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Summary
The regulation of gene expression plays an essential role in both the phenotype and adaptation

of plants. Transcriptome sequencing enables simultaneous identification of exonic variants and

quantification of gene expression. Here, we sequenced the leaf transcriptomes of 287 rice

accessions from around the world and obtained a total of 177 853 high-quality single nucleotide

polymorphisms after filtering. Genome-wide association study identified 44 354 expression

quantitative trait loci (eQTLs), which regulate the expression of 13 201 genes, as well as 17 local

eQTL hotspots and 96 distant eQTL hotspots. Furthermore, a transcriptome-wide association

study screened 21 candidate genes for starch content in the flag leaves at the heading stage.

HS002 was identified as a significant distant eQTL hotspot with five downstream genes enriched

for diterpene antitoxin synthesis. Co-expression analysis, eQTL analysis, and linkage mapping

together demonstrated that bHLH026 acts as a key regulator to activate the expression of

downstream genes. The transgenic assay revealed that bHLH026 is an important regulator of

diterpenoid antitoxin synthesis and enhances the disease resistance of rice. These findings

improve our knowledge of the regulatory mechanisms of gene expression variation and complex

regulatory networks of the rice genome and will facilitate genetic improvement of cultivated rice

varieties.

Introduction

The phenotypic polymorphism of a species is generally defined by

genetic variations, and the associations between them are

established through genetic methods such as genome-wide

association studies (GWAS). (Huang et al., 2012; Wang

et al., 2015). Gene expression is an essential molecular mecha-

nism linking genomic polymorphisms and the phenotype of the

organism, and its regulation has long been studied and plays

important role in the phenotypic variations of various organisms

(Fu et al., 2021; Wang et al., 2018). Identification of expression

quantitative trait loci (eQTLs) that affect gene expression levels is

critical to understanding how genomic variations regulate gene

expression levels, and how information on the genome is

transmitted to morphological phenotypes through the genetic

central dogma. With the advancement of technology and

decrease in the cost of next-generation sequencing, many natural

populations have been frequently used for eQTL studies (Albert

and Kruglyak, 2015; Fu et al., 2013; Li et al., 2020; Zhang

et al., 2017), providing novel and important insights into the

genetic basis of natural variations at the transcriptome level and

the influence of gene expression in phenotypic variations.

Variations in gene expression usually arise from cis- and/or

trans-regulation (Wittkopp et al., 2004). Cis-regulation tends to

occur in the vicinity of the target gene and affects gene

expression levels with variations in various cis-acting elements,

and cis-regulatory variations are usually detected as local eQTLs in

natural populations. In contrast, trans-regulation acts at a certain

distance, usually in the form of transcription factors (Zhang

et al., 2017) or certain metabolites (Wang et al., 2018), which

affect the expression of downstream genes; besides, trans-

regulatory variants are usually detected as distant eQTLs in natural

populations. Previous studies have suggested that local eQTLs

tend to explain more variations than distant eQTLs and play a

major role in determining the variations in gene expression

(Cubillos et al., 2012; Kliebenstein, 2009). However, many other

studies have demonstrated that distant regulation at the tran-

scriptional level is also important for normal plant development

(Narula and Igoshin, 2010; van Heyningen and Bickmore, 2013;

Xiang et al., 2014). In addition, hotspots of distant eQTLs (trans-

regulation) are thought to comprise key regulators, which

regulate the expression of a wide range of development- and/or

metabolism-related downstream genes (Li et al., 2020; Wang

et al., 2018; Zhang et al., 2017).

Rice (Oryza sativa L.) is a major cereal crop in Asia, as well as a

major model crop for genetic improvement. Large amounts of

high-density genotype data and related high-throughput pheno-

typic data of rice have been accumulated and associated with

many important candidate genes through GWAS approaches

(Huang et al., 2012; Wang et al., 2015). GWAS can identify

candidate associations by detecting variations across genotypes

and phenotypes, but cannot accurately identify candidate genes

and gene functions due to the decay of linkage disequilibrium

and limited gene annotation. In recent studies, some researchers

have used methods such as transcriptome-wide association study

(TWAS) or Camoco that can combine genomic and transcriptomic

data (Gusev et al., 2016; Schaefer et al., 2018) to more accu-

rately predict the candidate genes for phenotypic variations (Tang

et al., 2021; Walker et al., 2019). eQTLs and co-localized QTLs

are equally important for dissecting the genetic architecture of
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complex traits (Giambartolomei et al., 2014). For example, by

combining GWAS with eQTL data, some studies of the growth

and phenotypic variations in poplar (Drost et al., 2010) identified

multiple candidate genes for lettuce leaf color (Zhang

et al., 2017), and a combined approach using eQTLs and

metabolic QTLs revealed the history of metabolic breeding in

tomato (Zhu et al., 2018). Such studies are expected to enhance

the comprehension of regulatory strategies of plants and facilitate

a more accurate explanation of related mechanisms.

Here, we analysed the transcriptomes of flag leaves at the

heading stage in 287 cultivated rice accessions. Subsequently,

we identified 44 354 eQTLs regulating the expression of

13 201 genes, as well as 17 local and 96 distant eQTL

hotspots. A key transcription factor, bHLH026, was identified in

a distant eQTL hotspot (HS002), which activates the expression

of downstream genes related to the synthesis of diterpenoid

antitoxins. A transgenic assay revealed that bHLH026 affects

the metabolic level of diterpenoid antitoxins and disease

resistance in rice. The findings will enhance our comprehen-

sion of the regulatory mechanisms of transcriptomic varia-

tions and the complex regulatory network of the rice genome,

and facilitate future genetic improvement of cultivated rice

varieties.

Results

Transcriptome sequencing and exonic SNP identification

A total of 287 accessions of O. sativa, which represent both

landraces and elite germplasms from all over the world, were

selected from 533 minicore germplasms (Xie et al., 2015) for

genome-wide analysis (Table S1). RNA was extracted from the

top fully expanded leaves at the heading stage from each

accession. Transcriptome sequencing generated 11 billion paired-

end reads with an average of 38 million reads for each accession

after the removal of low-quality reads. The obtained reads from

each accession were mapped to the Oryza genome (MSU 7.0)

(Kawahara et al., 2013) to quantify the gene expression levels,

and the average mapping rate of unique reads was 70.07%

(Table S2).

