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The transcription variation, leading to various forms of transcripts and protein diver-
sity, remains largely unexplored in triple-negative breast cancers (TNBCs). Here, we
presented a comprehensive analysis of RNA splicing in breast cancer to illustrate the
biological function and clinical implications of tumor-specific transcripts (TSTs) arising
from these splicing junctions. Aberrant RNA splicing or TSTs were frequently harbored
in TNBC and were correlated with a poor outcome. We discovered a tumor-specific
splicing variant of macrophage receptor with collagenous structure–TST (MARCO-
TST), which was distinguished from myeloid cell-specific wild-type MARCO.
MARCO-TST expression was associated with poor outcomes in TNBC patients and
could promote tumor progression in vitro and in vivo. Mechanically, MARCO-TST
interacted with PLOD2 and enhanced the stability of HIF-1α, which resulted in the
metabolic dysregulation of TNBC to form a hypoxic tumor microenvironment.
MARCO-TST was initiated from a de novo alternative transcription initiation site that
was activated by a superenhancer. Tumors with MARCO-TST expression conferred
greater sensitivity to bromodomain and extraterminal protein inhibitors. This treat-
ment strategy was further validated in patient-derived organoids. In conclusion, our
results revealed the transcription variation landscape of TNBC, highlighting MARCO-
TST as a crucial oncogenic transcript and therapeutic target.
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Triple-negative breast cancer (TNBC) is a subtype of breast cancer lacking estrogen
receptor (ER), progesterone receptor (PR), and human epidermal growth factor recep-
tor 2 (HER2) expression that accounts for ∼15 to 20% of all breast cancers (1). Com-
pared to hormone receptor-positive or HER2-positive breast cancer, TNBC has a
higher relapse rate at an early time and fewer treatment options (2). The development
of targeted therapies for TNBC is challenging because of its molecular heterogeneity
and lack of prevalent therapeutic targets. Therefore, there is an urgent need to under-
stand the heterogeneity within TNBC and identify more actionable targets from multi-
dimensional data.
To date, genomic studies have demonstrated the driving role of genomic alterations in

TNBC, such as germline BRCA1/2 mutation, somatic TP53 mutation, and MYC amplifi-
cation (3–5). However, breast cancer was found to have a relatively low mutation frequency
among multiple cancer types (6). Therefore, other driver alterations, such as transcriptome
variations and epigenetic modifications, need to be studied (7). RNA splicing is an impor-
tant mechanism leading to transcription variation and protein diversity. In tumorigenic
states, the RNA splicing machinery is often dysregulated and therefore leads to the biogene-
sis of tumor-specific splice events (8, 9). In addition, targeting the spliceosome is selectively
effective in MYC-driven cancers, including TNBC (10, 11). Alternative transcription initia-
tion (ATI) or alternative promoter usage is also a main source of transcription variation.
Genome-wide studies have revealed that transcription start sites are frequently differentially
used in cancer (12, 13). Recently, a pan-cancer transcriptome analysis revealed that pro-
moter usage was dominated by cancer types and was associated with patient survival (14). A
novel isoform of the anaplastic lymphoma kinase (ALK) has been reported to be a variant
derived from tumor-specific ATI (ALKATI) that promotes tumorigenesis and conferred
ALK inhibitor sensitivity (15). Thus, specific alterations in transcription induce functional
impacts that drive tumor progression and confer therapeutic vulnerability.
In this study, we aimed to comprehensively analyze transcriptome variations in

TNBC and screen tumor-specific alterations for potential treatment targets. We identi-
fied 227 tumor-specific transcripts (TSTs), including a variant of macrophage receptor
with collagenous structure (MARCO), which promote tumor progression and imply
therapeutic vulnerability in TNBC.
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Results

The Landscape of RNA Splicing in TNBC. To assess the landscape
of RNA splicing in TNBCs, we collected RNA-sequencing
(RNA-seq) data of 360 TNBC patients (360 tumors and 88
paired adjacent nontumor tissues) from the Fudan University
Shanghai Cancer Center TNBC (FUSCCTNBC) cohort (SI
Appendix, Fig. S1A). RNA splicing junctions were identified using
Assembling Splice Junctions Analysis (ASJA) software. This soft-
ware could identify and characterize all splice junctions (includ-
ing linear junctions, fusion junctions, and back-splice junctions)
from high-throughput RNA-seq data (16). Junctions with low
confidence (maximum expression value [CPT] of <0.8 or
expression frequency of <1%) were filtered. Here, we identified
453,320 splice junctions from the FUSCCTNBC cohort,
including 399,297 linear junctions, 723 fusion junctions, and
53,330 back-splice junctions (Fig. 1A), and 16.6% of the junc-
tions were nonannotated junctions (SI Appendix, Fig. S1B). We
observed that 80.68% of the junctions overlapped with known
genes, and the remaining junctions originated from intergenic
regions (SI Appendix, Fig. S1C).
Since linear junctions are the main component of RNA splice

junctions, we further focused on the characteristics of linear
junctions (Fig. 1A). We first visualized the splicing pattern
across different breast cancer molecular subtypes in the Cancer
Genome Atlas (TCGA) cohort by using principal component
analysis (PCA), highlighting the molecular subtype differences
in RNA splicing (Fig. 1B). TNBC had distinctive RNA splicing
patterns from hormone receptor-positive tumors, whereas hor-
mone receptor-negative HER2-positive tumors had mixed alter-
native splicing patterns. This difference could also be observed
in terms of exon skipping patterns (SI Appendix, Fig. S1D).
Next, we sought to compare these transcriptome variations to
genomic alterations by analyzing the frequency of RNA splic-
ing, nonsynonymous mutations, and copy-number alteration
(CNA) at the gene level in the FUSCCTNBC cohort (17). We
observed that the median number of RNA splicing events was
higher than that of nonsynonymous mutations and CNAs (Fig.
1C). In addition, no correlation was found between RNA splic-
ing and nonsynonymous mutations, homologous recombination
deficiency score, or CNA (SI Appendix, Fig. S1E), suggesting
that transcription variations are not due to genomic alterations
and may have important oncogenic functions in TNBCs.
According to previous research, TNBCs are highly heteroge-

