that outlived their
counterparts. More research is needed, but these results suggest
that composite measures of epigenetic aging may be especially
useful for the detection of disparities in aging prior to the emer-
gence of disease or death.
Along these lines, our findings diverge from prior work on the

long-term health effects of the Dust Bowl and the Great Depres-
sion that were not able to detect a relationship between in utero
exposures and an array of health outcomes in the 1992 to 2004
HRS waves (69). In part, we hypothesize that differences in the
authors’ empirical strategy, which relied on exploiting variation
in economic conditions at the region- and year-of-birth level,
may have masked substantial heterogeneity in economic activity
at the state level that affected the precision of their results. How-
ever, effects may also be biased downward due to the use of self-
reported measures that either suffered from measurement error
or were not able to detect more subtle differences in aging that
are connected to in utero insults.
Some limitations of our study are worth mentioning. First,

because monthly macroeconomic data at the state level were
not collected in the 1930s, we were not able to identify specific
time windows or trimesters during pregnancy that may have
been especially vulnerable to economic shocks. Second, we can-
not identify why and how aggregate economic exposures were
affecting the fetal environment, or if our results were driven
more by nutritional deprivation, maternal stress, a depletion of
economic resources, or a combination of these factors. Future
research will be better poised to address these limitations as the
cost of epigenetic profiling continues to fall, enabling longitudi-
nal collection in larger population-representative studies and
field experiments.

Materials and Methods

Data.
The HRS. The HRS is a nationally representative, biannual, longitudinal panel
study of individuals over the age of 50 and their spouses that began in 1992.
The study is sponsored by the National Institute on Aging (NIA U01AG009740)
and is conducted by the University of Michigan (78). Comprehensive information
about participants’ socioeconomic background, income, assets, and employment
is collected from the time of respondent entry until death. The HRS introduces a
new cohort of participants every 6 years and interviews around 20,000 partici-
pants every 2 years.

DNA methylation data were collected as part of the 2016 HRS Venous Blood
Study (VBS). The DNAm sample is racially and socioeconomically diverse and

representative of the full HRS sample (79). In sensitivity analyses, we adjusted
for cell-type proportions using results from a WBC differential assay (80). Demo-
graphic and socioeconomic data were taken from the RAND HRS Longitudinal
File 2018 (V1) (81). Information on cause of death was taken from HRS exit
interview files (82).
State-level measures of economic conditions. The following available meas-
ures were linked to HRS participants at the year-of-birth and state-of-birth levels:
1) Wage Index (1929-1956): farm and nonfarm wages and salaries from the
Bureau of Economic Analysis (BEA) (58); 2) Employment Index (1929-1940):
employment in manufacturing and nonmanufacturing sectors (60); 3) Car Sales
Index (1929-1940): total number of car sales from the annual statistical issues
of the industry trade publication, Automotive Industries (61). Measures were
converted into indices by dividing the variable by its 1929 level and multiplying
by 100 so each state has a value of 100 in 1929. For all analyses, we
transformed the wage index to real wages using the consumer price index (base
year = 2011).
In utero exposure measure. Calendar year does not always correspond well
with the prenatal period, however monthly state-level macroeconomic data were
not available in the 1930s. To generate a more precise measure, we constructed
a weighted average of in utero exposure as follows:

mit�1

9
× wagessct�1

� �
+

mit

9
× wagessct

� �
[1]

Where mit�1 and mit reflect the approximate number of months individual i
spent in utero in t� 1 and t relative to their month of birth, and values of the
wage index are assigned according to i’s state (s) and year of birth (c). For exam-
ple, an individual born in March received an in utero wage index equal to
7
9 × wagessct�1
� �

+ 2
9 × wagessct
� �

. Since we do not know the exact number of
months spent in utero, our exposure variable is still subject to measurement
error; however, our results are larger in magnitude and more precise than in
utero measures that correspond to quarter of birth (SI Appendix, Table S20).
Epigenetic aging measures. We used six different epigenetic clocks and pace
of aging measures that were constructed by the HRS from individual CpG-level
data and are publicly available (79). Epigenetic age acceleration (EAA) was com-
puted by using the residuals from regressions of each clock on chronological age.
Residualization was not applied to DunedinPoAm since it already quantifies devia-
tions in chronological age from the expected sample norm. SI Appendix, Table S1
provides more details on the methods and number of CpG sites that were used to
compute epigenetic aging measures according to author-specific algorithms.

Empirical Framework. Our baseline specification is as follows:

EAAisc = α + βWagessc + X0i δ + Zsc + θs + ηc + uðs1930×cÞ
+ γrc + εisc

[2]

where EAAisc is the epigenetic age acceleration outcome in 2016 for individual i,
born in state s in year c. Wages represents the aggregate wage index at the state
and year levels for the in utero period as defined in Eq. 1. The matrix Xi contains
individual characteristics at baseline including sex, race, and dichotomous indica-
tors for maternal education (no degree and high school degree, omitted category
is college degree). To avoid attrition bias from listwise deletion we also include a
dichotomous indicator for missing maternal education. Zsc is a vector of state-
level characteristics around 1930 interacted with year of birth, including the
maternal mortality rate in 1929 (83), the infant mortality rate in 1928 (84), and
whether the percent of farmland in a state was above the 75th percentile nation-
ally in 1930 (85). The term uðs1930×cÞ represents a state’s share of wage earners
in manufacturing in 1929 (86, 87) interacted with year of birth fixed effects. We
include these controls because the severity of cyclical fluctuations across states
was driven in part by state differences in the proportion of manufacturing and
agricultural industries (88). The terms θs and ηc are state- and year-of-birth fixed
effects, respectively. The geographic fixed effects help absorb time-invariant differ-
ences at the state level, while the time fixed effects absorb factors that vary over
time but are invariant across states. To control for changes in regional conditions
throughout the 1930s we include region-specific linear time trends, or the term γrc .
Robust standard errors are clustered at the state-of-birth level. All models were esti-
mated using HRS sample weights for the 2016 VBS sample to adjust for sample
composition. In tables and figures, the coefficient on the wage index was flipped
so that higher values correspond to wage declines. Results are reported in SD units
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of the aging measure per SD unit of the wage index in utero, interpretable as
Pearson’s r.

Coefficients reported in Fig. 2 are from our second specification:

EAAisc = α + ∑
T=16

t=�3
βtWagessc + X0i δ + Zsc + θs + ηc + uðs1930×cÞ

+ γrc + εisc

[3]

This model is identical to the baseline specification in Eq. 2 except in addition to
the in utero term, the model also conditions on a pretrend for average wages in
years t� 3 and t� 2 and eight additional two-year averaged terms for state-level
wage exposures when individuals were between the ages of one and sixteen.

Data, Materials, and Software Availability. This study used restricted indi-
vidual level information from the HRS and our contractual agreement does not per-
mit public dissemination of the data. Details on how to access restricted HRS data
can be found at https://hrs.isr.umich.edu/data-products/restricted-data (89). All code

and publicly available, historical state-level data used in this study are posted on
github: https://github.com/laurenschmitz/great-depression-epigenetic-aging (90).
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