Based on the mapping results, 177 853 high-quality single

nucleotide polymorphisms (SNPs) were detected using a range of

filtering approaches. As expected, these SNPs were mostly

located within genes since they were derived from RNA-seq

data. Then, the SNPs were used to analyse the population

structure of the 287 accessions with Bayesian clustering software.

By progressively increasing the number of clusters (K), the 287

accessions were divided into different subpopulations (Figure 1a),

and the lowest CV error was observed at K = 9 (Figure S1).

Indica, japonica, and Aus subpopulations were clearly observed at

K = 3. Indica was further divided into indica I and indica II

subpopulations. When K = 6, japonica was further divided into

tropical japonica and temperate japonica subpopulations.

The maximum-likelihood phylogenetic tree was established and

the phylogenetic relationships among 287 accessions were

analysed (Figure 1b). As a result, indica, japonica, and Aus

subpopulations were located in different branches. Principal

component analysis (PCA) also supported the phylogenetic

relationships among different accessions and confirmed the

clustering of indica, japonica, and Aus subpopulations (Figure 1c).

These results obtained using RNA-seq calling SNPs were consis-

tent with the results in previous studies which quantified the

population structure of O. sativa, and confirmed that our panel

could capture abundant genetic variations of rice germplasm (Xie

et al., 2015; Zhou et al., 2017).

Genome-wide mapping of eQTLs

Expression quantitative trait loci mapping is a powerful approach

to identifying the expression variation of each gene as well as

revealing the regulatory network of genes for corresponding

traits (Fu et al., 2013; Zhang et al., 2017). Here, a quantitative

analysis of transcriptome data identified 23 325 genes expressed

in leaves at the heading stage, accounting for about 41.8% of

the total annotated genes (55 801) in the MSU 7.0 genome.

Using the Fast-LMM software (Lippert et al., 2011), with

genomic SNP data from 287 accessions, the transformed

expression levels of each gene were used for association analysis

with the SNPs in the genome. As a result, the expression of

14 562 genes was significantly associated with at least one SNP

over the Bonferroni-corrected threshold (P = 5.43 9 10�8;

a = 0.05). SNPs associated with the same gene were clustered

into one unique eQTL block including at least three SNPs, and

the SNP with the lowest P-value was used to represent this

block. A total of 44 354 eQTLs were identified from 13 201

genes (Table S3).

According to the relative positions of genes and their corre-

sponding eQTLs in the genome, a strong diagonal enrichment

could be observed (Figure 2a). In addition, based on the relative

distance between eQTLs and genes, all eQTLs could be divided

into 19 549 local eQTLs (<100 kb) and 24 805 distant eQTLs

(>100 kb or on different chromosomes), and 74.6% of the genes

had local eQTLs (Figure 2a, d; Table S3). A comparison of the P-

values and explanation rate (r2) of SNPs in the association analysis

of local and distant eQTLs revealed that local eQTLs have a

greater effect on gene expression variations than distant eQTLs

(two-sided Wilcoxon rank sum test, P-value <2.2 9 10�16;

Figure 2b, c). Therefore, local-regulatory effects may play a

leading role in determining the expression variations of most

genes, which is consistent with previous findings in other

organisms (Wang et al., 2018; Zhang et al., 2017). In terms of

eGenes (genes regulated by eQTL), 9853 eGenes were regulated

by local eQTLs; 8427 eGenes were regulated by distant eQTLs;

and 5079 eGenes (38.5%) were regulated by both local eQTLs

and distant eQTLs (Figure 2d). On average, each eGene corre-

sponded to 3.4 eQTLs, and only 4446 eGene (33.7%) were

regulated by one single eQTL, while the majority of eGenes were

regulated by multiple eQTLs, suggesting that the expression of

most genes in rice is under complex genetic regulation (Fig-

ure 2e). As for the location of local eQTLs relative to their eGenes,

most of the lead SNPs were located in or around the gene body of

the eGenes; interestingly, local eQTLs had two peaks in the 50-
and 30-regions, and the peak in the 50-region was more

prominent (Figure S2), indicating that the 50-sequences may play

a more important role in regulating gene expression or stabilizing

mRNA. The distribution of local eQTLs in the 50 promoter region

was observed. It was found that the distribution of local eQTLs

gradually decreased as they moved away from the transcription

start site (TSS). About one-third of the local eQTLs fell in the first

10 kb of the TSS, and 60.5% of them fell in the first 30 kb of the

TSS (Figure 2f).

Identification of local eQTLs and co-regulated gene
clusters in rice.

As described above, local eQTLs usually have a greater impact on

the expression variation of eGenes. To further explore the genes
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regulated by local eQTLs and their biological functions, a gene

enrichment analysis was performed on the identified genes with

local eQTLs. In the KEGG database, these genes showed the most

significant enrichment in secondary metabolite synthesis, fol-

lowed by the transcriptional and translational pathways of mRNA

(Figure S3). An analysis of their metabolic pathways revealed that
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Figure 1 Population structure of 287 rice accessions from all over the world. (a) NJ (Neighbour-Joining) tree of 287 rice accessions constructed from

simple matching distances of genome-wide SNPs. (b) Principal component analysis revealed that the first two principal components could explain

approximately 57.6% of the genetic variations within the 287 rice accessions. (c) Genetic structure of the 287 rice accessions analysed with the

ADMIXTURE program.
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these genes were also enriched in the pathways of cytokinin and

brassinosteroid synthesis (Figure S3). Moreover, gene ontology

(GO) enrichment analysis revealed that these genes with local

eQTLs were enriched in GO terms of protein modification, cell

death, and stress response (Figure S4). These results suggested

that these genes with local eQTLs regulation probably play certain

roles in secondary metabolite synthesis, protein modification, and

hormone synthesis, which are processes highly responsive to the

environment. Similarly, more variations in sequence and expres-

sion were found in genes involved in secondary metabolism in

previous studies (Gan et al., 2011; Moore et al., 2014; Wang

et al., 2018).