neous and can be classified into the following four messenger
RNA (mRNA) subtypes: luminal androgen receptor (LAR),
immunomodulatory (IM), basal-like immune-suppressed (BLIS),
and mesenchymal-like (MES) (18). We further evaluated the het-
erogeneity of RNA splicing with TNBC mRNA subtypes. PCA
illustrated that the BLIS subtype was clearly separated from the
other subtypes (Fig. 1D and SI Appendix, Fig. S1F). Subse-
quently, pathway analysis indicated that genes with RNA splicing
contributing to principle component 1 were particularly enriched
in DNA damage and repair pathways (SI Appendix, Fig. S1G).
Therefore, the mean difference in RNA splicing genes between
BLIS and non-BLIS tumors was associated with DNA damage
and repair functions, which is consistent with the biological fea-
tures of BLIS tumors (18). Collectively, our results provide a gen-
eral picture of transcription variation in breast cancer and suggest
that RNA splicing is pronounced in TNBC and the BLIS sub-
type has a distinct splicing pattern.

TSTs Are Strongly Associated with a Poor Prognosis in TNBC.
To identify transcriptome variations that predominantly occur

in tumor samples, we developed a computational pipeline for
the identification of tumor-specific junctions (TSJs), which was
defined as follows: 1) not detected in normal and paired adja-
cent nontumor tissues or 2) expression fold change of >10
between tumor and paired adjacent nontumor tissues (Fig. 1E
and SI Appendix, Fig. S2A). In the FUSCCTNBC cohort, we
identified 3,893 potential TSJs, and 3,521 of those TSJs could
be validated in the TCGA cohort. Next, we excluded junctions
not expressed in adjacent nontumor tissues but in normal tis-
sues from the Genotype-Tissue Expression (GTEx) database
(Fig. 1E). Finally, we included 256 TSJs with an expression fre-
quency of >5% in the FUSCCTNBC cohort for further study
(Dataset S1). Notably, most of the TSJs were unannotated
(92%) in GENCODE and derived from the intragenic region
(64%) (SI Appendix, Fig. S2B). We obtained 227 TSTs from
these TSJs, including 85 noncoding RNAs and 142 protein-
coding RNAs (Dataset S2). TSTs were frequently expressed in
TNBC, and BLIS tumors had the highest TST expression fre-
quency (SI Appendix, Fig. S2C). However, a low association of
genes with somatic mutations or TSTs was observed (SI
Appendix, Fig. S2D). Known somatic mutations in TNBC,
such as TP53 and PIK3CA, displayed no TSTs, while top-
ranked TSTs did not display mutations. Similarly, the number
of genes with mutations and TSTs showed a low correlation
(SI Appendix, Fig. S2E). This pattern supported that factors
other than genomic alterations may be major determinants of
TST expression in cancer.

To investigate the clinical significance of TSTs, we exam-
ined the association of TSTs with distant metastasis-free sur-
vival (DMFS) in the FUSCCTNBC cohort. We identified 12
TSTs that showed significant associations with worse DMFS
(hazard ratio of >1) (Fig. 1F). Moreover, we found that
patients with a high TST burden (TST-high group, TST
detection of >22 transcripts per patient) had worse survival
than patients with a low TST burden (TST-low group, TST
detection of ≤22 transcripts per patient) (Fig. 1G and SI
Appendix, Fig. S2F). Multivariate Cox proportional hazard
models also revealed that TST burden independently predicted
worse DMFS after adjusting for age at diagnosis, tumor size,
node status, Ki-67 value, tumor grade, and TNBC mRNA sub-
type (SI Appendix, Fig. S2G). Meanwhile, the nonsynonymous
mutation load was not associated with survival (SI Appendix,
Fig. S2H), indicating a more important prognostic role of TSTs
in TNBC.

We further investigated the transcriptome features of patients
with different TST burdens. Gene Set Enrichment Analysis
(GSEA) showed that metastasis- and stemness-related genes
were enriched in the TST-high group (Fig. 1H). Moreover, we
calculated the correlation of TST burden with different molec-
ular features and observed a positive correlation with the prolif-
eration index and stemness score (Fig. 1I). Meanwhile, the
TST-high group was mainly composed of BLIS subtype (SI
Appendix, Fig. S2I). In addition to TNBC mRNA subtypes,
the TST burden could partly explain the splicing diversity
among TNBCs (SI Appendix, Fig. S2J). Collectively, these
results illustrate that TST-high patients are an aggressive sub-
group with poor outcomes.