As reported in earlier research, a genomic region may contain a

large number of eQTLs and affect the expression of multiple

genes, that is, this region harbors an eQTL hotspot (Albert and

Kruglyak, 2015; Fu et al., 2013; Li et al., 2020; Zhang

et al., 2017). An examination of the distribution of local eQTLs

showed that they were unevenly distributed across the genome.

We identified 17 local eQTL hotspots by the hot_scan program

(Silva et al., 2014), most of which were located at the ends of

chromosomes (Table S4). Interestingly, the heat map of local eQTL

distribution demonstrated that there were very few local eQTLs in

the centromere region of each chromosome (Figure 3a), possibly

due to the suppression of gene expression (Wu et al., 2011) or

gene escape from the centromere region (Liao et al., 2018).

Enrichment analysis of the 17 local eQTL hotspots and overlap

analysis with metabolic gene clusters demonstrated that several

hotspots were associated with metabolic pathways (Table S4).
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Figure 2 Identification of eQTLs using RNA-Seq data from rice flag leaves at the heading stage. (a) Distribution of eQTLs and their regulatory genes on 12

chromosomes. The x-axis is the single nucleotide polymorphism (SNP) position (bp) for each chromosome and the y-axis is the gene position (bp) on each

chromosome. Each black dot indicates a distant eQTL, and a red dot on the diagonal line indicates a local eQTL. (b) Comparison of the �log10(P) values of

local and distant eQTLs. Box plots show the distribution quantiles. Two-sided Wilcoxon rank sum test, **P-value <2.2 9 10�16. (c) Comparison of

explanation rate (r2) of SNPs for expression variation between local eQTL and distant eQTL. Two-sided Wilcoxon rank sum test, **P-value <2.2 9 10�16. (d)

Distribution of genes regulated by local and/or distant eQTLs. (e) Distribution of the number of eGenes. Blue bars indicate genes regulated by distant eQTLs,

red bars indicate genes regulated by local eQTLs, and orange bars indicate genes regulated by both distant and local eQTLs. (f) Distribution of local eQTLs in

the promoter region.
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Among them, the hotspot L01 comprised 26 genes related to sn-

glycerol 3-phosphate synthesis. Genes in close proximity to each

other and under the regulation of local eQTLs were found to form

co-regulated gene clusters, and the genes in the same cluster

were found to have similar expression patterns and functions in

maize (Wang et al., 2018). Subsequently, we examined the co-

expression of all annotated genes in the sn-glycerol 3-phosphate

synthesis, which showed six different expression patterns (Fig-

ure 3b; Table S5) and four co-regulated gene clusters in the

hotspot L01 (Figure 3C; Table S6). Similarly, six brassinosteroid

synthesis-associated genes were detected in the hotspot L08, and

co-expression analysis of 43 brassinosteroid synthesis-associated

genes revealed three distinct expression patterns (Figure S5;

Table S7), and one co-regulated gene cluster was identified in the

hotspot L08 (Figure S5). These results suggested that such

clusters of genes co-regulated by the same local eQTLs are also

widespread in rice.

Explanation of phenotypic changes by combining
genomic and transcriptomic variations

For the 287 accessions, we also determined the starch content in

the flag leaves at the heading stage. As a result, 25 key loci

associated with starch content in flag leaves were identified using

the GWAS approach based on the same SNP datasets as the

eQTL identification (Figure S6; Table S8). Subsequent TWAS

analysis combined with the transcriptome expression data and

phenotypic data detected 21 candidate genes significantly

associated with starch content in rice flag leaves at the heading

stage (Table 1; Figure S7) by strict thresholds (FDR-corrected P-

value ≤ 0.05).

Generally, it is difficult to identify genes from QTL intervals as a

result of the large LD intervals in rice and some other influencing

factors such as artificial selection. The range of candidate genes

can be narrowed through genomic annotation, the correlation

between gene expression and phenotype, and co-localization of

the eQTLs of priori genes and GWAS results (Tang et al., 2021;

Walker et al., 2019). Therefore, we used the fusion (Gusev

et al., 2016) software to detect the correlation between the gene

expression and phenotype, and employed the coloc software

(Giambartolomei et al., 2014) to determine the co-localization

between eQTLs and GWAS results. A total of 338 candidate

genes significantly associated with the phenotype were identified

(Fusion TWAS P ≤ 0.01) by the fusion software, among which

120 were also detected (COLOC.PP3 > 0.7) by coloc software

(Table S9).

In particular, the local eQTL hotspot L01 was very close to the

GWAS QTL LS01 for starch content (Table S4; Table S8), and the

eQTLs for four genes related to sn-glycerol 3-phosphate synthesis

in Cluster 2 of co-regulated genes in the eQTL hotspot L01 were

overlapped with the GWAS results for starch content (Figure 3d).

In addition, the lead SNP vg0101026223 was significant in the

GWAS results of starch content (Figure 3e) as well as in the eQTLs

for the four genes (LOC_Os01g02390: P = 4.17 9 10�9; LOC_Os

01g02400: P = 2.00 9 10�8; LOC_Os01g02420: P = 7.10 9 10�7;

LOC_Os01g02430: P = 5.20 9 10�6) in the co-regulated gene

Cluster 2. Therefore, it could be speculated that QTL LS01

affects rice starch content by influencing the expression of the

four sn-glycerol 3-phosphate synthesis-related genes. Finally,

we examined the correlation between gene expression and

phenotype, finding that the expression levels of all four genes

were negatively correlated with starch content (Figure 3f;

Figure S8).

Identification of distant eQTL hotspots and a key
regulator of diterpene antitoxin synthesis

An analysis of the distant eQTLs identified in the whole genome

resulted in the identification of 96 distant eQTL hotspots, which

involved the regulation of 1726 genes (Figure 3a; Table S10). For

each hotspot, the number of eQTLs varied from 12 to 51. Hotspot

analysis results could improve the understanding of complex

regulatory networks and reveal that there are key regulators of

multiple downstream eGenes in these hotspots.

A distant eQTL hotspot, HS002, was identified on chromosome

1, which included a total of 32 downstream genes (Figure 3a). GO

enrichment analysis revealed that these genes were enriched in the

lipid metabolism pathway (Figure 4a). Further analysis of these

enriched genes revealed the presence of some important genes for

the synthesis of diterpenoid antitoxins, such as CPS2, KSL5, and

KSL6. Previous studies have demonstrated that the key regulators

in distant eQTL hotspots tend to influence their own expression

through a cis-acting mechanism, which in turn affects the

expression of their downstream genes. For this reason, the master

regulators tend to have the same expression patterns as their

downstream genes (Li et al., 2020; Wang et al., 2018). Therefore,

to find reliable master regulators in the H002 hotspot region, we

performed a co-expression analysis of the genes in this hotspot and

the 32 downstream genes. As a result, all the genes related to the

synthesis of diterpenoid antitoxins were co-expressed and clustered

in the red module. In addition, a bHLH-like transcription factor

bHLH026 (LOC_Os01g09930) in the HS002 hotspot region also fell

into the co-expressed red module (Figure 4b). Therefore, bHLH026

was considered a potential master regulator in this hotspot to

regulate the expression of multiple downstream genes related to

the synthesis of diterpenoid antitoxins.

To verify whether bHLH026 regulates its own expression and

thus affects the expression of downstream genes by affecting its

own local eQTLs, we further performed an eQTL analysis on

bHLH026. As a result, bHLH026 had three mutually unlinked local

eQTLs (Figure S9), and one lead SNP vg1015145775, which was

about 20 kb upstream of bHLH026, was tightly linked with the

lead SNP of the distant eQTL for downstream lipid metabolism-

related genes (Figure 4c). The lead SNPs of the distant eQTL for

downstream genes also reached significant levels in the local

eQTL for bHLH026 and were tightly linked to vg1015145775

(Figure 4d). Therefore, it could be speculated that the variation in

this linkage region of vg1015145775 may affect the expression of

master regulators in the HS002 hotspot and thus the expression

of its downstream genes (Figure 4c, d). Moreover, the linkage

disequilibrium map showed that vg1015145775 was tightly

linked to nonsynonymous mutations in the third exon of

bHLH026. Therefore, nonsynonymous mutations within these

genes may also affect the expression of their downstream genes.

Subsequently, we performed a haplotype analysis of bHLH026,

and finally, bHLH026 was classified into four major haplotypes

(Figure 4e). Two haplotypes, Hap2 and Hap3, were mainly

distributed in indica and Aus, while the other two haplotypes,

Hap1 and Hap4, were only distributed in japonica (Figure 4f).

Based on the haplotype typing of bHLH026, the expression of

downstream genes in each haplotype was also examined. The

expression of bHLH026 in the Hap1 haplotype was significantly

higher than that in the Hap4 haplotype in the japonica subpop-

ulation, and all the downstream genes related to lipid metabolism

exhibited the same expression pattern as bHLH026, except for

LOC_08g20200, which showed an opposite expression pattern
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(Figure 4g). However, no significant difference in expression of

downstream genes was found between the Hap2 and Hap3

haplotypes of indica and Aus (Figure 4g), possibly because of a

nonsynonymous mutation in bHLH026 linked to vg1015145775,

which affects the function of bHLH026 and thus has a greater

impact on downstream genes.

bHLH026 activated the expression of downstream genes

To further confirm the regulatory effect of bHLH026 on down-

stream genes, we cloned the 2-kb region before the transcription

start site of CPS2 and KSL6 genes as their promoter regions and

performed a yeast one-hybrid assay. The results showed that

bHLH026 could bind to the promoter region of CPS2 and KSL6

(Figure 5a). Then, a dual luciferase activity assay of the bHLH026

protein was performed using GAL4 binding specific sequences

and the binding domain of fused GAL4. The results showed that

bHLH026 has transcriptional activation activity (Figure 5b). Dual

luciferase activity assay using the promoter sequences of CPS2

and KSL6 and bHLH026 protein also demonstrated that bHLH026

protein could bind to the promoter region of downstream genes

and activate their expression (Figure 5b).

bHLH026 affected the synthesis of diterpenoid
antitoxins and disease resistance in rice

CPS2 is a key gene for the production of more specialized ent-CPP

in diterpene metabolism in rice (Krishnan et al., 2009; Lu

et al., 2018), and kaurene synthase-like (KSL) is a class of

diterpenes that synthesize different families of diterpenes derived

from ent- or syn-CPP (Lu et al., 2018). The hotspot analysis

revealed that CPS2, KSL5, KSL6, cytochrome P450 701A8, and

cytochrome P450 71Z6 were downstream genes of the bHLH026

transcription factor, and thus it can be speculated that bHLH026

may be related to the synthesis of diterpenoid antitoxins and

disease resistance of rice.

To further investigate the biological function of bHLH026, we

constructed a loss-of-function mutant of bHLH026 using the

CRISPR-Cas9 system and designed two gRNA target sites in the

third exon of bHLH026. The constructed vectors were trans-

formed into Nipponbare, and a total of 20 CRISPR-Cas9 editing

events were identified. Two transgenic lines, bhlh026-cri-6 and

bhlh026-cri-7, showed 37 and 61-bp deletions at the third exon

of bHLH026, respectively, which resulted in the loss of function of

bHLH026 owing to a shift mutation (Figure 5c). We also

constructed overexpression lines of bHLH026 using the ORF with

functional bHLH026. RT-qPCR results revealed that the expres-

sion of diterpene synthesis-related downstream genes was sig-

nificantly reduced in the bhlh026-cri line, while significantly

elevated in the bHLH026-OX line compared with that in the

wild-type (Figure 5d). Therefore, bHLH026 is a key transcription

factor regulating the expression of genes related to diterpene

synthesis.