A MARCO Splicing Variant, MARCO-TST, Formed by ATI, Is Fre-
quently Expressed in TNBC. We further screened the survival-
associated TSTs in TNBC to identify TSTs with high frequency
that may have crucial biological function in TNBC (Fig. 1F and
Dataset S2). First, we observed that survival-associated TSTs
were most frequently detected in the BLIS subtype (Fig. 2A).
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Fig. 1. The landscape of RNA splicing in TNBC. (A) The fraction and number of linear, fusion, and back-splice junctions in the FUSCCTNBC cohort. (B) PCA of
splicing junctions of breast cancer tissues in the TCGA cohort (n = 548) using the CPT of splicing junctions. Ellipses are drawn for the 68% confidence zone.
HR, hormone receptor. (C) The number of DNA or RNA alterations across TNBCs in the FUSCCTNBC cohort. The samples were ordered by the number of
alternative splicing events per sample from high to low. The bar plot shows the median number of DNA or RNA alterations. SNV, single nucleotide variants;
CNV, copy number variation. (D) PCA of splicing junctions of TNBC in the FUSCCTNBC cohort (n = 360) using the CPT of splicing junctions. Ellipses are drawn
for the 68% confidence zone. (E) The workflow for the identification and validation of TSTs in TNBC. (F) Detection frequency and hazard ratio of each TST.
The Top Box indicates the detection frequency. The Bottom Box shows the hazard ratio of DMFS, and orange points represent survival-associated TSTs. The
P values were calculated using the Cox regression model. (G) Kaplan-Meier plots for the overall survival (OS) of patients with high TST burden (>22 tran-
scripts) and low TST burden (≤22 transcripts). The P values were calculated using the log-rank test. (H) GSEA plots showing the enrichment of metastasis-
and progenitor-related gene sets in high-TST-burden patients compared to low patients. (I) Correlation of TST burden with proliferation and stemness scores
in the FUSCCTNBC cohort. Pearson’s correlation coefficient was used to determine the correlation (SI Appendix, Figs. S1 and S2 and Datasets S1 and S2).
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Of these TSTs, we indicated that macrophage receptor with col-
lagenous structure-TST (MARCO-TST) showed the highest fre-
quency (16.4%) and was significantly enriched in BLIS (30.9%)
tumors (Fig. 2 A and B). Notably, with external validation in the
pan-cancer analysis of the TCGA cohort, we noticed that
TNBC had the highest frequency of MARCO-TST expression
among multiple cancer types (Fig. 2C). MARCO-TST is a splic-
ing variant of MARCO that contains three extra exons at the 50
end, and the exon 4 is identical to exon 2 of wild-type MARCO
(MARCO-WT), which suggested an ATI site upstream of
MARCO-WT (SI Appendix, Fig. S3A). We acquired the full-
length sequence through short-read and long-read RNA-seq data
from HCC1599 cells (SI Appendix, Fig. S3B). Then, PCR and
Sanger sequencing were performed to confirm the full-length
sequence of MARCO-TST with specific primers (SI Appendix,
Fig. S3C). Likewise, qRT-PCR could detect MARCO-TST
expression in 15% of TNBCs but not in paired adjacent nontu-
mor tissues or non-TNBC tissues (SI Appendix, Fig. S3D).
Therefore, we discovered a variant of MARCO that is selectively
expressed in TNBC; thus, we need to further study MARCO-
TST expression, regulation, and function in TNBC.

MARCO-TST Distinguished from MARCO-WT Is Expressed in
Tumor Cells and Is Correlated with Decreased Survival in TNBC
Patients. Previous studies have shown that MARCO is a
marker of M2 macrophages (19). To further investigate the
expression pattern of MARCO-TST and -WT in different cell
populations, we sorted tumor cells and immune cells from
TNBC tumor tissues. We observed that MARCO-TST was
expressed in EPCAM+CD45� tumor cells, while MARCO-
WT was expressed in EPCAM�CD45+ immune cells (Fig.
2D). In addition, RNA splicing junction data of cell lines from
the Cancer Cell Line Encyclopedia (CCLE) database showed
that MARCO-TST was mainly expressed in solid tumor cell
lines, including breast and brain tumors, while MARCO-WT
was specifically expressed in hematopoietic cells, including a
macrophage cell line (THP-1) (Fig. 2E). Moreover, the qRT-
PCR assay showed that two TNBC cell lines (HCC38 and
HCC1599) had MARCO-TST expression, which was not
detected in normal or luminal breast cancer cell lines (Fig. 2F).
On the other hand, MARCO-WT could be detected in periph-
eral blood mononuclear cells and THP-1 cells but not in breast
normal cells or tumor cells, including HCC38 and HCC1599.
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FUSCCTNBC cohort. (I) Kaplan–Meier plot of
the DMFS of TNBC patients with MARCO-TST
or MARCO-WT expression in FUSCCTNBC
cohort. The P values were calculated using the
log-rank test. **P < 0.01; ***P < 0.001. In B, C,
and H, the P values were calculated using the
two-tailed χ2 test. In G, the P values were calcu-
lated using the Wilcoxon rank-sum test. See
also SI Appendix, Fig. S3 and Table S1.
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Collectively, these results suggest that MARCO-TST is a
tumor-cell-specific expressed transcript, while MARCO-WT is
selectively expressed in immune cells.
We further explored the association of MARCO-TST and

MARCO-WT with tumor progression in TNBC. Within the
FUSCCTNBC cohort, MARCO-TST expression was associ-
ated with prognostic clinical factors, including tumor grade and
Ki-67 value of TNBCs but not with tumor size or node status
(Fig. 2G and SI Appendix, Table S1). Moreover, MARCO-
TST-positive patients had a higher probability of lung metasta-
sis and shorter survival than MARCO-TST-negative patients
(Fig. 2 H and I). A similar trend was also observed in the
TCGA cohort but with no significant difference due to the small
sample size (SI Appendix, Fig. S3E). However, MARCO-WT
showed no association with patient outcomes in TNBCs (Fig. 2I
and SI Appendix, Fig. S3E). These results suggested that MARCO-
TST was distinguished from MARCO-WT as a tumor-specific
splicing variant as well as a potential oncogenic transcript in TNBC.

MARCO-TST Promotes TNBC Tumor Growth and Metastasis.
Evaluation of the sequence of MARCO-TST revealed a start
codon AUG in frame with the UGA stop codon of MARCO-WT
(Fig. 3 A, Upper Panel). Translation from AUG to UGA is pre-
dicted to encode a larger form of MARCO of 535 amino acids (SI
Appendix, Fig. S4A). The two proteins shared the same transmem-
brane, spacer, collagen-like, and scavenger receptor cysteine-rich
domains but contained different cytoplasmic domains (Fig. 3 A,
Lower Panel). Western blotting of LM2 and BT549 cells ectopi-
cally expressing full-length MARCO-TST and MARCO-WT
showed bands at 70 kDa and 68 kDa, respectively (Fig. 3B).
Furthermore, the unique cytoplasmic domain resulting from
MARCO-TST was confirmed by searching mass spectrometry
data from the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) project (Fig. 3C). To explore the oncogenic function
of MARCO-TST, we designed three small interfering RNA (siR-
NAs) targeting the unique sequence of MARCO-TST and
screened siRNAs that can readily knockdown MARCO-TST
expression (SI Appendix, Fig. S4 B and C). MARCO-TST
knockdown resulted in decreased cell migration and proliferation
capacity in MARCO-TST-expressing HCC38 cells (Fig. 3 D
and E). Moreover, these siRNAs had no effect in BT549 cells
lacking MARCO-TST. Next, we examined whether the function
of MARCO-TST depends on the genetic context of MARCO-
TST-positive cells. We found that ectopic expression of
MARCO-TST could also enhance the migration, invasion, and
proliferation capacity of LM2 and BT549 cells (Fig. 3 F–H).
These effects could be abrogated with MARCO-TST depletion
in MARCO-TST-overexpressing HCC38 or LM2 cells (SI
Appendix, Fig. S4 D–G). To validate our findings in vivo, an
orthotopic injection of LM2 cells stably ectopically expressing
MARCO-TST or an empty vector into female NOD/SCID
mice was established. We observed that MARCO-TST enhanced
tumor growth and lung and bone metastasis in vivo (Fig. 3 I–L).
Collectively, these results indicate that the MARCO-TST pro-
tein promotes TNBC tumor growth and distant metastasis.

MARCO-TST Enhances HIF-1α Protein Stability. To elucidate
the molecular mechanisms by which MARCO-TST promotes
cancer progression, we performed RNA-seq gene expression pro-
filing of MARCO-TST-expressing or control LM2 cells. GSEA
indicated that the top 4 gene sets enriched in MARCO-TST-
expressing cells were all related to the hypoxia pathway (Fig.
4A). Similar results were obtained in MARCO-TST-positive
TNBC patients (SI Appendix, Fig. S5 A and B). To further

confirm this result, we evaluated the hypoxia status of tumor
samples in the FUSCCTNBC cohort using a 15-gene expression
signature (20, 21). Indeed, TNBC tumors with MARCO-TST
expression showed significantly higher hypoxia scores than those
without MARCO-TST expression (Fig. 4B). Collectively, these
results suggested that MARCO-TST might contribute to the
hypoxic response in tumor.

Hypoxia-inducible factor 1α (HIF-1α) is a major mediator
of the hypoxic response and regulates the expression of genes
involved in controlling O2 homeostasis (22). Therefore, we
assessed whether MARCO-TST expression could induce HIF-
1α expression. qRT-PCR assays showed that knockdown of
MARCO-TST had little effect on HIF1A mRNA levels (Fig.
4C). However, HIF-1α target genes, including LOX, CA9,
LDHA, and VEGFA, were reduced in HCC38 cells with
MARCO-TST knockdown (Fig. 4C). MARCO-TST expres-
sion increased HIF-1α protein levels under both normoxic and
hypoxic conditions (Fig. 4 D and E). Similarly, MARCO-TST
knockdown decreased the protein expression level of HIF-1α in
the HCC38 cell line (Fig. 4F). In addition, ectopic expression
of MARCO-WT in tumor cells also increased the HIF-1α pro-
tein (SI Appendix, Fig. S5C). Therefore, these results indicated
that MARCO-TST positively regulates HIF-1α at the protein
level, resulting in hypoxia pathway activation.

Since MARCO-TST had little effect on HIF1A mRNA lev-
els, we hypothesized that MARCO-TST could enhance HIF-1α
protein stability. To determine the half-life of HIF-1α, LM2
cells with MARCO-TST expression and control cells were
treated with the protein synthesis inhibitor cycloheximide
(CHX) for different time periods. The half-life of the HIF-1α
protein was significantly increased with MARCO-TST overex-
pression (Fig. 4G). Importantly, treatment with the proteasome
inhibitor MG132 abolished the effect of MARCO-TST on
HIF-1α protein levels in MARCO-TST-silenced and MARCO-
TST-overexpressing cells (Fig. 4H and SI Appendix, Fig. S5D),
suggesting that HIF-1α is subjected to ubiquitination-mediated
proteasomal degradation and its protein stability is regulated by
MARCO-TST. Consistently, the HIF-1α ubiquitination level was
also decreased in MARCO-TST-expressing cells (Fig. 4I). Previous
studies have shown that the ubiquitination-dependent degradation
of HIF-1α is mediated by its proline hydroxylation status at P402
and P564 (23–25). We used an antibody against hydroxylated
HIF-1α (P564), and we found that MARCO-TST overexpression
decreased HIF-1α hydroxylation in HEK293T and BT549 cells,
while knockdown of MARCO-TST increased proline hydroxyl-
ation in HCC38 cells (Fig. 4 J and K). Then, we transfected the
HIF1A-P402/P564 mutant vector into HEK293T MARCO-
TST-expressing cells and HCC38 MARCO-TST-silenced cells.
The HIF1A-P402/P564 mutant abrogated MARCO-TST-mediated
HIF-1α activation (SI Appendix, Fig. S5 E and F). Together, these
results supported our hypothesis that MARCO-TST enhances
HIF-1α protein stability by reducing proline hydroxylation.