To investigate the metabolism of diterpene antitoxins in each

transgenic line of bHLH026, liquid chromatography-tandem mass

spectrometry was performed to analyse the chemicals in these

transgenic materials. We detected the diterpenoid antitoxins

Oryzalexin S and Momilactones A&B in the syn-CPP pathway and

their intermediates syn-stemar-13-ene and syn-pimara-7,15-

diene. The results showed that the levels of all the above

metabolites were significantly higher in the bHLH026-OX line

than in the wild-type; however, they showed almost no change in

the bhlh026-cri line except for Oryzalexin S, which was signifi-

cantly reduced compared with that in the wild-type (Figure 6a, b).

In addition, we also detected the diterpenoid antitoxins phyto-

cassanes C, D, and E and oryzalexins C and F in part of the ent-

CPP pathway, and similarly, the levels of these metabolites were

significantly higher in bHLH026-OX lines than in the wild-type,

and there were significant decreases in phytocassanes D and E in

the bhlh026-cri lines (Figure 6a, c). Recently, the casbane-type

phytoalexin ent-10-oxodepressin was identified in rice, which

exhibited evident broad-spectrum disease resistance, but its

biosynthesis has not been elucidated (Liang et al., 2021; Zhan

et al., 2020). Ent-10-oxodepressin was also detected in our

Table 1 Results of transcriptome-wide association study (TWAS) for starch content in the flag leaves at the heading stage

Gene_ID CHR bp P_value FDR Symbols Annotation

LOC_Os02g02670 Chr02 991 974 1.10 9 10�8 0.00014514 NBS-LRR disease resistance protein

LOC_Os05g38950 Chr05 22 838 503 1.24 9 10�8 0.00014514 TBC domain-containing protein

LOC_Os09g27650 Chr09 16 823 960 7.31 9 10�8 0.0005681 OsIDD13 ZOS9-14-C2H2 zinc finger protein

LOC_Os02g02690 Chr02 1 010 137 2.77 9 10�7 0.00161314 Expressed protein

LOC_Os01g04920 Chr01 2 276 969 1.24 9 10�6 0.00482646 OsSQD2 Glycosyl transferase, group 1 domain-containing protein

LOC_Os05g45770 Chr05 26 508 840 1.22 9 10�6 0.00482646 Divergent PAP2 family domain-containing protein

LOC_Os02g56120 Chr02 34 349 219 1.66 9 10�6 0.00483869 OsIAA9 OsIAA9-Auxin-responsive Aux/IAA gene family member

LOC_Os07g14700 Chr07 8 382 541 1.57 9 10�6 0.00483869 Harpin-induced protein 1 domain-containing protein

LOC_Os02g27190 Chr02 16 001 144 2.02 9 10�6 0.00522673 Expressed protein

LOC_Os02g38040 Chr02 22 980 200 3.92 9 10�6 0.0091447 OsIRL2 Leucine-rich repeat family protein, putative

LOC_Os03g29170 Chr03 16 574 889 1.43 9 10�5 0.02874069 Sterol-4-alpha-carboxylate 3-dehydrogenase

LOC_Os08g06480 Chr08 3 671 452 1.48 9 10�5 0.02874069 OsTPL Lissencephaly type-1-like homology motif, putative

LOC_Os04g32340 Chr04 19 387 504 1.98 9 10�5 0.03046124 C3H27 RNA-binding motif protein, putative

LOC_Os07g14160 Chr07 8 080 858 2.09 9 10�5 0.03046124 Polygalacturonase

LOC_Os08g07970 Chr08 4 510 288 2.06 9 10�5 0.03046124 OsbZIP64 Transcription factor

LOC_Os08g39370 Chr08 24 884 637 1.87 9 10�5 0.03046124 Citrate transporter

LOC_Os06g08440 Chr06 4 139 955 2.70 9 10�5 0.03703781 OsRR22 Two-component response regulator

LOC_Os01g02700 Chr01 922 311 3.89 9 10�5 0.04322466 Protein kinase domain-containing protein

LOC_Os02g45850 Chr02 27 933 760 3.57 9 10�5 0.04322466 RAV6 B3 DNA binding domain-containing protein

LOC_Os07g14350 Chr07 8 196 955 3.88 9 10�5 0.04322466 OsLLB Methyltransferase

LOC_Os07g37920 Chr07 22 756 369 3.56 9 10�5 0.04322466 ONAC010 No apical meristem protein
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Figure 4 Characterization of the distant eQTL hotspot 002 (HS002) on chromosome 1. (a) GO (biological process) enrichment analysis of downstream

genes regulated by HS002 on chromosome 1. (b) Co-expression analysis of downstream genes regulated by HS002 and genes within the hotspot. The red

and blue circles represent genes with different expression patterns. The black outer circle indicates downstream genes regulated by HS002. The white outer
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transgenic lines by metabolome assay, and its level was signifi-

cantly higher in the bHLH026-OX line while significantly lower in

the bhlh026-cri line relative to that in the wild-type (Figure S10).

Overall, the diterpene antitoxin-related metabolites detected in

the bHLH026-OX line were all significantly elevated, while those

detected in the bhlh026-cri lines mostly showed no significant

change compared with the wild-type, possibly due to the low

level of diterpene antitoxin synthesis in both bhlh026-cri line and

wild-type.

In addition, we examined the expression of genes related to

diterpene antitoxin synthesis in rice using RT-PCR. Similar to the

results of the metabolome analysis, the expression of these genes

was all significantly higher in bHLH026-OX lines, while partially

significantly lower in bhlh026-cri line than in the wild-type

(Figure 6a, b). Based on all the above results, it can be concluded

that bHLH026 is indeed a key transcription factor affecting

diterpene antitoxin synthesis in rice.

A number of studies have reported the broad-spectrum

resistance of diterpenoid antitoxins to Xanthomonas oryzae

(Xoo) in rice. We then inoculated the bHLH026 transgenic

material with a native Chinese isolate of the Xoo strain Zhe134.

The susceptibility of each transgenic material was determined

and the bhlh026-cri line was found to have a longer lesion length

than the wild-type, indicating that it was more susceptible.