MARCO-TST Enhances HIF-1α Stability by Interacting with
PLOD2. To investigate the mechanism by which MARCO-TST
enhances HIF-1α stability, we performed coimmunoprecipitation
(Co-IP) assays combined with stable isotope labeling with amino
acids in cell culture (SILAC)-based quantitative proteomics to
identify proteins associated with MARCO-TST. Stable isotopes
of Lys8 and Arg10 (heavy) and Lys0 and Arg0–labeled (light)
HEK293T cells were transfected with Flag-tagged MARCO-
TST plasmid and empty vector, respectively. We identified 9
proteins that may interact with MARCO-TST (Fig. 5A), and the
procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD) family
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Fig. 3. MARCO-TST drives TNBC tumor growth and metastasis. (A) Illustration of MARCO transcript variants (Top) and corresponding protein isoforms (Bot-
tom). TM, transmembrane domain; Col, collagen-like domain; SRCR, scavenger receptor cysteine-rich domain. (B) Western blots of Flag in LM2 and BT549
cells transfected with Flag-tagged MARCO-TST or -WT. (C) The N-terminal domain of MARCO-TST was detected using mass spectrometry data from the CPTAC
database. Peptides detected are depicted in red at their mapping position onto the protein sequence. (D and E) Migration (D) and proliferation (E) assays of
HCC38 and BT549 cells transfected with MARCO-TST siRNAs. Scale bar, 100 μm. (F and G) Migration and invasion assays of BT549 (F) and LM2 (G) cells stably
expressing control, MARCO-TST, or MARCO-WT plasmids. (H) Proliferation assay of LM2 and BT549 cells stably expressing control, MARCO-TST, or MARCO-
WT plasmids. (I) Representative lung and bone images (Left) and BLI quantitative data (Right) of mice 8 wk after tumor cell injection. n = 8 lungs and n = 16
bones per group. (J–L) Images of tumors (J), tumor volume (K), and tumor weight (L) after dissection of MARCO-TST-overexpressing LM2 cells injected ortho-
topically into the mammary fat pad of NOD/SCID mice (n = 8). Scale bar, 2 cm. Data are represented as the mean ± SD; *P < 0.05; **P < 0.01; ***P < 0.001.
The P values were calculated using two-tailed Student’s t test (SI Appendix, Fig. S4).
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had the highest binding ratio (heavy/light). The PLOD family is a
collagen-modifying enzyme and plays an important role in cancer
progression (26–29). Co-IP assays further confirmed the binding
of PLOD2 and PLOD3 to MARCO-TST (Fig. 5B and SI
Appendix, Fig. S6 A and B). However, silencing PLOD2 but not
PLOD3 repressed cell migration in TNBC cell lines (SI Appendix,
Fig. S5C). Therefore, we inferred that MARCO-TST could medi-
ate tumor progression by interacting with PLOD2. In addition,
PLOD2 could also bind to MARCO-WT in HEK293T cells with
ectopic expression of MARCO-WT (SI Appendix, Fig. S6 A and
B). However, PLOD2 and MARCO variants showed different
expression patterns between different cell types (SI Appendix, Fig.
S6D). PLOD2 is selectively coexpressed with MARCO-TST in
tumor cells instead of MARCO-WT. Therefore, MARCO-WT
does not facilitate its function by interacting with PLOD2. To

determine the binding region of MARCO-TST necessary for
its association with PLOD2, we obtained a series of MARCO-
TST truncation mutants (SI Appendix, Fig. S6 E, Upper Panel)
according to the domains of MARCO (30). We found that the
transmembrane domain of MARCO-TST was the major region
binding to PLOD2 (SI Appendix, Fig. S6 E, Lower Panel). Fur-
thermore, confocal microscopy assays showed colocalization of
MARCO-TST and PLOD2 in the cytoplasm (SI Appendix,
Fig. S6F). Together, these results indicated that the transmem-
brane domain of MARCO-TST was responsible for binding
with PLOD2.

With the observation that MARCO-TST interacts with
PLOD2, we further explored the function of this interaction.
We first found that MARCO-TST had no effect on PLOD2
protein stability (SI Appendix, Fig. S7A). PLOD2 is an
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Fig. 4. MARCO-TST enhances HIF-1α protein stability. (A) GSEA of pathways significantly enriched (P < 0.05) in MARCO-TST-overexpressing LM2 cells, show-
ing the top ten enriched pathways. NES, normalized enrichment score. (B) The hypoxia score of TNBC tumors with or without MARCO-TST expression in the
FUSCCTNBC cohort. Neg, negative; pos, positive. (C) qRT-PCR analysis of HIF1A and its target genes in MARCO-TST-silenced HCC38 cells. siNC, scrambled
siRNA; siTST, MARCO-TST siRNA. Data are represented as the mean ± SD; ***P < 0.001. The P values were calculated using two-tailed Student’s t test.
(D and E) Immunoblot analysis of HIF-1α protein levels in MARCO-TST-expressing LM2 (D) and BT549 cells (E) under normoxic and hypoxic conditions.
(F) HIF-1α protein levels in MARCO-TST-silenced HCC38 cells under normoxic and hypoxic conditions. (G) Immunoblot analysis of HIF-1α protein levels in con-
trol and MARCO-TST-expressing LM2 cells treated with CHX (50 μg/mL) for different times. (H) HIF-1α protein levels in MARCO-TST-silenced HCC38 cells with
or without proteasome inhibitor (MG132) treatment. NC, scrambled siRNA. (I) Immunoprecipitation and Western blot analysis of HIF-1α ubiquitination in con-
trol and MARCO-TST-expressing HEK293T cells treated with MG132 for 8 h. (J and K) Analysis of the hydroxylation level of HIF-1α in MARCO-TST-expressing
HEK293T and BT549 cells (J) or MARCO-TST-silenced HCC38 cells (K) (SI Appendix, Fig. S5).
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intracellular enzyme that catalyzes procollagen lysyl hydroxyl-
ation, which is a critical step of collagen biosynthesis (31, 32).
Previous reports showed that PLOD2 activity relied on homo-
dimerization formation (33–35). Therefore, we speculated that
MARCO-TST might bind with PLOD2 and affect its dimer-
ization. Nonreduced immunoblot analysis of endogenous
PLOD2 showed that dimerization was decreased with the
depletion of MARCO-TST in HCC38 cells (Fig. 5C). Since
the dimerization of PLOD2 was increased by MARCO-TST,
we hypothesized that the modulation of procollagen might be

promoted. Indeed, we found that the secretion of type IV colla-
gen was increased by the overexpression of MARCO-TST (SI
Appendix, Fig. S7B), and collagen deposition was also increased
in MARCO-TST-expressing tumor tissues (SI Appendix, Fig.
S7C). These results indicated that MARCO-TST could interact
with PLOD2 and enhance its biological function.

Similar to MARCO-TST, PLOD2 knockdown decreased
HIF-1α protein levels regardless of oxygen conditions, while
PLOD3 depletion showed no impact on HIF-1α (Fig. 5D
and SI Appendix, Fig. S7D). The hydroxylation of HIF-1α
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LM2 cells expressing MARCO-TST with PLOD2 depletion. (H) HIF-1α protein levels in MARCO-TST knockdown HCC38 cells transfected with full-length PLOD2
or mutants lacking the hydroxylase domain (ΔPKHD). (I) Schematic of the mechanism by which MARCO-TST regulates HIF-1α stability via PLOD2 and α-KG.
Lys, lysine. (J) Cytoplasmic α-KG levels were measured in control and MARCO-TST-silenced HCC38 cells. (K) HIF-1α protein levels were assessed in control and
MARCO-TST-expressing LM2 cells in the presence or absence of octyl-α-KG. Data are represented as the mean ± SD; *P < 0.05; ***P < 0.001. The P values
were calculated using two-tailed Student’s t test (SI Appendix, Figs. S6 and S7).
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was reduced in PLOD2-expressing HEK293T cells, and
hydroxylation-deficient mutants restored this effect (SI Appendix,
Fig. S7 E and F). These results suggested that PLOD2 could
modulate HIF-1α protein stability. Silencing PLOD2 completely
abolished the induction of the proliferation and migration eli-
cited by MARCO-TST overexpression (Fig. 5 E and F), indicat-
ing that PLOD2 is a critical mediator of this phenotype. On the
other hand, repressing MARCO-TST partly abolished the phe-
notype induced by PLOD2 overexpression (SI Appendix, Fig. S7
G and H). Silencing PLOD2 abrogated the HIF-1α protein
increase induced by MARCO-TST overexpression (Fig. 5G).
However, the PLOD2 mutant lacking the hydroxylase domain
(ΔPKHD) failed to restore the HIF-1α protein in MARCO-
TST-depleted HCC38 cells (Fig. 5H). Therefore, MARCO-TST
increased HIF-1α protein levels by relying on PLOD2 enzyme
activity. Consistently, the assessment of HEK293T cells with
MARCO-TST truncated mutants showed that truncated mutants
Δ2 and Δ3, lacking PLOD2 binding sites, failed to increase HIF-
1α (SI Appendix, Fig. S7I). Collectively, these results illustrated
that the association with PLOD2 is required for MARCO-TST
to promote tumor progression and enhance HIF-1α stability.
HIF-1α is hydroxylated by an α-ketoglutarate (α-KG)-

dependent prolyl hydroxylase domain (PHD) (36–38), and
α-KG can increase PHD activity, leading to increased degrada-
tion of HIF-1α (39, 40). P4HA1, an α-KG-dependent dioxyge-
nase that catalyzes the 4-hydroxylation of procollagen, reduces
PHD activity to enhance the stability of HIF-1α by modulating
α-KG levels (41). We therefore inferred that MARCO-TST
might reduce PHD activity by reducing the concentration of
α-KG via PLOD2 (Fig. 5I). The α-KG quantification assay
showed that depletion of MARCO-TST increased the α-KG
levels (Fig. 5J). Notably, HIF-1α activation was abrogated in
MARCO-TST-overexpressing HEK293T cells with the addi-
tion of octyl-α-KG. (Fig. 5K). Collectively, MARCO-TST
increases HIF-1α protein levels by modulating α-KG levels.

MARCO-TST Is Activated by Its Upstream Superenhancer. To
characterize the transcriptional regulation of MARCO-TST, we
examined chromatin immunoprecipitation sequencing (ChIP-seq)
profiles of H3K27ac, H3K4me1, and H3K4me3 in macrophages
(MARCO-WT-expressing) and HCC1599 (MARCO-TST-
expressing) cell lines. ChIP-seq and ChIP-qCPR data revealed
that only MARCO-TST-expressing cells had a significant enrich-
ment of markers of active promoters (H3K27ac and H3K4me3)
at the promoter of MARCO-TST but not MARCO-WT (Fig.
6A and SI Appendix, Fig. S8 A and B). These data indicated that
MARCO-TST originates from a newly established transcription
initial site. Notably, ChIP-seq data on H3K27ac and K3K4me1
indicated that a putative enhancer (occupied by H3K27ac and
H3K4me1) exists in the upstream region of MARCO-TST in
HCC1599 cells (Fig. 6A and SI Appendix, Fig. S8C). This
enhancer existed only in MARCO-TST-positive cells but not in
MARCO-TST-negative or non-TNBC cells (Fig. 6B). The land-
scape of enhancers in HCC1599 cells showed that this enhancer
was a superenhancer and ranked as one of the most H3K27ac-
enriched superenhancers (Fig. 6C). Enhancer RNAs (eRNAs) are
products of active enhancers and are associated with enhancer
activity (42, 43). To validate the activity of the MATCO-TST
superenhancer in patient samples, we extracted the eRNA expres-
sion profile of the TCGA cohort from the eRic database (http://
hanlab.uth.edu/eRic) (44). We identified a cluster of eRNAs
located at the MARCO-TST superenhancer that showed a
positive correlation with MARCO-TST mRNA expression (SI
Appendix, Fig. S9 A and B). Indeed, MARCO-TST-associated

eRNAs exhibited much higher expression levels in MARCO-
TST-positive tumors than in MARCO-TST-negative tumors (SI
Appendix, Fig. S9C). High-throughput chromosome conforma-
tion capture (Hi-C) data showed a significant increase (3.68-fold)
in MARCO-TST promoter-enhancer contact in HCC1599 cells
compared to human mammary epithelial cells (SI Appendix,
Fig. S9D). The luciferase reporter assay confirmed higher
transcription-enhancing activity in HCC38 cells transfected with
the MARCO-TST promoter-enhancer vector than in those trans-
fected with the MARCO-TST promoter vector (Fig. 6 D and E).
To verify the role of superenhancers in regulating MARCO-TST
transcription, we quantified the mRNA level of MARCO-TST
with bromodomain (BRD) and extraterminal (BET) inhibitor
treatment (JQ1 and OTX015), a competitive inhibitor that
blocks BRD4 from binding to acetylated lysine residues at
superenhancers and specifically diminishes the expression of
superenhancer-driven genes (45, 46). Indeed, the mRNA level of
MARCO-TST was repressed by JQ1 and OTX015 treatment
(Fig. 6F). Similarly, the expression of MARCO-TST-associated
eRNA could be depleted by BET inhibitors (SI Appendix, Fig.
S9E). Moreover, ChIP-qPCR assays showed that JQ1 decreased
the occupancy of H3K27ac and BRD4 at the MARCO-TST
superenhancer site in HCC38 and HCC1599 cells (Fig. 6G).
Together, our data indicated that the superenhancer-driven
expression of MARCO-TST and BET inhibitors could abolish
this mechanism.