Conversely, the bHLH026-OX line was more resistant to the Xoo

(Figure 6e, f). The results revealed that bHLH026 can influence
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rice resistance to Xoo by affecting the metabolism of diterpenoid

antitoxins.

Discussion

The resequencing of a large number of phenotypically distinct rice

varieties has demonstrated the rich variations in the genome and

revealed the population structure and genetic information of rice

of different origins. In this study, we identified a large number of

high-quality exonic variants and their corresponding transcript

levels by sequencing the transcriptome of 287 rice accessions. The

widespread exon variations among subpopulations could clearly

distinguish indica, japonica, and Aus. In addition, based on the

expression data of each rice accession, we found that accessions

within the same subpopulation had more similar expression

patterns, possibly due to the presence of specifically expressed

genes in each subpopulation (Figure S11).

With the recent accumulation of high-density genotype data

and associated high-throughput transcriptome data of many

species, eQTLs have been used to determine the inter-regulation

of genes on the genome. In this study, only 33.7% of the eGenes

in rice had only one unique eQTL, and the remaining eGenes had

more than one eQTL (Figure 2b, c), while most eGenes have one

unique eQTL in other crops such as maize (about 69%) and

cotton (about 67%) (Li et al., 2020; Wang et al., 2018). More-

over, about 38.4% of eGenes in rice were co-regulated by both

local eQTLs and distant eQTLs (Figure 2d). All these results

suggest that there may be a relatively more complex regulatory

network of gene expression in rice.

Similar to the usual phenotypic GWAS, eQTL analysis is also

constrained by the large linkage disequilibrium in rice (Figure S12),

making it difficult to identify candidate genes from eQTL intervals

with varying sizes. In this study, bHLH026 was precisely identified

as a key regulator by combining co-expression information of

downstream genes and linkage disequilibrium between the lead

SNPs of downstream gene eQTLs. Three unlinked local eQTLs and

one distant eQTL were also found for bHLH026. The linkage

analysis revealed that the lead SNP vg1015145775 of the local

eQTL is an important variant that is tightly linked to the lead SNPs

of the downstream gene eQTLs and affects the expression of

bHLH026 (Figure 4). The fact that the key regulator bHLH026 is

both a regulator of several downstream genes and also regulated

by local eQTLs and distant eQTLs indicates that the regulatory

network of genes in rice is complex.

Although candidate genes in eQTL regions can be discovered

by targeting co-expression and linkage disequilibrium of individ-

ual genes, it remains challenging to build genome-wide “gene-

gene” regulatory networks. In maize, the genome was divided

into separate bins to explore their inter-regulatory relationships

(Liu et al., 2017), while in studies of cotton, the genes closest to

the lead SNP were considered regulatory genes by default (Li

et al., 2020). These may be efficient but fairly rough approaches

to provide a macroscopic view of the gene expression regulatory

network in each crop, but can hardly facilitate the understanding

of more specific intergenic regulation. By contrast, for phenotypic

GWAS with a limited number of QTLs, considerable progress has

been achieved in using transcriptome expression data and eQTL

results to assist in the identification of candidate genes, such as

scoring of candidate genes within QTL regions using transcrip-

tome information (Tang et al., 2021), or using TWAS and eQTL

co-localization to identify candidate genes (Li et al., 2020; Tang

et al., 2021; Zhang et al., 2017). Here, we also employed the

GWAS results for starch content in rice flag leaves at the heading

stage and combined them with transcriptomic data to screen

candidate genes (Figure S6; Table S8). Both TWAS and eQTL co-

localization could effectively identify some key genes that were

missed by GWAS (Figure 3d; Figure S7; Table 1; Table S9). Due

to the temporal (growth period) and spatial (sampling site)

specificity of the transcriptome, the fitting degree between the

transcriptome data and phenotype data is often critical for precise

localization.

In the genome-wide eQTL identification, we identified a total

of 17 local eQTL hotspots and 96 distant eQTL hotspots

(Table S4; Table S10). Only those hotspots with more significant

functional clustering and clearer annotation were selected for

subsequent analysis. The same practice was also adopted in many

previous studies of eQTL identification, where many significant or

effective loci are often ignored because they are not enriched for

a specific biological pathway due to the lack of gene annotation

information (Li et al., 2020; Wang et al., 2018; Zhang

et al., 2017). Unlike traditional forward or reverse genetics in

which candidate genes are selected based on phenotype, the use

of eQTLs alone to construct regulatory networks and find key

transcription factors is more dependent on gene annotation and

can only be continued using the annotation information to infer

the biological processes or phenotypes affected by the key genes.

As for the distant eQTL hotspot HS002, GO enrichment analysis

showed that it was enriched in lipid metabolism (Figure 4a), but

subsequent KEGG and pathway analyses indicated that it

contains key genes for diterpene antitoxin synthesis. As a result,

bHLH026 was identified as a key regulator for diterpene antitoxin

synthesis and disease resistance in rice, whose effect was

subsequently verified using a transgenic assay (Figure 6). While

eQTLs are often used as a bridge to connect the genomic and

phenotypic information, more comprehensive and accurate gene

function annotation will also make eQTL studies an effective tool

to identify key transcription factors. The regulatory hotspots’ lack

of annotation information may include some key transcription

factors that we have not identified.

In summary, we used the eQTL approach to explore the

complex regulatory network of rice by combining transcriptomic,

genomic, and phenotypic data, and identified a key regulator of

diterpenoid antitoxin synthesis in rice by analysing the regulatory

hotspots, which will provide more insights into the complex

regulatory network of rice and a more effective method for

identifying key regulators in rice.

Figure 6 Content of diterpenoid antitoxins and disease resistance of bHLH026 transgenic material. (a) Rice Labdane-Related Diterpenoid Biosynthetic

Network. GGDP, geranylgeranyl diphosphate; CDP, copalyl diphosphate. (b) Transcript levels of key genes related to diterpenoid antitoxins in leaves of wild-

type and bHLH026 transgenic materials. Relative expression levels normalized against Ubiquitin are presented. Error bars represent standard deviation

(n ≥ 6 each). (c and d) Contents of intermediate and final metabolites of diterpenoid antitoxins in the syn-CPP pathway c and ent-CPP pathway d in leaves

of wild-type and bHLH026 transgenic materials. Error bars represent standard deviation (n ≥ 4 each). (e) Representative leaves after Xoo infection of

bHLH026 transgenic plants vs. wild-type plants. (f) Lesion lengths of bHLH026 transgenic material compared with their wild-type plants.