Previous studies illustrated that DNA methylation is an
important mechanism activating ATI (15, 47). We retrieved
methylation data from the TCGA cohort. We found a signifi-
cantly higher methylation level at the promoter regions in
MARCO-TST-negative tumor samples than in MARCO-TST-
positive samples (SI Appendix, Fig. S10 A and B). To test
whether demethylation was sufficient to induce MARCO-TST
expression, we treated MDA-MB-231 cells with the DNA
methyltransferase inhibitor 5-aza-deoxycytidine (5-AZA). qRT-
PCR assays showed that MARCO-TST transcription was increased
under 5-AZA treatment in both MARCO-TST-positive and
MARCO-TST-negative cells (SI Appendix, Fig. S10C).

MARCO-TST Expression Confers Sensitivity to BET Inhibitors
in TNBC Tumors. BET inhibitors are a class of compounds tar-
geting the BRD family (including BRD2, BRD3, and BRD4)
and have entered several clinical trials for solid tumors and
hematological malignancies (48). Preclinical studies have dem-
onstrated the preferential sensitivity of selective TNBC cells to
BET inhibitors (49, 50). The selectivity of BET inhibition
arises from the localization of BRD proteins to superenhancers
that regulate oncogenic transcriptional programs (51, 52). Since
BET inhibitors could regulate MARCO-TST transcription, we
first investigated whether MARCO-TST-expressing cells were
sensitive to BET inhibitors. We observed that TNBC cell lines
with MARCO-TST expression (HCC1599 and HCC38) were
more sensitive to BET inhibitors (OTX015) (SI Appendix, Fig.
S11A). Validating these findings, we observed a similar associa-
tion in six patient-derived organoids (Fig. 6H and SI Appendix,
Fig. S11B), which exhibited differential sensitivity to OTX015.
To determine the antitumor efficacy of OTX015 in vivo, we
transplanted HCC1599 cells into the mammary fat pads of
female NOD/SCID mice. Treatment with OTX015 significantly
induced tumor regression (Fig. 6 I and J and SI Appendix,
Fig. S11C). Further immunohistochemical analysis showed that
OTX015 significantly reduced cell growth and HIF-1α protein
levels in tumor tissues (SI Appendix, Fig. S11 D and E). Overall,
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these data support that BET inhibitors are a promising treatment
strategy for TNBCs with MARCO-TST expression.

Discussion

Transcription variation has been shown to have an important
role in TNBC and multicancer development and progression
(53–55), but a complete picture of transcription variation
in TNBC is still missing. In this study, we focused on the

transcription variation in TNBC using the largest multiomics
TNBC cohort (to date). We found that TSTs are commonly
expressed in TNBC and have important prognostic value. Then,
we identified a high-frequency oncogenic TST, MARCO-TST,
derived from an alternation transcription initiation site for
MARCO and sporadically expressed in other cancer types. We
found that MARCO-TST cooperates with PLOD2 to promote
tumor growth and metastasis by activating the hypoxia pathway.
Furthermore, we discovered that MARCO-TST is driven by a
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Fig. 6. MARCO-TST expression is regulated by its proximal upstream superenhancer and conferred BET inhibitor sensitivity. (A) ChIP-seq tracks showing the
H3K27ac, H3K4me1, and H3K4me3 binding patterns of the MARCO-TST and MARCO-WT loci in macrophages and HCC1599 cells. The promoter and
enhancer regions were shadowed in yellow and red, respectively. (B) ChIP-seq tracks showing the H3K27ac binding pattern of the MARCO-TST enhancer
region in MCF-7, T47D, MDA-MB-231, CAL51, SUM159, and HCC1599 cells. (C) Rank order of the H3K27ac signal at enhancer loci in HCC1599 cells. Superen-
hancers are shown in gray points, and the SE at the proximal upstream of MARCO-TST is labeled. (D) Schematic of MARCO-TST superenhancers showing E1
to E3 DNA segments. (E) Luciferase activity of MARCO-TST superenhancers in HCC38 cells. (F) qRT-PCR analysis of MARCO-TST mRNA and eRNA levels in
HCC38 or HCC1599 cells treated with 1 μM JQ1 or 1 μM OTX015 for 24 h. (G) ChIP-qPCR analysis of H3K27ac and BRD4 occupancy on the enhancer region of
MARCO-TST in HCC38 cells treated with 1 μM JQ1 for 24 h. Primers (E4) used in this assay are shown in SI Appendix, Fig. S8A. (H) Viability assays in six TNBC
patient-derived organoid models. The individual IC50 values and representative bright-field images of organoids treated with OTX015 are shown. Scale bars,
200 μm. PDO, patient-derived organoid. (I and J) Tumor growth (I) and image of tumors (J) of HCC1599 cell-implanted NOD/SCID mice (n = 8) treated with
vehicle (n = 8) or OTX015 (n = 8). Scale bar, 2 cm. (K) Model of transcriptional regulation of MARCO-TST in TNBC and targeting MARCO-TST-positive TNBC
tumors with BET inhibitors. BETi, bromodomain and extraterminal inhibitor. Data are presented as the mean ± SD; *P < 0.05; **P < 0.01; ***P < 0.001. The
P values were calculated using two-tailed Student’s t test (SI Appendix, Figs. S8–S11).
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superenhancer on which MARCO-TST-positive tumors depend
the most. Importantly, preclinical models illustrated that
MARCO-TST could reflect the response to BET inhibitors in
TNBC patients (Fig. 6K).
ATI led to the expression of MARCO-TST. Similarly, ALK