ª 2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 20, 2357–2371

eQTLs identify key regulators in rice 2367



Methods

Plant materials

Most Oryza materials were obtained from the RiceVarMap

website (http://ricevarmap.ncpgr.cn/v2/). All materials (a total of

533 accessions) were sown in May, 2016 in the experimental field

of Huazhong Agricultural University, Wuhan, China (30.47°N,
114.35°E). In total, 287 accessions were selected to perform the

genetic analysis based on phenotypic variations. Samples of rice

arriving at the heading stage were taken from 5 to 6 p.m. each

day, and observations were made to mark the accessions to be

collected the next day. Twenty plants were planted for each

accession, and three flag leaves of the same growth trend were

sampled in a mixture at the heading stage and then immediately

frozen in liquid nitrogen.

RNA extraction, sequencing, and analysis

Extraction of total RNA was performed on the top fully expanded

leaves at the heading stage with the TRIzol reagent (Invitrogen).

The strand-specific paired-end RNA-Seq library for each accession

was constructed using the Illumina TruSeq RNA sample prepara-

tion kit (Version 2). The 150-bp paired-end reads were obtained

by sequencing the libraries on the Illumina HiSeq 2500 platform.

Raw transcriptome sequencing data were screened with

Trimmomatic (version 0.33) software to remove sequencing

adapters and low-quality bases. The processed fastq files were

mapped to the reference genome sequence of Oryza (MSU 7.0)

(Kawahara et al., 2013) using Tophat2 (Kim et al., 2013) soft-

ware, and subsequently, the expected number of reads and

fragments per kilobase (FPKM) were calculated for each gene

using StringTie (Pertea et al., 2015).

Screening for transcriptomic SNPs and genomic SNPs

After filtering to obtain 287 transcriptomes of clean data, the

transcriptomic data were mapped on the reference genome

using STAR (2.7.0c) (Dobin et al., 2013) software and subse-

quently identified to 2 631 987 original SNPs using the sentieon

toolkit. SNPs were filtered using the --minDP 4 --minQ 30 --max-

missing 0.1 --maf 0.05 parameters of VCFtools (v0.1.13) (Danecek

et al., 2011), and 177 853 high-quality SNPs were finally retained.

Based on the genomic SNPs identified by resequencing 533

accessions (http://ricevarmap.ncpgr.cn/v2/), the SNPs of 287

accessions were extracted using plink (v1.90b5.3) (Purcell

et al., 2007) software and SNPs with missing <0.05 and maf

>0.05 were excluded, resulting in 6 608 819 SNPs retained.

Genetic analysis of the population

A maximum likelihood tree was constructed using the RAxML

software (Stamatakis, 2014) based on the SNPs called by the

transcriptome. A nonparametric bootstrap analysis was per-

formed with 100 bootstrap replicates. The final tree was

visualized using iTOL software (Letunic and Bork, 2016).

The EIGENSOFT (Price et al., 2006) software was used to

perform PCA analysis based on SNPs called by the transcriptome.

Finally, the first two principal components of the PCA analysis

were visualized using the R package ggplot2.

The ADMIXTURE (Alexander et al., 2009) program was used to

infer population structure. Set progressively increasing K values

and calculate the cross-validation error at each K value. The cross-

validation error was minimized when K = 9, indicating that the

287 accessions divided into 9 subpopulations were optimal.

Identification of expression QTL (eQTL)

To identify eQTL for genes of interest in the flag leaf of rice at

the heading stage, we performed gene expression level analysis

and excluded genes with a median of expression (FPKM) equal

to zero, and a total of 23 325 genes were filtered from the

55 801 in the reference genome genes for subsequent analysis.

Using the qqnorm function in R, the expression levels of the

retained genes were performed normal quantile transformation.

Subsequently, GWAS was performed for each gene based on

the genomic SNPs of 287 materials using the FAST-LMM

(Lippert et al., 2011) program. The effective number of SNPs

(Me = 920 371.54) was calculated by GEC software (Li

et al., 2012). The horizontal dashed line shows the significance

threshold of GWAS (0.05/Me; 7.3). The region that had at least

three significant SNPs was regarded as one eQTL block. To

obtain independent association signals, multiple SNPs with

values higher than the threshold in a 5-Mb region were

clustered based on r2 of LD ≥0.1. The SNPs that had the lowest

P-value in one cluster were identified as lead SNPs.

The hot_scan software (Silva et al., 2014) was explored for the

identification of distant-eQTL hotspots. The window size was set

as 20 kb and the Benjamini and Yekutieli adjusted P-value was set

to 0.01.

Enrichment analyses

Many different kinds of gene sets were obtained in the

identification of local eQTL and analysis of local eQTL and distant

eQTL hotspots. GO enrichment analysis of expressed genes in

individual gene sets was performed using the AgriGO webserver

(http://systemsbiology.cau.edu.cn/agriGOv2/index.php) (Tian

et al., 2017). The enrichment analysis of KEGG and metabolic

pathway PlantCyc is implemented through the PlantGSEA web

server (http://systemsbiology.cau.edu.cn/PlantGSEAv2/index.php;

Yi et al., 2013). When the FDR of each enrichment item is less

than the threshold value of 0.05, it is considered an important

item.

Co-expression analysis

After gene counting, genes that median expression equal to 0

were removed by quality control, expression was conditional

quantile normalized, and then co-expression analysis was per-

formed on genes in the gene expression dataset using the

WGCNA program (Langfelder and Horvath, 2008) in R. The

appropriate soft threshold processing capability is selected and

subsequently, the topological overlap dendrogram was used to

define modules using the correlation type of “pearson,” mini-

mum module size of 5, and a merge threshold of 0.25.

Measurement of starch content

Three representative plants were taken from each material at the

heading stage, and after killing in an oven at 100 °C for 30 min,

the leaves were dried at 80 °C for 72 h. Soluble carbohydrates

were removed with 80% ethanol, followed by starch extraction

with 35% perchloric acid and finally, the anthrone-sulfuric acid

colorimetric assay (Laurentin and Edwards, 2003) was used to

determine the starch content in the leaves.

Genome-wide association analyses for starch content

The starch content of rice flag leaf at the heading stage was

measured in 287 accessions, with three replicates for each

accession. Based on 6 608 819 genomic SNPs, we performed
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GWAS using the linear mixed model (LMM) of the FaST-LMM

(Lippert et al., 2011) program. Population structure was modelled

as a randomeffect in LMMwith the kinshipmatrix, and itwas found

to be sufficient to control the spurious association. A modified

Bonferroni correction was performed to determine the genome-

wide significance threshold of GWAS, in which the total number of

SNPs (M) for threshold calculation was substituted by the effective

number of SNPs (Me). The Me of SNPs (Me = 920371.54) was

calculated by GEC software (Li et al., 2012). The threshold was

uniformly set as P = 1.0 9 10�6 (1/Me) to obtain the suggestive

significant association signals by LMM (Chen et al., 2014; Wang

et al., 2015). To obtain the independent association signals,

multiple SNPs with values higher than the threshold in a 5-Mb

region were clustered based on r2 of LD ≥0.25. The SNPs with the

lowest P-value in one cluster were identified to be lead SNPs.

Transcriptome-wide association analysis of starch
content

For TWAS analysis, those genes with a median expression equal to

0 were removed in the subsequent analysis. Association analysis

was carried out using the EMMAX software (Kang et al., 2010)

with LMM. An IBS kinship matrix was calculated based on the

genomic SNPs, and the significance threshold for TWAS analysis

was taken as an FDR-corrected P value ≤0.05.

Yeast one-hybrid assay

Yeast one-hybrid assay was carried out by the Matchmaker Library

Construction & Screening Kits (Clontech). The promoter sequence

of CPS2 snd KSL6was cloned into the pHis2 vector harbouring the

HIS3 gene, which conferred resistance to 3-Aminotriazole (3-AT).

The full-length cDNA of bHLH026 was amplified and cloned into

the pGADT7 vector. The pHis2-pro and pGADT7-bHLH026 con-

structs were then co-transformed into the yeast strain Y187, and

selection of the transformed cells was conducted on SD-2 (�Trp/�
Leu) and SD-3 (�Trp/�Leu/-His/40 mM 3AT) plates.

Dual-luciferase transcriptional activity assay in rice
protoplasts

Rice protoplasts were obtained from 13-day-old Zhonghua 11

seedlings as previously described (Xie and Yang, 2013), and then

transformation was conducted as following previous descriptions

(Zong et al., 2016). The effector and reporter constructs were

cotransfected together with the construct that contained the

Renilla luciferase (rLUC) gene as an internal control into rice

protoplasts at a ratio of 6:6:1 (effector:reporter:reference). Co-

transfected protoplast cells were cultured for 12 h at 24 °C under

dark conditions, and then the Dual-Luciferase Reporter Assay

System (Promega, Madison, WI) was used to measure the

luciferase activities following the manufacturer’s instructions.

Transgenic lines

Specific gRNA target sites were designed to obtain the bhlh026-

cri mutants and then assembled into the expression vector

pYLCRISPR/CAS9-MH. For the construction of the bHLH026

overexpression line, the full-length cDNA of bHLH026 was

amplified and cloned into the pCAMBIA1301S vector. The

constructs were then transformed into Nipponbare through

Agrobacterium tumefaciens-mediated transformation.

RT-qPCR

Total RNA from rice leaves was extracted using the TRIzol reagent

(Invitrogen, Carlsbad, CA, USA) and chloroform in accordance

with the manufacturer’s instructions. About 3 lg of total RNA

was subsequently reverse transcribed to cDNA using MMLV

reverse transcriptase (Invitrogen). RT-qPCR was carried out using

the QuantStudio 7 Flex System (Applied Biosystems, Foster City,

CA) with the SYBR Premix Ex Taq (TaKaRa, Tokyo, Japan). The

ubiquitin gene was adopted as the reference, and the assessment

of each sample was conducted in three technical replicates. All

the used primers are presented in Table S11.

Diterpenoid metabolite profiling

Transgenic lines of bHLH026 and wild-type lines were grown in

sterile rooting tubes in a lighted incubator for 12 days. Above-

ground tissues of transgenic/wild-type lines were collected using

liquid nitrogen, with four biological replicate sets. Crushing of the

freeze-dried samples was conducted using a mixer mill with

zirconia beads at 60 Hz for 1 min. A 100 mg of dry powder was

weighed and extracted with 1.0 mL of 70% aqueous methanol

containing 0.1 mg of Acy (internal standard), sonicated for

30 min. After centrifugation, the supernatant was taken over a

0.22 lm filter membrane into an injection vial and subsequently

analysed for diterpenoid metabolites using an LC–ESI–MS/MS

system (Chen et al., 2013; Peng et al., 2017). Qualification of

metabolites was carried out using a scheduled multiple reaction

monitoring methods (Chen et al., 2013).

Assay of disease resistance

Xoo infection was conducted with the leaf-clipping method

(Kauffman et al., 1973), using fully expanded leaves from 8-

week-old rice plants and inoculation with the Xoo strain Zhe134.

Xoo was first grown for 2–3 days on a solid PSA medium at

28 °C, which was then scraped off and resuspended in sterilized

MgCl2 solution (10 mM). The suspension was then adjusted to an

optical density of 0.5 at 600 nm before infection. After clipping,

it was observed that greyish chlorotic coloration moved on the

leaf along the main vein. The length of these lesions at 15 days

after inoculation was analysed to measure the disease progres-

sion. The infection involved ten plants and the disease assay was

repeated three times.
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