has been reported to be a variant derived from tumor-specific
ATI (15). In our study, MARCO-TST, but not MARCO-WT,
was frequently expressed in TNBC and was identified as a pre-
dictor of worse survival. However, according to our data, the
function of MARCO-TST was similar to that of ectopically
expressed MARCO-WT in tumor cells, as it promoted cell pro-
liferation, migration, and invasion. Since studies of MARCO
have mainly been conducted in macrophages (56, 57), we
hypothesize that the difference in prognostic value between
MARCO-TST and MARCO-WT is due to the mutually exclu-
sive expression pattern. We found that MARCO-TST and
MARCO-WT were predominantly expressed in tumor cells and
macrophages, respectively. Consistent with our study, ALK var-
iants (ALKATI, ALKF1174L, EML4–ALK, and wild-type ALK)
have similar functional effects in terms of activating the ALK
pathway and tumorigenesis (15).
In contrast to other alternative splicing events, such as exon

skipping, which regulate gene isoform expression posttranscrip-
tionally by splicing factors, alternative transcription initially
provides a way to regulate gene isoform expression pretranscrip-
tionally. Therefore, changes in genomic and epigenomic land-
scapes affect the initial transcription event (58–60). As expected,
we found an H3K27ac signal at the promoter site of MARCO-
TST, and this signal was only enriched in MARCO-TST-
expressing cells. Surprisingly, the H3K27Ac signal spanning as
much as 40 kb on the chromosome suggested an enhancer site
upstream of MARCO-TST. The luciferase reporter assay further
confirmed that the core enhancer region could enhance the
activity of the MARCO-TST promoter. A previous study dem-
onstrated that CpG hypomethylation at the promoter site was
the mechanism of ATI activation (15, 47, 61). This mechanism
was also validated at the promoter region of MARCO-TST. In
addition, demethylation treatment (5-AZA) not only induced
the expression of MARCO-TST but also increased enhancer
activity according to the eRNA level.
Since BET BRDs are transcriptional regulators of MARCO-

TST, we found that BET inhibitors are also preferentially effec-
tive at inhibiting MARCO-TST-positive tumor cell and organoid
growth. BET inhibitors are currently under phase I/II clinical tri-
als for patients with solid tumors and hematologic malignancies
(62). Preclinical studies have demonstrated that TNBC has prefer-
ential sensitivity to BET inhibitors compared to other breast can-
cer subtypes (49, 50), but biomarkers of BET inhibitors are still
lacking. Considering that the mechanism underlying the antitu-
mor activity of BET inhibitors is attributed to selective disruption
of superenhancer-associated proteins (63, 64), we speculate that
BET inhibitors have selective antitumor activity in MARCO-
TST-expressing TNBC. Upon BET inhibitor treatment, BET
was displaced from the MARCO-TST enhancer and repressed
tumor growth. Our study shows that MARCO-TST, as a target
gene of BET, predicts the sensitivity of tumors to BET inhibitors.
Several limitations of this study should be considered. We

have revealed the dysregulation of transcription among breast
cancer, but the mechanism driving this phenomenon was unde-
termined. However, we proposed a correlation analysis between
genetic alterations and transcription variation, which showed a
limited positive relationship. Although we used patient-derived
organoids to partly mimic the treatment effect on patients, the
clinical effect of BET inhibitors in MARCO-TST-positive

TNBC patients should be further investigated. An important
extension of the present work is to evaluate the potential of
TST-generating neoantigens. We have been performing the
proteome analysis of this TNBC cohort, which can provide
opportunities to assess the immunogenicity of splicing-derived
neoantigens and the significance of TST neoantigen burden as
a biomarker of immunotherapy in TNBC.

In summary, in this study, we assessed the alterations in the
transcriptome of TNBC and identified MARCO-TST, which
is required for TNBC cell proliferation and metastasis induced
by activating the hypoxia pathway. On the basis of our preclini-
cal results, we suggest that BET inhibitors could repress the
growth of MARCO-TST-expressing TNBC tumors and that
MARCO-TST could be a potential biomarker for patient treat-
ment selection. As transcriptome alterations in TNBC have not
been described before, our study opens opportunities to explore
the contribution of transcription variation to tumor progres-
sion, diagnosis, and treatment.

Materials and Methods

To systematically analyze RNA splicing in TNBC, we analyzed the RNA-seq data
for 360 TNBC tumors and 88 paired nontumor tissues (Sequence Read Archive
[SRA]: SRP157974) by using ASJA software. To detect MARCO-TST and -WT tran-
scripts, we designed specific primers for exons 1 and 2 of MARCO-TST and exon 1
of MARCO-WT. The primer sequences are listed in SI Appendix, Table S2. The full-
length complementary DNAs of MARCO-TST and -WT were amplified from
HCC1599 cells and cloned into a pcDNA3.1 vector. Transwell migration and Matri-
gel invasion assays were performed to assess cell invasiveness, and CCK-8 assays
were performed to assess cell viability. Transcriptome sequencing of the LM2 cells
was performed on the NovaSeq 6000 sequencing system. For xenograft models,
tumor cells were orthotopically injected directly into the inguinal mammary fat
pads of NOD/SCID mice. To assess the in vivo drug sensitivity, OTX015 (50 mg/kg)
was given orally daily. More detailed methods are provided in the SI Appendix.

Data, Materials, and Software Availability. The microarray data and
sequence data for the FUSCCTNBC cohort have been deposited in the NCBI
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo; OncoScan
array; GEO: GSE118527) and SRA (https://www.ncbi.nlm.nih.gov/sra; whole
exome sequencing and RNA-seq; SRA: SRP157974). The RNA-seq data for the
TCGA cohort, CCLE, and GTEx project are available in a public repository from the
https://gdc.cancer.gov/, https://sites.broadinstitute.org/ccle, and https://www.
gtexportal.org/home/ websites. The ChIP-seq data used in this research could be
downloaded from the NCBI GEO (https://www.ncbi.nlm.nih.gov/geo; GSE214133,
GSE69112, GSE116871, and GSE109440). Other data needed to evaluate the
conclusions of this paper are presented in the paper and the SI Appendix.
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